| //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains some functions that are useful for math stuff. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_SUPPORT_MATHEXTRAS_H |
| #define LLVM_SUPPORT_MATHEXTRAS_H |
| |
| #include "llvm/Support/SwapByteOrder.h" |
| |
| namespace llvm { |
| |
| // NOTE: The following support functions use the _32/_64 extensions instead of |
| // type overloading so that signed and unsigned integers can be used without |
| // ambiguity. |
| |
| /// Hi_32 - This function returns the high 32 bits of a 64 bit value. |
| inline uint32_t Hi_32(uint64_t Value) { |
| return static_cast<uint32_t>(Value >> 32); |
| } |
| |
| /// Lo_32 - This function returns the low 32 bits of a 64 bit value. |
| inline uint32_t Lo_32(uint64_t Value) { |
| return static_cast<uint32_t>(Value); |
| } |
| |
| /// isInt - Checks if an integer fits into the given bit width. |
| template<unsigned N> |
| inline bool isInt(int64_t x) { |
| return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); |
| } |
| // Template specializations to get better code for common cases. |
| template<> |
| inline bool isInt<8>(int64_t x) { |
| return static_cast<int8_t>(x) == x; |
| } |
| template<> |
| inline bool isInt<16>(int64_t x) { |
| return static_cast<int16_t>(x) == x; |
| } |
| template<> |
| inline bool isInt<32>(int64_t x) { |
| return static_cast<int32_t>(x) == x; |
| } |
| |
| /// isUInt - Checks if an unsigned integer fits into the given bit width. |
| template<unsigned N> |
| inline bool isUInt(uint64_t x) { |
| return N >= 64 || x < (UINT64_C(1)<<N); |
| } |
| // Template specializations to get better code for common cases. |
| template<> |
| inline bool isUInt<8>(uint64_t x) { |
| return static_cast<uint8_t>(x) == x; |
| } |
| template<> |
| inline bool isUInt<16>(uint64_t x) { |
| return static_cast<uint16_t>(x) == x; |
| } |
| template<> |
| inline bool isUInt<32>(uint64_t x) { |
| return static_cast<uint32_t>(x) == x; |
| } |
| |
| /// isUIntN - Checks if an unsigned integer fits into the given (dynamic) |
| /// bit width. |
| inline bool isUIntN(unsigned N, uint64_t x) { |
| return x == (x & (~0ULL >> (64 - N))); |
| } |
| |
| /// isIntN - Checks if an signed integer fits into the given (dynamic) |
| /// bit width. |
| inline bool isIntN(unsigned N, int64_t x) { |
| return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); |
| } |
| |
| /// isMask_32 - This function returns true if the argument is a sequence of ones |
| /// starting at the least significant bit with the remainder zero (32 bit |
| /// version). Ex. isMask_32(0x0000FFFFU) == true. |
| inline bool isMask_32(uint32_t Value) { |
| return Value && ((Value + 1) & Value) == 0; |
| } |
| |
| /// isMask_64 - This function returns true if the argument is a sequence of ones |
| /// starting at the least significant bit with the remainder zero (64 bit |
| /// version). |
| inline bool isMask_64(uint64_t Value) { |
| return Value && ((Value + 1) & Value) == 0; |
| } |
| |
| /// isShiftedMask_32 - This function returns true if the argument contains a |
| /// sequence of ones with the remainder zero (32 bit version.) |
| /// Ex. isShiftedMask_32(0x0000FF00U) == true. |
| inline bool isShiftedMask_32(uint32_t Value) { |
| return isMask_32((Value - 1) | Value); |
| } |
| |
| /// isShiftedMask_64 - This function returns true if the argument contains a |
| /// sequence of ones with the remainder zero (64 bit version.) |
| inline bool isShiftedMask_64(uint64_t Value) { |
| return isMask_64((Value - 1) | Value); |
| } |
| |
| /// isPowerOf2_32 - This function returns true if the argument is a power of |
| /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) |
| inline bool isPowerOf2_32(uint32_t Value) { |
| return Value && !(Value & (Value - 1)); |
| } |
| |
| /// isPowerOf2_64 - This function returns true if the argument is a power of two |
| /// > 0 (64 bit edition.) |
| inline bool isPowerOf2_64(uint64_t Value) { |
