|  | //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file declares the Value class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_VALUE_H | 
|  | #define LLVM_VALUE_H | 
|  |  | 
|  | #include "llvm/Use.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include <string> | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | class Constant; | 
|  | class Argument; | 
|  | class Instruction; | 
|  | class BasicBlock; | 
|  | class GlobalValue; | 
|  | class Function; | 
|  | class GlobalVariable; | 
|  | class GlobalAlias; | 
|  | class InlineAsm; | 
|  | class ValueSymbolTable; | 
|  | template<typename ValueTy> class StringMapEntry; | 
|  | template <typename ValueTy = Value> | 
|  | class AssertingVH; | 
|  | typedef StringMapEntry<Value*> ValueName; | 
|  | class raw_ostream; | 
|  | class AssemblyAnnotationWriter; | 
|  | class ValueHandleBase; | 
|  | class LLVMContext; | 
|  | class Twine; | 
|  | class MDNode; | 
|  | class Type; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                                 Value Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// This is a very important LLVM class. It is the base class of all values | 
|  | /// computed by a program that may be used as operands to other values. Value is | 
|  | /// the super class of other important classes such as Instruction and Function. | 
|  | /// All Values have a Type. Type is not a subclass of Value. Some values can | 
|  | /// have a name and they belong to some Module.  Setting the name on the Value | 
|  | /// automatically updates the module's symbol table. | 
|  | /// | 
|  | /// Every value has a "use list" that keeps track of which other Values are | 
|  | /// using this Value.  A Value can also have an arbitrary number of ValueHandle | 
|  | /// objects that watch it and listen to RAUW and Destroy events.  See | 
|  | /// llvm/Support/ValueHandle.h for details. | 
|  | /// | 
|  | /// @brief LLVM Value Representation | 
|  | class Value { | 
|  | const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast) | 
|  | unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this? | 
|  | protected: | 
|  | /// SubclassOptionalData - This member is similar to SubclassData, however it | 
|  | /// is for holding information which may be used to aid optimization, but | 
|  | /// which may be cleared to zero without affecting conservative | 
|  | /// interpretation. | 
|  | unsigned char SubclassOptionalData : 7; | 
|  |  | 
|  | private: | 
|  | /// SubclassData - This member is defined by this class, but is not used for | 
|  | /// anything.  Subclasses can use it to hold whatever state they find useful. | 
|  | /// This field is initialized to zero by the ctor. | 
|  | unsigned short SubclassData; | 
|  |  | 
|  | Type *VTy; | 
|  | Use *UseList; | 
|  |  | 
|  | friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name. | 
|  | friend class ValueHandleBase; | 
|  | ValueName *Name; | 
|  |  | 
|  | void operator=(const Value &);     // Do not implement | 
|  | Value(const Value &);              // Do not implement | 
|  |  | 
|  | protected: | 
|  | /// printCustom - Value subclasses can override this to implement custom | 
|  | /// printing behavior. | 
|  | virtual void printCustom(raw_ostream &O) const; | 
|  |  | 
|  | Value(Type *Ty, unsigned scid); | 
|  | public: | 
|  | virtual ~Value(); | 
|  |  | 
|  | /// dump - Support for debugging, callable in GDB: V->dump() | 
|  | // | 
|  | void dump() const; | 
|  |  | 
|  | /// print - Implement operator<< on Value. | 
|  | /// | 
|  | void print(raw_ostream &O, AssemblyAnnotationWriter *AAW = 0) const; | 
|  |  | 
|  | /// All values are typed, get the type of this value. | 
|  | /// | 
|  | Type *getType() const { return VTy; } | 
|  |  | 
|  | /// All values hold a context through their type. | 
|  | LLVMContext &getContext() const; | 
|  |  | 
|  | // All values can potentially be named... | 
|  | bool hasName() const { return Name != 0; } | 
|  | ValueName *getValueName() const { return Name; } | 
|  |  | 
|  | /// getName() - Return a constant reference to the value's name. This is cheap | 
