//===- X86CallingConv.td - Calling Conventions X86 32/64 ---*- tablegen -*-===// | |
// | |
// The LLVM Compiler Infrastructure | |
// | |
// This file is distributed under the University of Illinois Open Source | |
// License. See LICENSE.TXT for details. | |
// | |
//===----------------------------------------------------------------------===// | |
// | |
// This describes the calling conventions for the X86-32 and X86-64 | |
// architectures. | |
// | |
//===----------------------------------------------------------------------===// | |
/// CCIfSubtarget - Match if the current subtarget has a feature F. | |
class CCIfSubtarget<string F, CCAction A> | |
: CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>; | |
//===----------------------------------------------------------------------===// | |
// Return Value Calling Conventions | |
//===----------------------------------------------------------------------===// | |
// Return-value conventions common to all X86 CC's. | |
def RetCC_X86Common : CallingConv<[ | |
// Scalar values are returned in AX first, then DX. For i8, the ABI | |
// requires the values to be in AL and AH, however this code uses AL and DL | |
// instead. This is because using AH for the second register conflicts with | |
// the way LLVM does multiple return values -- a return of {i16,i8} would end | |
// up in AX and AH, which overlap. Front-ends wishing to conform to the ABI | |
// for functions that return two i8 values are currently expected to pack the | |
// values into an i16 (which uses AX, and thus AL:AH). | |
CCIfType<[i8] , CCAssignToReg<[AL, DL]>>, | |
CCIfType<[i16], CCAssignToReg<[AX, DX]>>, | |
CCIfType<[i32], CCAssignToReg<[EAX, EDX]>>, | |
CCIfType<[i64], CCAssignToReg<[RAX, RDX]>>, | |
// Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3 | |
// can only be used by ABI non-compliant code. If the target doesn't have XMM | |
// registers, it won't have vector types. | |
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | |
CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, | |
// 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3 | |
// can only be used by ABI non-compliant code. This vector type is only | |
// supported while using the AVX target feature. | |
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], | |
CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, | |
// MMX vector types are always returned in MM0. If the target doesn't have | |
// MM0, it doesn't support these vector types. | |
CCIfType<[x86mmx], CCAssignToReg<[MM0]>>, | |
// Long double types are always returned in ST0 (even with SSE). | |
CCIfType<[f80], CCAssignToReg<[ST0, ST1]>> | |
]>; | |
// X86-32 C return-value convention. | |
def RetCC_X86_32_C : CallingConv<[ | |
// The X86-32 calling convention returns FP values in ST0, unless marked | |
// with "inreg" (used here to distinguish one kind of reg from another, | |
// weirdly; this is really the sse-regparm calling convention) in which | |
// case they use XMM0, otherwise it is the same as the common X86 calling | |
// conv. | |
CCIfInReg<CCIfSubtarget<"hasXMMInt()", | |
CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>, | |
CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>, | |
CCDelegateTo<RetCC_X86Common> | |
]>; | |
// X86-32 FastCC return-value convention. | |
def RetCC_X86_32_Fast : CallingConv<[ | |
// The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has | |
// SSE2. | |
// This can happen when a float, 2 x float, or 3 x float vector is split by | |
// target lowering, and is returned in 1-3 sse regs. | |
CCIfType<[f32], CCIfSubtarget<"hasXMMInt()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, | |
CCIfType<[f64], CCIfSubtarget<"hasXMMInt()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, | |
// For integers, ECX can be used as an extra return register | |
CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>, | |
CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, | |
CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, | |
// Otherwise, it is the same as the common X86 calling convention. | |
CCDelegateTo<RetCC_X86Common> | |
]>; | |
// X86-64 C return-value convention. | |
def RetCC_X86_64_C : CallingConv<[ | |
// The X86-64 calling convention always returns FP values in XMM0. | |
CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>, | |
CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>, | |
// MMX vector types are always returned in XMM0. | |
CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>, | |
CCDelegateTo<RetCC_X86Common> | |
]>; | |
// X86-Win64 C return-value convention. | |
def RetCC_X86_Win64_C : CallingConv<[ | |
// The X86-Win64 calling convention always returns __m64 values in RAX. | |
CCIfType<[x86mmx], CCBitConvertToType<i64>>, | |
// Otherwise, everything is the same as 'normal' X86-64 C CC. | |
CCDelegateTo<RetCC_X86_64_C> | |
]>; | |
// This is the root return-value convention for the X86-32 backend. | |
def RetCC_X86_32 : CallingConv<[ | |
// If FastCC, use RetCC_X86_32_Fast. | |
CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>, | |
// Otherwise, use RetCC_X86_32_C. | |
CCDelegateTo<RetCC_X86_32_C> | |
]>; | |
// This is the root return-value convention for the X86-64 backend. | |