| return Value && !(Value & (Value - int64_t(1L))); |
| } |
| |
| /// ByteSwap_16 - This function returns a byte-swapped representation of the |
| /// 16-bit argument, Value. |
| inline uint16_t ByteSwap_16(uint16_t Value) { |
| return sys::SwapByteOrder_16(Value); |
| } |
| |
| /// ByteSwap_32 - This function returns a byte-swapped representation of the |
| /// 32-bit argument, Value. |
| inline uint32_t ByteSwap_32(uint32_t Value) { |
| return sys::SwapByteOrder_32(Value); |
| } |
| |
| /// ByteSwap_64 - This function returns a byte-swapped representation of the |
| /// 64-bit argument, Value. |
| inline uint64_t ByteSwap_64(uint64_t Value) { |
| return sys::SwapByteOrder_64(Value); |
| } |
| |
| /// CountLeadingZeros_32 - this function performs the platform optimal form of |
| /// counting the number of zeros from the most significant bit to the first one |
| /// bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8. |
| /// Returns 32 if the word is zero. |
| inline unsigned CountLeadingZeros_32(uint32_t Value) { |
| unsigned Count; // result |
| #if __GNUC__ >= 4 |
| // PowerPC is defined for __builtin_clz(0) |
| #if !defined(__ppc__) && !defined(__ppc64__) |
| if (!Value) return 32; |
| #endif |
| Count = __builtin_clz(Value); |
| #else |
| if (!Value) return 32; |
| Count = 0; |
| // bisection method for count leading zeros |
| for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) { |
| uint32_t Tmp = Value >> Shift; |
| if (Tmp) { |
| Value = Tmp; |
| } else { |
| Count |= Shift; |
| } |
| } |
| #endif |
| return Count; |
| } |
| |
| /// CountLeadingOnes_32 - this function performs the operation of |
| /// counting the number of ones from the most significant bit to the first zero |
| /// bit. Ex. CountLeadingOnes_32(0xFF0FFF00) == 8. |
| /// Returns 32 if the word is all ones. |
| inline unsigned CountLeadingOnes_32(uint32_t Value) { |
| return CountLeadingZeros_32(~Value); |
| } |
| |
| /// CountLeadingZeros_64 - This function performs the platform optimal form |
| /// of counting the number of zeros from the most significant bit to the first |
| /// one bit (64 bit edition.) |
| /// Returns 64 if the word is zero. |
| inline unsigned CountLeadingZeros_64(uint64_t Value) { |
| unsigned Count; // result |
| #if __GNUC__ >= 4 |
| // PowerPC is defined for __builtin_clzll(0) |
| #if !defined(__ppc__) && !defined(__ppc64__) |
| if (!Value) return 64; |
| #endif |
| Count = __builtin_clzll(Value); |
| #else |
| if (sizeof(long) == sizeof(int64_t)) { |
| if (!Value) return 64; |
| Count = 0; |
| // bisection method for count leading zeros |
| for (unsigned Shift = 64 >> 1; Shift; Shift >>= 1) { |
| uint64_t Tmp = Value >> Shift; |
| if (Tmp) { |
| Value = Tmp; |
| } else { |
| Count |= Shift; |
| } |
| } |
| } else { |
| // get hi portion |
| uint32_t Hi = Hi_32(Value); |
| |
| // if some bits in hi portion |
| if (Hi) { |
| // leading zeros in hi portion plus all bits in lo portion |
| Count = CountLeadingZeros_32(Hi); |
| } else { |
| // get lo portion |
| uint32_t Lo = Lo_32(Value); |
| // same as 32 bit value |
| Count = CountLeadingZeros_32(Lo)+32; |
| } |
| } |
| #endif |
| return Count; |
| } |
| |
| /// CountLeadingOnes_64 - This function performs the operation |
| /// of counting the number of ones from the most significant bit to the first |
| /// zero bit (64 bit edition.) |
| /// Returns 64 if the word is all ones. |
| inline unsigned CountLeadingOnes_64(uint64_t Value) { |
| return CountLeadingZeros_64(~Value); |
| } |
| |
| /// CountTrailingZeros_32 - this function performs the platform optimal form of |
| /// counting the number of zeros from the least significant bit to the first one |
| /// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8. |
| /// Returns 32 if the word is zero. |
| inline unsigned CountTrailingZeros_32(uint32_t Value) { |
| #if __GNUC__ >= 4 |
| return Value ? __builtin_ctz(Value) : 32; |
| #else |