|  | /// and guaranteed to return the same reference as long as the value is not | 
|  | /// modified. | 
|  | /// | 
|  | /// This is currently guaranteed to return a StringRef for which data() points | 
|  | /// to a valid null terminated string. The use of StringRef.data() is | 
|  | /// deprecated here, however, and clients should not rely on it. If such | 
|  | /// behavior is needed, clients should use expensive getNameStr(), or switch | 
|  | /// to an interface that does not depend on null termination. | 
|  | StringRef getName() const; | 
|  |  | 
|  | /// getNameStr() - Return the name of the specified value, *constructing a | 
|  | /// string* to hold it.  This is guaranteed to construct a string and is very | 
|  | /// expensive, clients should use getName() unless necessary. | 
|  | std::string getNameStr() const; | 
|  |  | 
|  | /// setName() - Change the name of the value, choosing a new unique name if | 
|  | /// the provided name is taken. | 
|  | /// | 
|  | /// \arg Name - The new name; or "" if the value's name should be removed. | 
|  | void setName(const Twine &Name); | 
|  |  | 
|  |  | 
|  | /// takeName - transfer the name from V to this value, setting V's name to | 
|  | /// empty.  It is an error to call V->takeName(V). | 
|  | void takeName(Value *V); | 
|  |  | 
|  | /// replaceAllUsesWith - Go through the uses list for this definition and make | 
|  | /// each use point to "V" instead of "this".  After this completes, 'this's | 
|  | /// use list is guaranteed to be empty. | 
|  | /// | 
|  | void replaceAllUsesWith(Value *V); | 
|  |  | 
|  | //---------------------------------------------------------------------- | 
|  | // Methods for handling the chain of uses of this Value. | 
|  | // | 
|  | typedef value_use_iterator<User>       use_iterator; | 
|  | typedef value_use_iterator<const User> const_use_iterator; | 
|  |  | 
|  | bool               use_empty() const { return UseList == 0; } | 
|  | use_iterator       use_begin()       { return use_iterator(UseList); } | 
|  | const_use_iterator use_begin() const { return const_use_iterator(UseList); } | 
|  | use_iterator       use_end()         { return use_iterator(0);   } | 
|  | const_use_iterator use_end()   const { return const_use_iterator(0);   } | 
|  | User              *use_back()        { return *use_begin(); } | 
|  | const User        *use_back()  const { return *use_begin(); } | 
|  |  | 
|  | /// hasOneUse - Return true if there is exactly one user of this value.  This | 
|  | /// is specialized because it is a common request and does not require | 
|  | /// traversing the whole use list. | 
|  | /// | 
|  | bool hasOneUse() const { | 
|  | const_use_iterator I = use_begin(), E = use_end(); | 
|  | if (I == E) return false; | 
|  | return ++I == E; | 
|  | } | 
|  |  | 
|  | /// hasNUses - Return true if this Value has exactly N users. | 
|  | /// | 
|  | bool hasNUses(unsigned N) const; | 
|  |  | 
|  | /// hasNUsesOrMore - Return true if this value has N users or more.  This is | 
|  | /// logically equivalent to getNumUses() >= N. | 
|  | /// | 
|  | bool hasNUsesOrMore(unsigned N) const; | 
|  |  | 
|  | bool isUsedInBasicBlock(const BasicBlock *BB) const; | 
|  |  | 
|  | /// getNumUses - This method computes the number of uses of this Value.  This | 
|  | /// is a linear time operation.  Use hasOneUse, hasNUses, or hasNUsesOrMore | 
|  | /// to check for specific values. | 
|  | unsigned getNumUses() const; | 
|  |  | 
|  | /// addUse - This method should only be used by the Use class. | 
|  | /// | 
|  | void addUse(Use &U) { U.addToList(&UseList); } | 
|  |  | 
|  | /// An enumeration for keeping track of the concrete subclass of Value that | 
|  | /// is actually instantiated. Values of this enumeration are kept in the | 
|  | /// Value classes SubclassID field. They are used for concrete type | 
|  | /// identification. | 
|  | enum ValueTy { | 
|  | ArgumentVal,              // This is an instance of Argument | 
|  | BasicBlockVal,            // This is an instance of BasicBlock | 
|  | FunctionVal,              // This is an instance of Function | 