def RetCC_X86_64 : CallingConv<[ | |
// Mingw64 and native Win64 use Win64 CC | |
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>, | |
// Otherwise, drop to normal X86-64 CC | |
CCDelegateTo<RetCC_X86_64_C> | |
]>; | |
// This is the return-value convention used for the entire X86 backend. | |
def RetCC_X86 : CallingConv<[ | |
CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>, | |
CCDelegateTo<RetCC_X86_32> | |
]>; | |
//===----------------------------------------------------------------------===// | |
// X86-64 Argument Calling Conventions | |
//===----------------------------------------------------------------------===// | |
def CC_X86_64_C : CallingConv<[ | |
// Handles byval parameters. | |
CCIfByVal<CCPassByVal<8, 8>>, | |
// Promote i8/i16 arguments to i32. | |
CCIfType<[i8, i16], CCPromoteToType<i32>>, | |
// The 'nest' parameter, if any, is passed in R10. | |
CCIfNest<CCAssignToReg<[R10]>>, | |
// The first 6 integer arguments are passed in integer registers. | |
CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>, | |
CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>, | |
// The first 8 MMX vector arguments are passed in XMM registers on Darwin. | |
CCIfType<[x86mmx], | |
CCIfSubtarget<"isTargetDarwin()", | |
CCIfSubtarget<"hasXMMInt()", | |
CCPromoteToType<v2i64>>>>, | |
// The first 8 FP/Vector arguments are passed in XMM registers. | |
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | |
CCIfSubtarget<"hasXMM()", | |
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>, | |
// The first 8 256-bit vector arguments are passed in YMM registers. | |
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], | |
CCIfSubtarget<"hasAVX()", | |
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7]>>>, | |
// Integer/FP values get stored in stack slots that are 8 bytes in size and | |
// 8-byte aligned if there are no more registers to hold them. | |
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, | |
// Long doubles get stack slots whose size and alignment depends on the | |
// subtarget. | |
CCIfType<[f80], CCAssignToStack<0, 0>>, | |
// Vectors get 16-byte stack slots that are 16-byte aligned. | |
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, | |
// 256-bit vectors get 32-byte stack slots that are 32-byte aligned. | |
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], | |
CCAssignToStack<32, 32>> | |
]>; | |
// Calling convention used on Win64 | |
def CC_X86_Win64_C : CallingConv<[ | |
// FIXME: Handle byval stuff. | |
// FIXME: Handle varargs. | |
// Promote i8/i16 arguments to i32. | |
CCIfType<[i8, i16], CCPromoteToType<i32>>, | |
// The 'nest' parameter, if any, is passed in R10. | |
CCIfNest<CCAssignToReg<[R10]>>, | |
// 128 bit vectors are passed by pointer | |
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>, | |
// The first 4 MMX vector arguments are passed in GPRs. | |
CCIfType<[x86mmx], CCBitConvertToType<i64>>, | |
// The first 4 integer arguments are passed in integer registers. | |
CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ], | |
[XMM0, XMM1, XMM2, XMM3]>>, | |
// Do not pass the sret argument in RCX, the Win64 thiscall calling | |
// convention requires "this" to be passed in RCX. | |
CCIfCC<"CallingConv::X86_ThisCall", | |
CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8 , R9 ], | |
[XMM1, XMM2, XMM3]>>>>, | |
CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ], | |
[XMM0, XMM1, XMM2, XMM3]>>, | |
// The first 4 FP/Vector arguments are passed in XMM registers. | |
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | |
CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3], | |
[RCX , RDX , R8 , R9 ]>>, | |
// Integer/FP values get stored in stack slots that are 8 bytes in size and | |
// 8-byte aligned if there are no more registers to hold them. | |
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, | |
// Long doubles get stack slots whose size and alignment depends on the | |
// subtarget. | |
CCIfType<[f80], CCAssignToStack<0, 0>> | |
]>; | |
def CC_X86_64_GHC : CallingConv<[ | |
// Promote i8/i16/i32 arguments to i64. | |
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, | |
// Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim | |
CCIfType<[i64], | |
CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>, | |
// Pass in STG registers: F1, F2, F3, F4, D1, D2 | |
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | |
CCIfSubtarget<"hasXMM()", | |
CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>> | |
]>; | |
//===----------------------------------------------------------------------===// | |
// X86 C Calling Convention | |
//===----------------------------------------------------------------------===// | |
/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP | |
/// values are spilled on the stack, and the first 4 vector values go in XMM | |
/// regs. | |
def CC_X86_32_Common : CallingConv<[ | |
// Handles byval parameters. | |
CCIfByVal<CCPassByVal<4, 4>>, | |
// The first 3 float or double arguments, if marked 'inreg' and if the call | |
// is not a vararg call and if SSE2 is available, are passed in SSE registers. | |
CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64], | |
