blob: f52ebcdfab7bcfdb1cd827fd9a35008cb6d56565 [file] [log] [blame]
// Copyright 2018 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "VkImage.hpp"
#include "VkBuffer.hpp"
#include "VkDevice.hpp"
#include "VkDeviceMemory.hpp"
#include "Device/ASTC_Decoder.hpp"
#include "Device/BC_Decoder.hpp"
#include "Device/Blitter.hpp"
#include "Device/ETC_Decoder.hpp"
#ifdef __ANDROID__
# include "System/GrallocAndroid.hpp"
#endif
#include <cstring>
namespace {
ETC_Decoder::InputType GetInputType(const vk::Format &format)
{
switch(format)
{
case VK_FORMAT_EAC_R11_UNORM_BLOCK:
return ETC_Decoder::ETC_R_UNSIGNED;
case VK_FORMAT_EAC_R11_SNORM_BLOCK:
return ETC_Decoder::ETC_R_SIGNED;
case VK_FORMAT_EAC_R11G11_UNORM_BLOCK:
return ETC_Decoder::ETC_RG_UNSIGNED;
case VK_FORMAT_EAC_R11G11_SNORM_BLOCK:
return ETC_Decoder::ETC_RG_SIGNED;
case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
return ETC_Decoder::ETC_RGB;
case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:
return ETC_Decoder::ETC_RGB_PUNCHTHROUGH_ALPHA;
case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK:
return ETC_Decoder::ETC_RGBA;
default:
UNSUPPORTED("format: %d", int(format));
return ETC_Decoder::ETC_RGBA;
}
}
int GetBCn(const vk::Format &format)
{
switch(format)
{
case VK_FORMAT_BC1_RGB_UNORM_BLOCK:
case VK_FORMAT_BC1_RGBA_UNORM_BLOCK:
case VK_FORMAT_BC1_RGB_SRGB_BLOCK:
case VK_FORMAT_BC1_RGBA_SRGB_BLOCK:
return 1;
case VK_FORMAT_BC2_UNORM_BLOCK:
case VK_FORMAT_BC2_SRGB_BLOCK:
return 2;
case VK_FORMAT_BC3_UNORM_BLOCK:
case VK_FORMAT_BC3_SRGB_BLOCK:
return 3;
case VK_FORMAT_BC4_UNORM_BLOCK:
case VK_FORMAT_BC4_SNORM_BLOCK:
return 4;
case VK_FORMAT_BC5_UNORM_BLOCK:
case VK_FORMAT_BC5_SNORM_BLOCK:
return 5;
case VK_FORMAT_BC6H_UFLOAT_BLOCK:
case VK_FORMAT_BC6H_SFLOAT_BLOCK:
return 6;
case VK_FORMAT_BC7_UNORM_BLOCK:
case VK_FORMAT_BC7_SRGB_BLOCK:
return 7;
default:
UNSUPPORTED("format: %d", int(format));
return 0;
}
}
// Returns true for BC1 if we have an RGB format, false for RGBA
// Returns true for BC4, BC5, BC6H if we have an unsigned format, false for signed
// Ignored by BC2, BC3, and BC7
bool GetNoAlphaOrUnsigned(const vk::Format &format)
{
switch(format)
{
case VK_FORMAT_BC1_RGB_UNORM_BLOCK:
case VK_FORMAT_BC1_RGB_SRGB_BLOCK:
case VK_FORMAT_BC4_UNORM_BLOCK:
case VK_FORMAT_BC5_UNORM_BLOCK:
case VK_FORMAT_BC6H_UFLOAT_BLOCK:
return true;
case VK_FORMAT_BC1_RGBA_UNORM_BLOCK:
case VK_FORMAT_BC1_RGBA_SRGB_BLOCK:
case VK_FORMAT_BC2_UNORM_BLOCK:
case VK_FORMAT_BC2_SRGB_BLOCK:
case VK_FORMAT_BC3_UNORM_BLOCK:
case VK_FORMAT_BC3_SRGB_BLOCK:
case VK_FORMAT_BC4_SNORM_BLOCK:
case VK_FORMAT_BC5_SNORM_BLOCK:
case VK_FORMAT_BC6H_SFLOAT_BLOCK:
case VK_FORMAT_BC7_SRGB_BLOCK:
case VK_FORMAT_BC7_UNORM_BLOCK:
return false;
default:
UNSUPPORTED("format: %d", int(format));
return false;
}
}
} // anonymous namespace
namespace vk {
Image::Image(const VkImageCreateInfo *pCreateInfo, void *mem, Device *device)
: device(device)
, flags(pCreateInfo->flags)
, imageType(pCreateInfo->imageType)
, format(pCreateInfo->format)
, extent(pCreateInfo->extent)
, mipLevels(pCreateInfo->mipLevels)
, arrayLayers(pCreateInfo->arrayLayers)
, samples(pCreateInfo->samples)
, tiling(pCreateInfo->tiling)
, usage(pCreateInfo->usage)
{
if(format.isCompressed())
{
VkImageCreateInfo compressedImageCreateInfo = *pCreateInfo;
compressedImageCreateInfo.format = format.getDecompressedFormat();
decompressedImage = new(mem) Image(&compressedImageCreateInfo, nullptr, device);
}
const auto *nextInfo = reinterpret_cast<const VkBaseInStructure *>(pCreateInfo->pNext);
for(; nextInfo != nullptr; nextInfo = nextInfo->pNext)
{
if(nextInfo->sType == VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO)
{
const auto *externalInfo = reinterpret_cast<const VkExternalMemoryImageCreateInfo *>(nextInfo);
supportedExternalMemoryHandleTypes = externalInfo->handleTypes;
}
}
}
void Image::destroy(const VkAllocationCallbacks *pAllocator)
{
if(decompressedImage)
{
vk::deallocate(decompressedImage, pAllocator);
}
}
size_t Image::ComputeRequiredAllocationSize(const VkImageCreateInfo *pCreateInfo)
{
return Format(pCreateInfo->format).isCompressed() ? sizeof(Image) : 0;
}
const VkMemoryRequirements Image::getMemoryRequirements() const
{
VkMemoryRequirements memoryRequirements;
memoryRequirements.alignment = vk::REQUIRED_MEMORY_ALIGNMENT;
memoryRequirements.memoryTypeBits = vk::MEMORY_TYPE_GENERIC_BIT;
memoryRequirements.size = getStorageSize(format.getAspects()) +
(decompressedImage ? decompressedImage->getStorageSize(decompressedImage->format.getAspects()) : 0);
return memoryRequirements;
}
size_t Image::getSizeInBytes(const VkImageSubresourceRange &subresourceRange) const
{
size_t size = 0;
uint32_t lastLayer = getLastLayerIndex(subresourceRange);
uint32_t lastMipLevel = getLastMipLevel(subresourceRange);
uint32_t layerCount = lastLayer - subresourceRange.baseArrayLayer + 1;
uint32_t mipLevelCount = lastMipLevel - subresourceRange.baseMipLevel + 1;
auto aspect = static_cast<VkImageAspectFlagBits>(subresourceRange.aspectMask);
if(layerCount > 1)
{
if(mipLevelCount < mipLevels) // Compute size for all layers except the last one, then add relevant mip level sizes only for last layer
{
size = (layerCount - 1) * getLayerSize(aspect);
for(uint32_t mipLevel = subresourceRange.baseMipLevel; mipLevel <= lastMipLevel; ++mipLevel)
{
size += getMultiSampledLevelSize(aspect, mipLevel);
}
}
else // All mip levels used, compute full layer sizes
{
size = layerCount * getLayerSize(aspect);
}
}
else // Single layer, add all mip levels in the subresource range
{
for(uint32_t mipLevel = subresourceRange.baseMipLevel; mipLevel <= lastMipLevel; ++mipLevel)
{
size += getMultiSampledLevelSize(aspect, mipLevel);
}
}
return size;
}
bool Image::canBindToMemory(DeviceMemory *pDeviceMemory) const
{
return pDeviceMemory->checkExternalMemoryHandleType(supportedExternalMemoryHandleTypes);