|  | GlobalAliasVal,           // This is an instance of GlobalAlias | 
|  | GlobalVariableVal,        // This is an instance of GlobalVariable | 
|  | UndefValueVal,            // This is an instance of UndefValue | 
|  | BlockAddressVal,          // This is an instance of BlockAddress | 
|  | ConstantExprVal,          // This is an instance of ConstantExpr | 
|  | ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero | 
|  | ConstantIntVal,           // This is an instance of ConstantInt | 
|  | ConstantFPVal,            // This is an instance of ConstantFP | 
|  | ConstantArrayVal,         // This is an instance of ConstantArray | 
|  | ConstantStructVal,        // This is an instance of ConstantStruct | 
|  | ConstantVectorVal,        // This is an instance of ConstantVector | 
|  | ConstantPointerNullVal,   // This is an instance of ConstantPointerNull | 
|  | MDNodeVal,                // This is an instance of MDNode | 
|  | MDStringVal,              // This is an instance of MDString | 
|  | InlineAsmVal,             // This is an instance of InlineAsm | 
|  | PseudoSourceValueVal,     // This is an instance of PseudoSourceValue | 
|  | FixedStackPseudoSourceValueVal, // This is an instance of | 
|  | // FixedStackPseudoSourceValue | 
|  | InstructionVal,           // This is an instance of Instruction | 
|  | // Enum values starting at InstructionVal are used for Instructions; | 
|  | // don't add new values here! | 
|  |  | 
|  | // Markers: | 
|  | ConstantFirstVal = FunctionVal, | 
|  | ConstantLastVal  = ConstantPointerNullVal | 
|  | }; | 
|  |  | 
|  | /// getValueID - Return an ID for the concrete type of this object.  This is | 
|  | /// used to implement the classof checks.  This should not be used for any | 
|  | /// other purpose, as the values may change as LLVM evolves.  Also, note that | 
|  | /// for instructions, the Instruction's opcode is added to InstructionVal. So | 
|  | /// this means three things: | 
|  | /// # there is no value with code InstructionVal (no opcode==0). | 
|  | /// # there are more possible values for the value type than in ValueTy enum. | 
|  | /// # the InstructionVal enumerator must be the highest valued enumerator in | 
|  | ///   the ValueTy enum. | 
|  | unsigned getValueID() const { | 
|  | return SubclassID; | 
|  | } | 
|  |  | 
|  | /// getRawSubclassOptionalData - Return the raw optional flags value | 
|  | /// contained in this value. This should only be used when testing two | 
|  | /// Values for equivalence. | 
|  | unsigned getRawSubclassOptionalData() const { | 
|  | return SubclassOptionalData; | 
|  | } | 
|  |  | 
|  | /// clearSubclassOptionalData - Clear the optional flags contained in | 
|  | /// this value. | 
|  | void clearSubclassOptionalData() { | 
|  | SubclassOptionalData = 0; | 
|  | } | 
|  |  | 
|  | /// hasSameSubclassOptionalData - Test whether the optional flags contained | 
|  | /// in this value are equal to the optional flags in the given value. | 
|  | bool hasSameSubclassOptionalData(const Value *V) const { | 
|  | return SubclassOptionalData == V->SubclassOptionalData; | 
|  | } | 
|  |  | 
|  | /// intersectOptionalDataWith - Clear any optional flags in this value | 
|  | /// that are not also set in the given value. | 
|  | void intersectOptionalDataWith(const Value *V) { | 
|  | SubclassOptionalData &= V->SubclassOptionalData; | 
|  | } | 
|  |  | 
|  | /// hasValueHandle - Return true if there is a value handle associated with | 
|  | /// this value. | 
|  | bool hasValueHandle() const { return HasValueHandle; } | 
|  |  | 
|  | // Methods for support type inquiry through isa, cast, and dyn_cast: | 
|  | static inline bool classof(const Value *) { | 
|  | return true; // Values are always values. | 
|  | } | 
|  |  | 
|  | /// stripPointerCasts - This method strips off any unneeded pointer | 
|  | /// casts from the specified value, returning the original uncasted value. | 
|  | /// Note that the returned value has pointer type if the specified value does. | 
|  | Value *stripPointerCasts(); | 
|  | const Value *stripPointerCasts() const { | 
|  | return const_cast<Value*>(this)->stripPointerCasts(); | 