CCIfSubtarget<"hasXMMInt()", | |
CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>, | |
// The first 3 __m64 vector arguments are passed in mmx registers if the | |
// call is not a vararg call. | |
CCIfNotVarArg<CCIfType<[x86mmx], | |
CCAssignToReg<[MM0, MM1, MM2]>>>, | |
// Integer/Float values get stored in stack slots that are 4 bytes in | |
// size and 4-byte aligned. | |
CCIfType<[i32, f32], CCAssignToStack<4, 4>>, | |
// Doubles get 8-byte slots that are 4-byte aligned. | |
CCIfType<[f64], CCAssignToStack<8, 4>>, | |
// Long doubles get slots whose size depends on the subtarget. | |
CCIfType<[f80], CCAssignToStack<0, 4>>, | |
// The first 4 SSE vector arguments are passed in XMM registers. | |
CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], | |
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>, | |
// The first 4 AVX 256-bit vector arguments are passed in YMM registers. | |
CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], | |
CCIfSubtarget<"hasAVX()", | |
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>, | |
// Other SSE vectors get 16-byte stack slots that are 16-byte aligned. | |
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, | |
// 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned. | |
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], | |
CCAssignToStack<32, 32>>, | |
// __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are | |
// passed in the parameter area. | |
CCIfType<[x86mmx], CCAssignToStack<8, 4>>]>; | |
def CC_X86_32_C : CallingConv<[ | |
// Promote i8/i16 arguments to i32. | |
CCIfType<[i8, i16], CCPromoteToType<i32>>, | |
// The 'nest' parameter, if any, is passed in ECX. | |
CCIfNest<CCAssignToReg<[ECX]>>, | |
// The first 3 integer arguments, if marked 'inreg' and if the call is not | |
// a vararg call, are passed in integer registers. | |
CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>, | |
// Otherwise, same as everything else. | |
CCDelegateTo<CC_X86_32_Common> | |
]>; | |
def CC_X86_32_FastCall : CallingConv<[ | |
// Promote i8/i16 arguments to i32. | |
CCIfType<[i8, i16], CCPromoteToType<i32>>, | |
// The 'nest' parameter, if any, is passed in EAX. | |
CCIfNest<CCAssignToReg<[EAX]>>, | |
// The first 2 integer arguments are passed in ECX/EDX | |
CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>, | |
// Otherwise, same as everything else. | |
CCDelegateTo<CC_X86_32_Common> | |
]>; | |
def CC_X86_32_ThisCall : CallingConv<[ | |
// Promote i8/i16 arguments to i32. | |
CCIfType<[i8, i16], CCPromoteToType<i32>>, | |
// The 'nest' parameter, if any, is passed in EAX. | |
CCIfNest<CCAssignToReg<[EAX]>>, | |
// The first integer argument is passed in ECX | |
CCIfType<[i32], CCAssignToReg<[ECX]>>, | |
// Otherwise, same as everything else. | |
CCDelegateTo<CC_X86_32_Common> | |
]>; | |
def CC_X86_32_FastCC : CallingConv<[ | |
// Handles byval parameters. Note that we can't rely on the delegation | |
// to CC_X86_32_Common for this because that happens after code that | |
// puts arguments in registers. | |
CCIfByVal<CCPassByVal<4, 4>>, | |
// Promote i8/i16 arguments to i32. | |
CCIfType<[i8, i16], CCPromoteToType<i32>>, | |
// The 'nest' parameter, if any, is passed in EAX. | |
CCIfNest<CCAssignToReg<[EAX]>>, | |
// The first 2 integer arguments are passed in ECX/EDX | |
CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>, | |
// The first 3 float or double arguments, if the call is not a vararg | |
// call and if SSE2 is available, are passed in SSE registers. | |
CCIfNotVarArg<CCIfType<[f32,f64], | |
CCIfSubtarget<"hasXMMInt()", | |
CCAssignToReg<[XMM0,XMM1,XMM2]>>>>, | |
// Doubles get 8-byte slots that are 8-byte aligned. | |
CCIfType<[f64], CCAssignToStack<8, 8>>, | |
// Otherwise, same as everything else. | |
CCDelegateTo<CC_X86_32_Common> | |
]>; | |
def CC_X86_32_GHC : CallingConv<[ | |
// Promote i8/i16 arguments to i32. | |
CCIfType<[i8, i16], CCPromoteToType<i32>>, | |
// Pass in STG registers: Base, Sp, Hp, R1 | |
CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>> | |
]>; | |
//===----------------------------------------------------------------------===// | |
// X86 Root Argument Calling Conventions | |
//===----------------------------------------------------------------------===// | |
// This is the root argument convention for the X86-32 backend. | |
def CC_X86_32 : CallingConv<[ | |
CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>, | |
CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>, | |
CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>, | |
CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>, | |
// Otherwise, drop to normal X86-32 CC | |
CCDelegateTo<CC_X86_32_C> | |
]>; | |
// This is the root argument convention for the X86-64 backend. | |
def CC_X86_64 : CallingConv<[ | |
CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>, | |
// Mingw64 and native Win64 use Win64 CC | |
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>, | |
// Otherwise, drop to normal X86-64 CC | |
CCDelegateTo<CC_X86_64_C> | |
]>; | |
// This is the argument convention used for the entire X86 backend. | |
def CC_X86 : CallingConv<[ | |
CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>, | |
CCDelegateTo<CC_X86_32> | |
]>; |