}
void Image::bind(DeviceMemory *pDeviceMemory, VkDeviceSize pMemoryOffset)
{
deviceMemory = pDeviceMemory;
memoryOffset = pMemoryOffset;
if(decompressedImage)
{
decompressedImage->deviceMemory = deviceMemory;
decompressedImage->memoryOffset = memoryOffset + getStorageSize(format.getAspects());
}
}
#ifdef __ANDROID__
VkResult Image::prepareForExternalUseANDROID() const
{
void *nativeBuffer = nullptr;
VkExtent3D extent = getMipLevelExtent(VK_IMAGE_ASPECT_COLOR_BIT, 0);
buffer_handle_t importedBufferHandle = nullptr;
if(GrallocModule::getInstance()->import(backingMemory.nativeHandle, &importedBufferHandle) != 0)
{
return VK_ERROR_OUT_OF_DATE_KHR;
}
if(!importedBufferHandle)
{
return VK_ERROR_OUT_OF_DATE_KHR;
}
if(GrallocModule::getInstance()->lock(importedBufferHandle, GRALLOC_USAGE_SW_WRITE_OFTEN, 0, 0, extent.width, extent.height, &nativeBuffer) != 0)
{
return VK_ERROR_OUT_OF_DATE_KHR;
}
if(!nativeBuffer)
{
return VK_ERROR_OUT_OF_DATE_KHR;
}
int imageRowBytes = rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0);
int bufferRowBytes = backingMemory.stride * getFormat().bytes();
ASSERT(imageRowBytes <= bufferRowBytes);
uint8_t *srcBuffer = static_cast<uint8_t *>(deviceMemory->getOffsetPointer(0));
uint8_t *dstBuffer = static_cast<uint8_t *>(nativeBuffer);
for(uint32_t i = 0; i < extent.height; i++)
{
memcpy(dstBuffer + (i * bufferRowBytes), srcBuffer + (i * imageRowBytes), imageRowBytes);
}
if(GrallocModule::getInstance()->unlock(importedBufferHandle) != 0)
{
return VK_ERROR_OUT_OF_DATE_KHR;
}
if(GrallocModule::getInstance()->release(importedBufferHandle) != 0)
{
return VK_ERROR_OUT_OF_DATE_KHR;
}
return VK_SUCCESS;
}
VkDeviceMemory Image::getExternalMemory() const
{
return backingMemory.externalMemory ? *deviceMemory : VkDeviceMemory{ VK_NULL_HANDLE };
}
#endif
void Image::getSubresourceLayout(const VkImageSubresource *pSubresource, VkSubresourceLayout *pLayout) const
{
// By spec, aspectMask has a single bit set.
if(!((pSubresource->aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) ||
(pSubresource->aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) ||
(pSubresource->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) ||
(pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) ||
(pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) ||
(pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT)))
{
UNSUPPORTED("aspectMask %X", pSubresource->aspectMask);
}
auto aspect = static_cast<VkImageAspectFlagBits>(pSubresource->aspectMask);
pLayout->offset = getMemoryOffset(aspect, pSubresource->mipLevel, pSubresource->arrayLayer);
pLayout->size = getMultiSampledLevelSize(aspect, pSubresource->mipLevel);
pLayout->rowPitch = rowPitchBytes(aspect, pSubresource->mipLevel);
pLayout->depthPitch = slicePitchBytes(aspect, pSubresource->mipLevel);
pLayout->arrayPitch = getLayerSize(aspect);
}
void Image::copyTo(Image *dstImage, const VkImageCopy &region) const
{
// Image copy does not perform any conversion, it simply copies memory from
// an image to another image that has the same number of bytes per pixel.
if(!((region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) ||
(region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) ||
(region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) ||
(region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) ||
(region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) ||
(region.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT)))
{
UNSUPPORTED("srcSubresource.aspectMask %X", region.srcSubresource.aspectMask);
}
if(!((region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) ||
(region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) ||
(region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) ||
(region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) ||
(region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) ||
(region.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT)))
{
UNSUPPORTED("dstSubresource.aspectMask %X", region.dstSubresource.aspectMask);
}
VkImageAspectFlagBits srcAspect = static_cast<VkImageAspectFlagBits>(region.srcSubresource.aspectMask);
VkImageAspectFlagBits dstAspect = static_cast<VkImageAspectFlagBits>(region.dstSubresource.aspectMask);
Format srcFormat = getFormat(srcAspect);
Format dstFormat = dstImage->getFormat(dstAspect);
int bytesPerBlock = srcFormat.bytesPerBlock();
ASSERT(bytesPerBlock == dstFormat.bytesPerBlock());
ASSERT(samples == dstImage->samples);
VkExtent3D srcExtent = getMipLevelExtent(srcAspect, region.srcSubresource.mipLevel);
VkExtent3D dstExtent = dstImage->getMipLevelExtent(dstAspect, region.dstSubresource.mipLevel);
VkExtent3D copyExtent = imageExtentInBlocks(region.extent, srcAspect);
VkImageType srcImageType = imageType;
VkImageType dstImageType = dstImage->getImageType();
bool one3D = (srcImageType == VK_IMAGE_TYPE_3D) != (dstImageType == VK_IMAGE_TYPE_3D);
bool both3D = (srcImageType == VK_IMAGE_TYPE_3D) && (dstImageType == VK_IMAGE_TYPE_3D);
// Texel layout pitches, using the VkSubresourceLayout nomenclature.
int srcRowPitch = rowPitchBytes(srcAspect, region.srcSubresource.mipLevel);
int srcDepthPitch = slicePitchBytes(srcAspect, region.srcSubresource.mipLevel);
int dstRowPitch = dstImage->rowPitchBytes(dstAspect, region.dstSubresource.mipLevel);
int dstDepthPitch = dstImage->slicePitchBytes(dstAspect, region.dstSubresource.mipLevel);
VkDeviceSize srcArrayPitch = getLayerSize(srcAspect);
VkDeviceSize dstArrayPitch = dstImage->getLayerSize(dstAspect);
// These are the pitches used when iterating over the layers that are being copied by the
// vkCmdCopyImage command. They can differ from the above array piches because the spec states that:
// "If one image is VK_IMAGE_TYPE_3D and the other image is VK_IMAGE_TYPE_2D with multiple
// layers, then each slice is copied to or from a different layer."