|  | } | 
|  |  | 
|  | /// isDereferenceablePointer - Test if this value is always a pointer to | 
|  | /// allocated and suitably aligned memory for a simple load or store. | 
|  | bool isDereferenceablePointer() const; | 
|  |  | 
|  | /// DoPHITranslation - If this value is a PHI node with CurBB as its parent, | 
|  | /// return the value in the PHI node corresponding to PredBB.  If not, return | 
|  | /// ourself.  This is useful if you want to know the value something has in a | 
|  | /// predecessor block. | 
|  | Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB); | 
|  |  | 
|  | const Value *DoPHITranslation(const BasicBlock *CurBB, | 
|  | const BasicBlock *PredBB) const{ | 
|  | return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB); | 
|  | } | 
|  |  | 
|  | /// MaximumAlignment - This is the greatest alignment value supported by | 
|  | /// load, store, and alloca instructions, and global values. | 
|  | static const unsigned MaximumAlignment = 1u << 29; | 
|  |  | 
|  | /// mutateType - Mutate the type of this Value to be of the specified type. | 
|  | /// Note that this is an extremely dangerous operation which can create | 
|  | /// completely invalid IR very easily.  It is strongly recommended that you | 
|  | /// recreate IR objects with the right types instead of mutating them in | 
|  | /// place. | 
|  | void mutateType(Type *Ty) { | 
|  | VTy = Ty; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | unsigned short getSubclassDataFromValue() const { return SubclassData; } | 
|  | void setValueSubclassData(unsigned short D) { SubclassData = D; } | 
|  | }; | 
|  |  | 
|  | inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) { | 
|  | V.print(OS); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | void Use::set(Value *V) { | 
|  | if (Val) removeFromList(); | 
|  | Val = V; | 
|  | if (V) V->addUse(*this); | 
|  | } | 
|  |  | 
|  |  | 
|  | // isa - Provide some specializations of isa so that we don't have to include | 
|  | // the subtype header files to test to see if the value is a subclass... | 
|  | // | 
|  | template <> struct isa_impl<Constant, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() >= Value::ConstantFirstVal && | 
|  | Val.getValueID() <= Value::ConstantLastVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<Argument, Value> { | 
|  | static inline bool doit (const Value &Val) { | 
|  | return Val.getValueID() == Value::ArgumentVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<InlineAsm, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() == Value::InlineAsmVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<Instruction, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() >= Value::InstructionVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<BasicBlock, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() == Value::BasicBlockVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<Function, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() == Value::FunctionVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<GlobalVariable, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() == Value::GlobalVariableVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<GlobalAlias, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() == Value::GlobalAliasVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<GlobalValue, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return isa<GlobalVariable>(Val) || isa<Function>(Val) || | 
|  | isa<GlobalAlias>(Val); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<MDNode, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() == Value::MDNodeVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Value* is only 4-byte aligned. | 
|  | template<> | 
|  | class PointerLikeTypeTraits<Value*> { | 
|  | typedef Value* PT; | 
|  | public: | 
|  | static inline void *getAsVoidPointer(PT P) { return P; } | 
|  | static inline PT getFromVoidPointer(void *P) { | 
|  | return static_cast<PT>(P); | 
|  | } | 
|  | enum { NumLowBitsAvailable = 2 }; | 
|  | }; | 
|  |  | 
|  | } // End llvm namespace | 
|  |  | 
|  | #endif |