| static const unsigned Mod37BitPosition[] = { |
| 32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13, |
| 4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9, |
| 5, 20, 8, 19, 18 |
| }; |
| return Mod37BitPosition[(~(Value - 1) & Value) % 37]; |
| #endif |
| } |
| |
| /// CountTrailingOnes_32 - this function performs the operation of |
| /// counting the number of ones from the least significant bit to the first zero |
| /// bit. Ex. CountTrailingOnes_32(0x00FF00FF) == 8. |
| /// Returns 32 if the word is all ones. |
| inline unsigned CountTrailingOnes_32(uint32_t Value) { |
| return CountTrailingZeros_32(~Value); |
| } |
| |
| /// CountTrailingZeros_64 - This function performs the platform optimal form |
| /// of counting the number of zeros from the least significant bit to the first |
| /// one bit (64 bit edition.) |
| /// Returns 64 if the word is zero. |
| inline unsigned CountTrailingZeros_64(uint64_t Value) { |
| #if __GNUC__ >= 4 |
| return Value ? __builtin_ctzll(Value) : 64; |
| #else |
| static const unsigned Mod67Position[] = { |
| 64, 0, 1, 39, 2, 15, 40, 23, 3, 12, 16, 59, 41, 19, 24, 54, |
| 4, 64, 13, 10, 17, 62, 60, 28, 42, 30, 20, 51, 25, 44, 55, |
| 47, 5, 32, 65, 38, 14, 22, 11, 58, 18, 53, 63, 9, 61, 27, |
| 29, 50, 43, 46, 31, 37, 21, 57, 52, 8, 26, 49, 45, 36, 56, |
| 7, 48, 35, 6, 34, 33, 0 |
| }; |
| return Mod67Position[(~(Value - 1) & Value) % 67]; |
| #endif |
| } |
| |
| /// CountTrailingOnes_64 - This function performs the operation |
| /// of counting the number of ones from the least significant bit to the first |
| /// zero bit (64 bit edition.) |
| /// Returns 64 if the word is all ones. |
| inline unsigned CountTrailingOnes_64(uint64_t Value) { |
| return CountTrailingZeros_64(~Value); |
| } |
| |
| /// CountPopulation_32 - this function counts the number of set bits in a value. |
| /// Ex. CountPopulation(0xF000F000) = 8 |
| /// Returns 0 if the word is zero. |
| inline unsigned CountPopulation_32(uint32_t Value) { |
| #if __GNUC__ >= 4 |
| return __builtin_popcount(Value); |
| #else |
| uint32_t v = Value - ((Value >> 1) & 0x55555555); |
| v = (v & 0x33333333) + ((v >> 2) & 0x33333333); |
| return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; |
| #endif |
| } |
| |
| /// CountPopulation_64 - this function counts the number of set bits in a value, |
| /// (64 bit edition.) |
| inline unsigned CountPopulation_64(uint64_t Value) { |
| #if __GNUC__ >= 4 |
| return __builtin_popcountll(Value); |
| #else |
| uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL); |
| v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); |
| v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; |
| return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); |
| #endif |
| } |
| |
| /// Log2_32 - This function returns the floor log base 2 of the specified value, |
| /// -1 if the value is zero. (32 bit edition.) |
| /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 |
| inline unsigned Log2_32(uint32_t Value) { |
| return 31 - CountLeadingZeros_32(Value); |
| } |
| |
| /// Log2_64 - This function returns the floor log base 2 of the specified value, |
| /// -1 if the value is zero. (64 bit edition.) |
| inline unsigned Log2_64(uint64_t Value) { |
| return 63 - CountLeadingZeros_64(Value); |
| } |
| |
| /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified |
| /// value, 32 if the value is zero. (32 bit edition). |
| /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 |
| inline unsigned Log2_32_Ceil(uint32_t Value) { |
| return 32-CountLeadingZeros_32(Value-1); |
| } |
| |
| /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified |
| /// value, 64 if the value is zero. (64 bit edition.) |
| inline unsigned Log2_64_Ceil(uint64_t Value) { |
| return 64-CountLeadingZeros_64(Value-1); |
| } |
| |
| /// GreatestCommonDivisor64 - Return the greatest common divisor of the two |
| /// values using Euclid's algorithm. |
| inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { |
| while (B) { |
| uint64_t T = B; |
| B = A % B; |
| A = T; |
| } |
| return A; |
| } |
| |
| /// BitsToDouble - This function takes a 64-bit integer and returns the bit |
| /// equivalent double. |
| inline double BitsToDouble(uint64_t Bits) { |
| union { |
| uint64_t L; |
| double D; |
| } T; |
| T.L = Bits; |
| return T.D; |
| } |
| |
| /// BitsToFloat - This function takes a 32-bit integer and returns the bit |
| /// equivalent float. |
| inline float BitsToFloat(uint32_t Bits) { |
| union { |
| uint32_t I; |
| float F; |
| } T; |
| T.I = Bits; |
| return T.F; |
| } |
| |
| /// DoubleToBits - This function takes a double and returns the bit |
| /// equivalent 64-bit integer. Note that copying doubles around |
| /// changes the bits of NaNs on some hosts, notably x86, so this |
| /// routine cannot be used if these bits are needed. |
| inline uint64_t DoubleToBits(double Double) { |
| union { |
| uint64_t L; |
| double D; |
| } T; |
| T.D = Double; |
| return T.L; |
| } |
| |
| /// FloatToBits - This function takes a float and returns the bit |
| /// equivalent 32-bit integer. Note that copying floats around |
| /// changes the bits of NaNs on some hosts, notably x86, so this |
| /// routine cannot be used if these bits are needed. |
| inline uint32_t FloatToBits(float Float) { |
| union { |
| uint32_t I; |
| float F; |
| } T; |
| T.F = Float; |
| return T.I; |
| } |
| |
| /// Platform-independent wrappers for the C99 isnan() function. |
| int IsNAN(float f); |
| int IsNAN(double d); |
| |
| /// Platform-independent wrappers for the C99 isinf() function. |
| int IsInf(float f); |
| int IsInf(double d); |
| |
| /// MinAlign - A and B are either alignments or offsets. Return the minimum |
| /// alignment that may be assumed after adding the two together. |
| static inline uint64_t MinAlign(uint64_t A, uint64_t B) { |
| // The largest power of 2 that divides both A and B. |
| return (A | B) & ~((A | B) - 1); |
| } |
| |
| /// NextPowerOf2 - Returns the next power of two (in 64-bits) |
| /// that is strictly greater than A. Returns zero on overflow. |
| static inline uint64_t NextPowerOf2(uint64_t A) { |
| A |= (A >> 1); |
| A |= (A >> 2); |
| A |= (A >> 4); |
| A |= (A >> 8); |
| A |= (A >> 16); |
| A |= (A >> 32); |
| return A + 1; |
| } |
| |
| /// RoundUpToAlignment - Returns the next integer (mod 2**64) that is |
| /// greater than or equal to \arg Value and is a multiple of \arg |
| /// Align. Align must be non-zero. |
| /// |
| /// Examples: |
| /// RoundUpToAlignment(5, 8) = 8 |
| /// RoundUpToAlignment(17, 8) = 24 |
| /// RoundUpToAlignment(~0LL, 8) = 0 |
| inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) { |
| return ((Value + Align - 1) / Align) * Align; |
| } |
| |
| /// OffsetToAlignment - Return the offset to the next integer (mod 2**64) that |
| /// is greater than or equal to \arg Value and is a multiple of \arg |
| /// Align. Align must be non-zero. |
| inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) { |
| return RoundUpToAlignment(Value, Align) - Value; |
| } |
| |
| /// abs64 - absolute value of a 64-bit int. Not all environments support |
| /// "abs" on whatever their name for the 64-bit int type is. The absolute |
| /// value of the largest negative number is undefined, as with "abs". |
| inline int64_t abs64(int64_t x) { |
| return (x < 0) ? -x : x; |
| } |
| |
| /// SignExtend32 - Sign extend B-bit number x to 32-bit int. |
| /// Usage int32_t r = SignExtend32<5>(x); |
| template <unsigned B> inline int32_t SignExtend32(uint32_t x) { |
| return int32_t(x << (32 - B)) >> (32 - B); |
| } |
| |
| /// SignExtend64 - Sign extend B-bit number x to 64-bit int. |
| /// Usage int64_t r = SignExtend64<5>(x); |
| template <unsigned B> inline int64_t SignExtend64(uint64_t x) { |
| return int64_t(x << (64 - B)) >> (64 - B); |
| } |
| |
| } // End llvm namespace |
| |
| #endif |