VkDeviceSize srcLayerPitch = (srcImageType == VK_IMAGE_TYPE_3D) ? srcDepthPitch : srcArrayPitch;
VkDeviceSize dstLayerPitch = (dstImageType == VK_IMAGE_TYPE_3D) ? dstDepthPitch : dstArrayPitch;
// If one image is 3D, extent.depth must match the layer count. If both images are 2D,
// depth is 1 but the source and destination subresource layer count must match.
uint32_t layerCount = one3D ? copyExtent.depth : region.srcSubresource.layerCount;
// Copies between 2D and 3D images are treated as layers, so only use depth as the slice count when
// both images are 3D.
// Multisample images are currently implemented similar to 3D images by storing one sample per slice.
// TODO(b/160600347): Store samples consecutively.
uint32_t sliceCount = both3D ? copyExtent.depth : samples;
bool isSingleSlice = (sliceCount == 1);
bool isSingleRow = (copyExtent.height == 1) && isSingleSlice;
// In order to copy multiple rows using a single memcpy call, we
// have to make sure that we need to copy the entire row and that
// both source and destination rows have the same size in bytes
bool isEntireRow = (region.extent.width == srcExtent.width) &&
(region.extent.width == dstExtent.width) &&
// For non-compressed formats, blockWidth is 1. For compressed
// formats, rowPitchBytes returns the number of bytes for a row of
// blocks, so we have to divide by the block height, which means:
// srcRowPitchBytes / srcBlockWidth == dstRowPitchBytes / dstBlockWidth
// And, to avoid potential non exact integer division, for example if a
// block has 16 bytes and represents 5 rows, we change the equation to:
// srcRowPitchBytes * dstBlockWidth == dstRowPitchBytes * srcBlockWidth
((srcRowPitch * dstFormat.blockWidth()) ==
(dstRowPitch * srcFormat.blockWidth()));
// In order to copy multiple slices using a single memcpy call, we
// have to make sure that we need to copy the entire slice and that
// both source and destination slices have the same size in bytes
bool isEntireSlice = isEntireRow &&
(copyExtent.height == srcExtent.height) &&
(copyExtent.height == dstExtent.height) &&
(srcDepthPitch == dstDepthPitch);
const uint8_t *srcLayer = static_cast<const uint8_t *>(getTexelPointer(region.srcOffset, { region.srcSubresource.aspectMask, region.srcSubresource.mipLevel, region.srcSubresource.baseArrayLayer }));
uint8_t *dstLayer = static_cast<uint8_t *>(dstImage->getTexelPointer(region.dstOffset, { region.dstSubresource.aspectMask, region.dstSubresource.mipLevel, region.dstSubresource.baseArrayLayer }));
for(uint32_t layer = 0; layer < layerCount; layer++)
{
if(isSingleRow) // Copy one row
{
size_t copySize = copyExtent.width * bytesPerBlock;
ASSERT((srcLayer + copySize) < end());
ASSERT((dstLayer + copySize) < dstImage->end());
memcpy(dstLayer, srcLayer, copySize);
}
else if(isEntireRow && isSingleSlice) // Copy one slice
{
size_t copySize = copyExtent.height * srcRowPitch;
ASSERT((srcLayer + copySize) < end());
ASSERT((dstLayer + copySize) < dstImage->end());
memcpy(dstLayer, srcLayer, copySize);
}
else if(isEntireSlice) // Copy multiple slices
{
size_t copySize = sliceCount * srcDepthPitch;
ASSERT((srcLayer + copySize) < end());
ASSERT((dstLayer + copySize) < dstImage->end());
memcpy(dstLayer, srcLayer, copySize);
}
else if(isEntireRow) // Copy slice by slice
{
size_t sliceSize = copyExtent.height * srcRowPitch;
const uint8_t *srcSlice = srcLayer;
uint8_t *dstSlice = dstLayer;
for(uint32_t z = 0; z < sliceCount; z++)
{
ASSERT((srcSlice + sliceSize) < end());
ASSERT((dstSlice + sliceSize) < dstImage->end());
memcpy(dstSlice, srcSlice, sliceSize);
dstSlice += dstDepthPitch;
srcSlice += srcDepthPitch;
}
}
else // Copy row by row
{
size_t rowSize = copyExtent.width * bytesPerBlock;
const uint8_t *srcSlice = srcLayer;
uint8_t *dstSlice = dstLayer;
for(uint32_t z = 0; z < sliceCount; z++)
{
const uint8_t *srcRow = srcSlice;
uint8_t *dstRow = dstSlice;
for(uint32_t y = 0; y < copyExtent.height; y++)
{
ASSERT((srcRow + rowSize) < end());
ASSERT((dstRow + rowSize) < dstImage->end());
memcpy(dstRow, srcRow, rowSize);
srcRow += srcRowPitch;
dstRow += dstRowPitch;
}
srcSlice += srcDepthPitch;
dstSlice += dstDepthPitch;
}
}
srcLayer += srcLayerPitch;
dstLayer += dstLayerPitch;
}
dstImage->contentsChanged({ region.dstSubresource.aspectMask, region.dstSubresource.mipLevel, 1,
region.dstSubresource.baseArrayLayer, region.dstSubresource.layerCount });
}
void Image::copy(Buffer *buffer, const VkBufferImageCopy &region, bool bufferIsSource)
{
switch(region.imageSubresource.aspectMask)
{
case VK_IMAGE_ASPECT_COLOR_BIT:
case VK_IMAGE_ASPECT_DEPTH_BIT:
case VK_IMAGE_ASPECT_STENCIL_BIT:
case VK_IMAGE_ASPECT_PLANE_0_BIT:
case VK_IMAGE_ASPECT_PLANE_1_BIT:
case VK_IMAGE_ASPECT_PLANE_2_BIT:
break;
default:
UNSUPPORTED("aspectMask %x", int(region.imageSubresource.aspectMask));
break;
}
auto aspect = static_cast<VkImageAspectFlagBits>(region.imageSubresource.aspectMask);
Format copyFormat = getFormat(aspect);
VkExtent3D imageExtent = imageExtentInBlocks(region.imageExtent, aspect);
VkExtent2D bufferExtent = bufferExtentInBlocks({ imageExtent.width, imageExtent.height }, region);
int bytesPerBlock = copyFormat.bytesPerBlock();
int bufferRowPitchBytes = bufferExtent.width * bytesPerBlock;
int bufferSlicePitchBytes = bufferExtent.height * bufferRowPitchBytes;
ASSERT(samples == 1);
uint8_t *bufferMemory = static_cast<uint8_t *>(buffer->getOffsetPointer(region.bufferOffset));
uint8_t *imageMemory = static_cast<uint8_t *>(getTexelPointer(region.imageOffset, { region.imageSubresource.aspectMask, region.imageSubresource.mipLevel, region.imageSubresource.baseArrayLayer }));
uint8_t *srcMemory = bufferIsSource ? bufferMemory : imageMemory;
uint8_t *dstMemory = bufferIsSource ? imageMemory : bufferMemory;
int imageRowPitchBytes = rowPitchBytes(aspect, region.imageSubresource.mipLevel);
int imageSlicePitchBytes = slicePitchBytes(aspect, region.imageSubresource.mipLevel);
int srcSlicePitchBytes = bufferIsSource ? bufferSlicePitchBytes : imageSlicePitchBytes;
int dstSlicePitchBytes = bufferIsSource ? imageSlicePitchBytes : bufferSlicePitchBytes;
int srcRowPitchBytes = bufferIsSource ? bufferRowPitchBytes : imageRowPitchBytes;
int dstRowPitchBytes = bufferIsSource ? imageRowPitchBytes : bufferRowPitchBytes;
VkExtent3D mipLevelExtent = getMipLevelExtent(aspect, region.imageSubresource.mipLevel);
bool isSingleSlice = (imageExtent.depth == 1);
bool isSingleRow = (imageExtent.height == 1) && isSingleSlice;
bool isEntireRow = (imageExtent.width == mipLevelExtent.width) &&
(imageRowPitchBytes == bufferRowPitchBytes);
bool isEntireSlice = isEntireRow && (imageExtent.height == mipLevelExtent.height) &&
(imageSlicePitchBytes == bufferSlicePitchBytes);
VkDeviceSize copySize = 0;
VkDeviceSize bufferLayerSize = 0;
if(isSingleRow)
{
copySize = imageExtent.width * bytesPerBlock;
bufferLayerSize = copySize;
}
else if(isEntireRow && isSingleSlice)
{
copySize = imageExtent.height * imageRowPitchBytes;
bufferLayerSize = copySize;
}
else if(isEntireSlice)
{
copySize = imageExtent.depth * imageSlicePitchBytes; // Copy multiple slices
bufferLayerSize = copySize;
}
else if(isEntireRow) // Copy slice by slice
{
copySize = imageExtent.height * imageRowPitchBytes;
bufferLayerSize = copySize * imageExtent.depth;
}
else // Copy row by row
{
copySize = imageExtent.width * bytesPerBlock;
bufferLayerSize = copySize * imageExtent.depth * imageExtent.height;
}
VkDeviceSize imageLayerSize = getLayerSize(aspect);
VkDeviceSize srcLayerSize = bufferIsSource ? bufferLayerSize : imageLayerSize;
VkDeviceSize dstLayerSize = bufferIsSource ? imageLayerSize : bufferLayerSize;
for(uint32_t i = 0; i < region.imageSubresource.layerCount; i++)
{
if(isSingleRow || (isEntireRow && isSingleSlice) || isEntireSlice)
{
ASSERT(((bufferIsSource ? dstMemory : srcMemory) + copySize) < end());
ASSERT(((bufferIsSource ? srcMemory : dstMemory) + copySize) < buffer->end());
memcpy(dstMemory, srcMemory, copySize);
}
else if(isEntireRow) // Copy slice by slice
{
uint8_t *srcSliceMemory = srcMemory;
uint8_t *dstSliceMemory = dstMemory;
for(uint32_t z = 0; z < imageExtent.depth; z++)
{
ASSERT(((bufferIsSource ? dstSliceMemory : srcSliceMemory) + copySize) < end());
ASSERT(((bufferIsSource ? srcSliceMemory : dstSliceMemory) + copySize) < buffer->end());
memcpy(dstSliceMemory, srcSliceMemory, copySize);
srcSliceMemory += srcSlicePitchBytes;
dstSliceMemory += dstSlicePitchBytes;
}
}
else // Copy row by row
{
uint8_t *srcLayerMemory = srcMemory;
uint8_t *dstLayerMemory = dstMemory;
for(uint32_t z = 0; z < imageExtent.depth; z++)
{
uint8_t *srcSliceMemory = srcLayerMemory;
uint8_t *dstSliceMemory = dstLayerMemory;
for(uint32_t y = 0; y < imageExtent.height; y++)
{
ASSERT(((bufferIsSource ? dstSliceMemory : srcSliceMemory) + copySize) < end());
ASSERT(((bufferIsSource ? srcSliceMemory : dstSliceMemory) + copySize) < buffer->end());
memcpy(dstSliceMemory, srcSliceMemory, copySize);
srcSliceMemory += srcRowPitchBytes;
dstSliceMemory += dstRowPitchBytes;
}
srcLayerMemory += srcSlicePitchBytes;
dstLayerMemory += dstSlicePitchBytes;
}
}
srcMemory += srcLayerSize;
dstMemory += dstLayerSize;
}
if(bufferIsSource)
{
contentsChanged({ region.imageSubresource.aspectMask, region.imageSubresource.mipLevel, 1,
region.imageSubresource.baseArrayLayer, region.imageSubresource.layerCount });
}
}
void Image::copyTo(Buffer *dstBuffer, const VkBufferImageCopy &region)
{
copy(dstBuffer, region, false);
}
void Image::copyFrom(Buffer *srcBuffer, const VkBufferImageCopy &region)
{
copy(srcBuffer, region, true);
}
void *Image::getTexelPointer(const VkOffset3D &offset, const VkImageSubresource &subresource) const
{
VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresource.aspectMask);
return deviceMemory->getOffsetPointer(texelOffsetBytesInStorage(offset, subresource) +
getMemoryOffset(aspect, subresource.mipLevel, subresource.arrayLayer));
}
VkExtent3D Image::imageExtentInBlocks(const VkExtent3D &extent, VkImageAspectFlagBits aspect) const
{
VkExtent3D adjustedExtent = extent;
Format usedFormat = getFormat(aspect);
if(usedFormat.isCompressed())
{
// When using a compressed format, we use the block as the base unit, instead of the texel
int blockWidth = usedFormat.blockWidth();
int blockHeight = usedFormat.blockHeight();
// Mip level allocations will round up to the next block for compressed texture
adjustedExtent.width = ((adjustedExtent.width + blockWidth - 1) / blockWidth);
adjustedExtent.height = ((adjustedExtent.height + blockHeight - 1) / blockHeight);
}
return adjustedExtent;
}
VkOffset3D Image::imageOffsetInBlocks(const VkOffset3D &offset, VkImageAspectFlagBits aspect) const
{
VkOffset3D adjustedOffset = offset;
Format usedFormat = getFormat(aspect);
if(usedFormat.isCompressed())
{
// When using a compressed format, we use the block as the base unit, instead of the texel
int blockWidth = usedFormat.blockWidth();
int blockHeight = usedFormat.blockHeight();
ASSERT(((offset.x % blockWidth) == 0) && ((offset.y % blockHeight) == 0)); // We can't offset within a block
adjustedOffset.x /= blockWidth;
adjustedOffset.y /= blockHeight;
}
return adjustedOffset;
}
VkExtent2D Image::bufferExtentInBlocks(const VkExtent2D &extent, const VkBufferImageCopy &region) const
{
VkExtent2D adjustedExtent = extent;
VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(region.imageSubresource.aspectMask);
Format usedFormat = getFormat(aspect);
if(region.bufferRowLength != 0)
{
adjustedExtent.width = region.bufferRowLength;
if(usedFormat.isCompressed())
{
int blockWidth = usedFormat.blockWidth();
ASSERT((adjustedExtent.width % blockWidth) == 0);
adjustedExtent.width /= blockWidth;
}
}
if(region.bufferImageHeight != 0)
{
adjustedExtent.height = region.bufferImageHeight;
if(usedFormat.isCompressed())
{
int blockHeight = usedFormat.blockHeight();
ASSERT((adjustedExtent.height % blockHeight) == 0);
adjustedExtent.height /= blockHeight;
}
}
return adjustedExtent;
}
int Image::borderSize() const
{
// We won't add a border to compressed cube textures, we'll add it when we decompress the texture
return (isCube() && !format.isCompressed()) ? 1 : 0;
}
VkDeviceSize Image::texelOffsetBytesInStorage(const VkOffset3D &offset, const VkImageSubresource &subresource) const
{
VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresource.aspectMask);
VkOffset3D adjustedOffset = imageOffsetInBlocks(offset, aspect);
int border = borderSize();
return adjustedOffset.z * slicePitchBytes(aspect, subresource.mipLevel) +
(adjustedOffset.y + border) * rowPitchBytes(aspect, subresource.mipLevel) +
(adjustedOffset.x + border) * getFormat(aspect).bytesPerBlock();
}
VkExtent3D Image::getMipLevelExtent(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
{
VkExtent3D mipLevelExtent;
mipLevelExtent.width = extent.width >> mipLevel;
mipLevelExtent.height = extent.height >> mipLevel;
mipLevelExtent.depth = extent.depth >> mipLevel;
if(mipLevelExtent.width == 0) { mipLevelExtent.width = 1; }
if(mipLevelExtent.height == 0) { mipLevelExtent.height = 1; }
if(mipLevelExtent.depth == 0) { mipLevelExtent.depth = 1; }
switch(aspect)
{
case VK_IMAGE_ASPECT_COLOR_BIT:
case VK_IMAGE_ASPECT_DEPTH_BIT:
case VK_IMAGE_ASPECT_STENCIL_BIT:
case VK_IMAGE_ASPECT_PLANE_0_BIT: // Vulkan 1.1 Table 31. Plane Format Compatibility Table: plane 0 of all defined formats is full resolution.
break;
case VK_IMAGE_ASPECT_PLANE_1_BIT:
case VK_IMAGE_ASPECT_PLANE_2_BIT:
switch(format)
{
case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM:
case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM:
ASSERT(mipLevelExtent.width % 2 == 0 && mipLevelExtent.height % 2 == 0); // Vulkan 1.1: "Images in this format must be defined with a width and height that is a multiple of two."
// Vulkan 1.1 Table 31. Plane Format Compatibility Table:
// Half-resolution U and V planes.
mipLevelExtent.width /= 2;
mipLevelExtent.height /= 2;
break;
default:
UNSUPPORTED("format %d", int(format));
}
break;
default:
UNSUPPORTED("aspect %x", int(aspect));
}
return mipLevelExtent;
}
int Image::rowPitchBytes(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
{
// Depth and Stencil pitch should be computed separately
ASSERT((aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) !=
(VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
VkExtent3D mipLevelExtent = getMipLevelExtent(aspect, mipLevel);
Format usedFormat = getFormat(aspect);
if(usedFormat.isCompressed())
{
VkExtent3D extentInBlocks = imageExtentInBlocks(mipLevelExtent, aspect);
return extentInBlocks.width * usedFormat.bytesPerBlock();
}
return usedFormat.pitchB(mipLevelExtent.width, borderSize(), true);
}
int Image::slicePitchBytes(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
{
// Depth and Stencil slice should be computed separately
ASSERT((aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) !=
(VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
VkExtent3D mipLevelExtent = getMipLevelExtent(aspect, mipLevel);
Format usedFormat = getFormat(aspect);
if(usedFormat.isCompressed())
{
VkExtent3D extentInBlocks = imageExtentInBlocks(mipLevelExtent, aspect);
return extentInBlocks.height * extentInBlocks.width * usedFormat.bytesPerBlock();
}
return usedFormat.sliceB(mipLevelExtent.width, mipLevelExtent.height, borderSize(), true);
}
Format Image::getFormat(VkImageAspectFlagBits aspect) const
{
return format.getAspectFormat(aspect);
}
bool Image::isCube() const
{
return (flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) && (imageType == VK_IMAGE_TYPE_2D);
}
uint8_t *Image::end() const
{
return reinterpret_cast<uint8_t *>(deviceMemory->getOffsetPointer(deviceMemory->getCommittedMemoryInBytes() + 1));
}
VkDeviceSize Image::getMemoryOffset(VkImageAspectFlagBits aspect) const
{
switch(format)
{
case VK_FORMAT_D16_UNORM_S8_UINT:
case VK_FORMAT_D24_UNORM_S8_UINT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
if(aspect == VK_IMAGE_ASPECT_STENCIL_BIT)
{
// Offset by depth buffer to get to stencil buffer
return memoryOffset + getStorageSize(VK_IMAGE_ASPECT_DEPTH_BIT);
}
break;
case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM:
if(aspect == VK_IMAGE_ASPECT_PLANE_2_BIT)
{
return memoryOffset + getStorageSize(VK_IMAGE_ASPECT_PLANE_1_BIT) + getStorageSize(VK_IMAGE_ASPECT_PLANE_0_BIT);
}
// Fall through to 2PLANE case:
case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM:
if(aspect == VK_IMAGE_ASPECT_PLANE_1_BIT)
{
return memoryOffset + getStorageSize(VK_IMAGE_ASPECT_PLANE_0_BIT);
}
else
{
ASSERT(aspect == VK_IMAGE_ASPECT_PLANE_0_BIT);
return memoryOffset;
}
break;
default:
break;
}
return memoryOffset;
}
VkDeviceSize Image::getMemoryOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
{
VkDeviceSize offset = getMemoryOffset(aspect);
for(uint32_t i = 0; i < mipLevel; ++i)
{
offset += getMultiSampledLevelSize(aspect, i);
}
return offset;
}
VkDeviceSize Image::getMemoryOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel, uint32_t layer) const
{
return layer * getLayerOffset(aspect, mipLevel) + getMemoryOffset(aspect, mipLevel);
}
VkDeviceSize Image::getMipLevelSize(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
{
return getMipLevelExtent(aspect, mipLevel).depth * slicePitchBytes(aspect, mipLevel);
}
VkDeviceSize Image::getMultiSampledLevelSize(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
{
return getMipLevelSize(aspect, mipLevel) * samples;
}
bool Image::is3DSlice() const
{
return ((imageType == VK_IMAGE_TYPE_3D) && (flags & VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT));
}
VkDeviceSize Image::getLayerOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
{
if(is3DSlice())
{
// When the VkImageSubresourceRange structure is used to select a subset of the slices of a 3D
// image's mip level in order to create a 2D or 2D array image view of a 3D image created with
// VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT, baseArrayLayer and layerCount specify the first
// slice index and the number of slices to include in the created image view.
ASSERT(samples == VK_SAMPLE_COUNT_1_BIT);
// Offset to the proper slice of the 3D image's mip level
return slicePitchBytes(aspect, mipLevel);
}
return getLayerSize(aspect);
}
VkDeviceSize Image::getLayerSize(VkImageAspectFlagBits aspect) const
{
VkDeviceSize layerSize = 0;
for(uint32_t mipLevel = 0; mipLevel < mipLevels; ++mipLevel)
{
layerSize += getMultiSampledLevelSize(aspect, mipLevel);
}
return layerSize;
}
VkDeviceSize Image::getStorageSize(VkImageAspectFlags aspectMask) const
{
if((aspectMask & ~(VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT |
VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT)) != 0)
{
UNSUPPORTED("aspectMask %x", int(aspectMask));
}
VkDeviceSize storageSize = 0;
if(aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_COLOR_BIT);
if(aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_DEPTH_BIT);
if(aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_STENCIL_BIT);
if(aspectMask & VK_IMAGE_ASPECT_PLANE_0_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_0_BIT);
if(aspectMask & VK_IMAGE_ASPECT_PLANE_1_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_1_BIT);
if(aspectMask & VK_IMAGE_ASPECT_PLANE_2_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_2_BIT);
return arrayLayers * storageSize;
}
const Image *Image::getSampledImage(const vk::Format &imageViewFormat) const
{
bool isImageViewCompressed = imageViewFormat.isCompressed();
if(decompressedImage && !isImageViewCompressed)
{
ASSERT(flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT);
ASSERT(format.bytesPerBlock() == imageViewFormat.bytesPerBlock());
}
// If the ImageView's format is compressed, then we do need to decompress the image so that
// it may be sampled properly by texture sampling functions, which don't support compressed
// textures. If the ImageView's format is NOT compressed, then we reinterpret cast the
// compressed image into the ImageView's format, so we must return the compressed image as is.
return (decompressedImage && isImageViewCompressed) ? decompressedImage : this;
}
void Image::blitTo(Image *dstImage, const VkImageBlit &region, VkFilter filter) const
{
device->getBlitter()->blit(this, dstImage, region, filter);
}
void Image::copyTo(uint8_t *dst, unsigned int dstPitch) const
{
device->getBlitter()->copy(this, dst, dstPitch);
}
void Image::resolveTo(Image *dstImage, const VkImageResolve &region) const
{
VkImageBlit blitRegion;
blitRegion.srcOffsets[0] = blitRegion.srcOffsets[1] = region.srcOffset;
blitRegion.srcOffsets[1].x += region.extent.width;
blitRegion.srcOffsets[1].y += region.extent.height;
blitRegion.srcOffsets[1].z += region.extent.depth;
blitRegion.dstOffsets[0] = blitRegion.dstOffsets[1] = region.dstOffset;
blitRegion.dstOffsets[1].x += region.extent.width;
blitRegion.dstOffsets[1].y += region.extent.height;
blitRegion.dstOffsets[1].z += region.extent.depth;
blitRegion.srcSubresource = region.srcSubresource;
blitRegion.dstSubresource = region.dstSubresource;
device->getBlitter()->blit(this, dstImage, blitRegion, VK_FILTER_NEAREST);
}
VkFormat Image::getClearFormat() const
{
// Set the proper format for the clear value, as described here:
// https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#clears-values
if(format.isSignedUnnormalizedInteger())
{
return VK_FORMAT_R32G32B32A32_SINT;
}
else if(format.isUnsignedUnnormalizedInteger())
{
return VK_FORMAT_R32G32B32A32_UINT;
}
return VK_FORMAT_R32G32B32A32_SFLOAT;
}
uint32_t Image::getLastLayerIndex(const VkImageSubresourceRange &subresourceRange) const
{
return ((subresourceRange.layerCount == VK_REMAINING_ARRAY_LAYERS) ? arrayLayers : (subresourceRange.baseArrayLayer + subresourceRange.layerCount)) - 1;
}
uint32_t Image::getLastMipLevel(const VkImageSubresourceRange &subresourceRange) const
{
return ((subresourceRange.levelCount == VK_REMAINING_MIP_LEVELS) ? mipLevels : (subresourceRange.baseMipLevel + subresourceRange.levelCount)) - 1;
}
void Image::clear(void *pixelData, VkFormat pixelFormat, const vk::Format &viewFormat, const VkImageSubresourceRange &subresourceRange, const VkRect2D &renderArea)
{
device->getBlitter()->clear(pixelData, pixelFormat, this, viewFormat, subresourceRange, &renderArea);
}
void Image::clear(const VkClearColorValue &color, const VkImageSubresourceRange &subresourceRange)
{
ASSERT(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
device->getBlitter()->clear((void *)color.float32, getClearFormat(), this, format, subresourceRange);
}
void Image::clear(const VkClearDepthStencilValue &color, const VkImageSubresourceRange &subresourceRange)
{
ASSERT((subresourceRange.aspectMask & ~(VK_IMAGE_ASPECT_DEPTH_BIT |
VK_IMAGE_ASPECT_STENCIL_BIT)) == 0);
if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT)
{
VkImageSubresourceRange depthSubresourceRange = subresourceRange;
depthSubresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
device->getBlitter()->clear((void *)(&color.depth), VK_FORMAT_D32_SFLOAT, this, format, depthSubresourceRange);
}
if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT)
{
VkImageSubresourceRange stencilSubresourceRange = subresourceRange;
stencilSubresourceRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
device->getBlitter()->clear((void *)(&color.stencil), VK_FORMAT_S8_UINT, this, format, stencilSubresourceRange);
}
}
void Image::clear(const VkClearValue &clearValue, const vk::Format &viewFormat, const VkRect2D &renderArea, const VkImageSubresourceRange &subresourceRange)
{
ASSERT((subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) ||
(subresourceRange.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT |
VK_IMAGE_ASPECT_STENCIL_BIT)));
if(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT)
{
clear((void *)(clearValue.color.float32), getClearFormat(), viewFormat, subresourceRange, renderArea);
}
else
{
if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT)
{
VkImageSubresourceRange depthSubresourceRange = subresourceRange;
depthSubresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
clear((void *)(&clearValue.depthStencil.depth), VK_FORMAT_D32_SFLOAT, viewFormat, depthSubresourceRange, renderArea);
}
if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT)
{
VkImageSubresourceRange stencilSubresourceRange = subresourceRange;
stencilSubresourceRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
clear((void *)(&clearValue.depthStencil.stencil), VK_FORMAT_S8_UINT, viewFormat, stencilSubresourceRange, renderArea);
}
}
}
bool Image::requiresPreprocessing() const
{
return (isCube() && (arrayLayers >= 6)) || decompressedImage;
}
void Image::contentsChanged(const VkImageSubresourceRange &subresourceRange, ContentsChangedContext contentsChangedContext)
{
// If this function is called after (possibly) writing to this image from a shader,
// this must have the VK_IMAGE_USAGE_STORAGE_BIT set for the write operation to be
// valid. Otherwise, we can't have legally written to this image, so we know we can
// skip updating dirtyResources.
if((contentsChangedContext == USING_STORAGE) && !(usage & VK_IMAGE_USAGE_STORAGE_BIT))
{
return;
}
// If this isn't a cube or a compressed image, we'll never need dirtyResources,
// so we can skip updating dirtyResources
if(!requiresPreprocessing())
{
return;
}
uint32_t lastLayer = getLastLayerIndex(subresourceRange);
uint32_t lastMipLevel = getLastMipLevel(subresourceRange);
VkImageSubresource subresource = {
subresourceRange.aspectMask,
subresourceRange.baseMipLevel,
subresourceRange.baseArrayLayer
};
marl::lock lock(mutex);
for(subresource.arrayLayer = subresourceRange.baseArrayLayer;
subresource.arrayLayer <= lastLayer;
subresource.arrayLayer++)
{
for(subresource.mipLevel = subresourceRange.baseMipLevel;
subresource.mipLevel <= lastMipLevel;
subresource.mipLevel++)
{
dirtySubresources.insert(subresource);
}
}
}
void Image::prepareForSampling(const VkImageSubresourceRange &subresourceRange)
{
// If this isn't a cube or a compressed image, there's nothing to do
if(!requiresPreprocessing())
{
return;
}
uint32_t lastLayer = getLastLayerIndex(subresourceRange);
uint32_t lastMipLevel = getLastMipLevel(subresourceRange);
VkImageSubresource subresource = {
subresourceRange.aspectMask,
subresourceRange.baseMipLevel,
subresourceRange.baseArrayLayer
};
marl::lock lock(mutex);
if(dirtySubresources.empty())
{
return;
}
// First, decompress all relevant dirty subregions
for(subresource.arrayLayer = subresourceRange.baseArrayLayer;
subresource.arrayLayer <= lastLayer;
subresource.arrayLayer++)
{
for(subresource.mipLevel = subresourceRange.baseMipLevel;
subresource.mipLevel <= lastMipLevel;
subresource.mipLevel++)
{
auto it = dirtySubresources.find(subresource);
if(it != dirtySubresources.end())
{
decompress(subresource);
}
}
}
// Second, update cubemap borders
for(subresource.arrayLayer = subresourceRange.baseArrayLayer;
subresource.arrayLayer <= lastLayer;
subresource.arrayLayer++)
{
for(subresource.mipLevel = subresourceRange.baseMipLevel;
subresource.mipLevel <= lastMipLevel;
subresource.mipLevel++)
{
auto it = dirtySubresources.find(subresource);
if(it != dirtySubresources.end())
{
if(updateCube(subresource))
{
// updateCube() updates all layers of all cubemaps at once, so remove entries to avoid duplicating effort
VkImageSubresource cleanSubresource = subresource;
for(cleanSubresource.arrayLayer = 0; cleanSubresource.arrayLayer < arrayLayers - 5;)
{
// Delete one cube's worth of dirty subregions
for(uint32_t i = 0; i < 6; i++, cleanSubresource.arrayLayer++)
{
auto it = dirtySubresources.find(cleanSubresource);
if(it != dirtySubresources.end())
{
dirtySubresources.erase(it);
}
}
}
}
}
}
}
// Finally, mark all updated subregions clean
for(subresource.arrayLayer = subresourceRange.baseArrayLayer;
subresource.arrayLayer <= lastLayer;
subresource.arrayLayer++)
{
for(subresource.mipLevel = subresourceRange.baseMipLevel;
subresource.mipLevel <= lastMipLevel;
subresource.mipLevel++)
{
auto it = dirtySubresources.find(subresource);
if(it != dirtySubresources.end())
{
dirtySubresources.erase(it);
}
}
}
}
void Image::decompress(const VkImageSubresource &subresource)
{
if(decompressedImage)
{
switch(format)
{
case VK_FORMAT_EAC_R11_UNORM_BLOCK:
case VK_FORMAT_EAC_R11_SNORM_BLOCK:
case VK_FORMAT_EAC_R11G11_UNORM_BLOCK:
case VK_FORMAT_EAC_R11G11_SNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK:
decodeETC2(subresource);
break;
case VK_FORMAT_BC1_RGB_UNORM_BLOCK:
case VK_FORMAT_BC1_RGB_SRGB_BLOCK:
case VK_FORMAT_BC1_RGBA_UNORM_BLOCK:
case VK_FORMAT_BC1_RGBA_SRGB_BLOCK:
case VK_FORMAT_BC2_UNORM_BLOCK:
case VK_FORMAT_BC2_SRGB_BLOCK:
case VK_FORMAT_BC3_UNORM_BLOCK:
case VK_FORMAT_BC3_SRGB_BLOCK:
case VK_FORMAT_BC4_UNORM_BLOCK:
case VK_FORMAT_BC4_SNORM_BLOCK:
case VK_FORMAT_BC5_UNORM_BLOCK:
case VK_FORMAT_BC5_SNORM_BLOCK:
case VK_FORMAT_BC6H_UFLOAT_BLOCK:
case VK_FORMAT_BC6H_SFLOAT_BLOCK:
case VK_FORMAT_BC7_UNORM_BLOCK:
case VK_FORMAT_BC7_SRGB_BLOCK:
decodeBC(subresource);
break;
case VK_FORMAT_ASTC_4x4_UNORM_BLOCK:
case VK_FORMAT_ASTC_5x4_UNORM_BLOCK:
case VK_FORMAT_ASTC_5x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_6x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_6x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_8x8_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x5_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x6_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x8_UNORM_BLOCK:
case VK_FORMAT_ASTC_10x10_UNORM_BLOCK:
case VK_FORMAT_ASTC_12x10_UNORM_BLOCK:
case VK_FORMAT_ASTC_12x12_UNORM_BLOCK:
case VK_FORMAT_ASTC_4x4_SRGB_BLOCK:
case VK_FORMAT_ASTC_5x4_SRGB_BLOCK:
case VK_FORMAT_ASTC_5x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_6x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_6x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x8_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x8_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x10_SRGB_BLOCK:
case VK_FORMAT_ASTC_12x10_SRGB_BLOCK:
case VK_FORMAT_ASTC_12x12_SRGB_BLOCK:
decodeASTC(subresource);
break;
default:
break;
}
}
}
bool Image::updateCube(const VkImageSubresource &subres)
{
if(isCube() && (arrayLayers >= 6))
{
VkImageSubresource subresource = subres;
// Update the borders of all the groups of 6 layers that can be part of a cubemaps but don't
// touch leftover layers that cannot be part of cubemaps.
for(subresource.arrayLayer = 0; subresource.arrayLayer < arrayLayers - 5; subresource.arrayLayer += 6)
{
device->getBlitter()->updateBorders(decompressedImage ? decompressedImage : this, subresource);
}
return true;
}
return false;
}
void Image::decodeETC2(const VkImageSubresource &subresource)
{
ASSERT(decompressedImage);
ETC_Decoder::InputType inputType = GetInputType(format);
int bytes = decompressedImage->format.bytes();
bool fakeAlpha = (format == VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK) || (format == VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK);
size_t sizeToWrite = 0;
VkExtent3D mipLevelExtent = getMipLevelExtent(static_cast<VkImageAspectFlagBits>(subresource.aspectMask), subresource.mipLevel);
int pitchB = decompressedImage->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel);
if(fakeAlpha)
{
// To avoid overflow in case of cube textures, which are offset in memory to account for the border,
// compute the size from the first pixel to the last pixel, excluding any padding or border before
// the first pixel or after the last pixel.
sizeToWrite = ((mipLevelExtent.height - 1) * pitchB) + (mipLevelExtent.width * bytes);
}
for(int32_t depth = 0; depth < static_cast<int32_t>(mipLevelExtent.depth); depth++)
{
uint8_t *source = static_cast<uint8_t *>(getTexelPointer({ 0, 0, depth }, subresource));
uint8_t *dest = static_cast<uint8_t *>(decompressedImage->getTexelPointer({ 0, 0, depth }, subresource));
if(fakeAlpha)
{
ASSERT((dest + sizeToWrite) < decompressedImage->end());
memset(dest, 0xFF, sizeToWrite);
}
ETC_Decoder::Decode(source, dest, mipLevelExtent.width, mipLevelExtent.height,
pitchB, bytes, inputType);
}
}
void Image::decodeBC(const VkImageSubresource &subresource)
{
ASSERT(decompressedImage);
int n = GetBCn(format);
int noAlphaU = GetNoAlphaOrUnsigned(format);
int bytes = decompressedImage->format.bytes();
VkExtent3D mipLevelExtent = getMipLevelExtent(static_cast<VkImageAspectFlagBits>(subresource.aspectMask), subresource.mipLevel);
int pitchB = decompressedImage->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel);
for(int32_t depth = 0; depth < static_cast<int32_t>(mipLevelExtent.depth); depth++)
{
uint8_t *source = static_cast<uint8_t *>(getTexelPointer({ 0, 0, depth }, subresource));
uint8_t *dest = static_cast<uint8_t *>(decompressedImage->getTexelPointer({ 0, 0, depth }, subresource));
BC_Decoder::Decode(source, dest, mipLevelExtent.width, mipLevelExtent.height,
pitchB, bytes, n, noAlphaU);
}
}
void Image::decodeASTC(const VkImageSubresource &subresource)
{
ASSERT(decompressedImage);
int xBlockSize = format.blockWidth();
int yBlockSize = format.blockHeight();
int zBlockSize = 1;
bool isUnsigned = format.isUnsignedComponent(0);
int bytes = decompressedImage->format.bytes();
VkExtent3D mipLevelExtent = getMipLevelExtent(static_cast<VkImageAspectFlagBits>(subresource.aspectMask), subresource.mipLevel);
int xblocks = (mipLevelExtent.width + xBlockSize - 1) / xBlockSize;
int yblocks = (mipLevelExtent.height + yBlockSize - 1) / yBlockSize;
int zblocks = (zBlockSize > 1) ? (mipLevelExtent.depth + zBlockSize - 1) / zBlockSize : 1;
if(xblocks <= 0 || yblocks <= 0 || zblocks <= 0)
{
return;
}
int pitchB = decompressedImage->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel);
int sliceB = decompressedImage->slicePitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresource.mipLevel);
for(int32_t depth = 0; depth < static_cast<int32_t>(mipLevelExtent.depth); depth++)
{
uint8_t *source = static_cast<uint8_t *>(getTexelPointer({ 0, 0, depth }, subresource));
uint8_t *dest = static_cast<uint8_t *>(decompressedImage->getTexelPointer({ 0, 0, depth }, subresource));
ASTC_Decoder::Decode(source, dest, mipLevelExtent.width, mipLevelExtent.height, mipLevelExtent.depth, bytes, pitchB, sliceB,
xBlockSize, yBlockSize, zBlockSize, xblocks, yblocks, zblocks, isUnsigned);
}
}
} // namespace vk