| //===---- llvm/unittest/IR/PatternMatch.cpp - PatternMatch unit tests ----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/NoFolder.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/Type.h" |
| #include "gtest/gtest.h" |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| namespace { |
| |
| struct PatternMatchTest : ::testing::Test { |
| LLVMContext Ctx; |
| std::unique_ptr<Module> M; |
| Function *F; |
| BasicBlock *BB; |
| IRBuilder<NoFolder> IRB; |
| |
| PatternMatchTest() |
| : M(new Module("PatternMatchTestModule", Ctx)), |
| F(Function::Create( |
| FunctionType::get(Type::getVoidTy(Ctx), /* IsVarArg */ false), |
| Function::ExternalLinkage, "f", M.get())), |
| BB(BasicBlock::Create(Ctx, "entry", F)), IRB(BB) {} |
| }; |
| |
| TEST_F(PatternMatchTest, OneUse) { |
| // Build up a little tree of values: |
| // |
| // One = (1 + 2) + 42 |
| // Two = One + 42 |
| // Leaf = (Two + 8) + (Two + 13) |
| Value *One = IRB.CreateAdd(IRB.CreateAdd(IRB.getInt32(1), IRB.getInt32(2)), |
| IRB.getInt32(42)); |
| Value *Two = IRB.CreateAdd(One, IRB.getInt32(42)); |
| Value *Leaf = IRB.CreateAdd(IRB.CreateAdd(Two, IRB.getInt32(8)), |
| IRB.CreateAdd(Two, IRB.getInt32(13))); |
| Value *V; |
| |
| EXPECT_TRUE(m_OneUse(m_Value(V)).match(One)); |
| EXPECT_EQ(One, V); |
| |
| EXPECT_FALSE(m_OneUse(m_Value()).match(Two)); |
| EXPECT_FALSE(m_OneUse(m_Value()).match(Leaf)); |
| } |
| |
| TEST_F(PatternMatchTest, CommutativeDeferredValue) { |
| Value *X = IRB.getInt32(1); |
| Value *Y = IRB.getInt32(2); |
| |
| { |
| Value *tX = X; |
| EXPECT_TRUE(match(X, m_Deferred(tX))); |
| EXPECT_FALSE(match(Y, m_Deferred(tX))); |
| } |
| { |
| const Value *tX = X; |
| EXPECT_TRUE(match(X, m_Deferred(tX))); |
| EXPECT_FALSE(match(Y, m_Deferred(tX))); |
| } |
| { |
| Value *const tX = X; |
| EXPECT_TRUE(match(X, m_Deferred(tX))); |
| EXPECT_FALSE(match(Y, m_Deferred(tX))); |
| } |
| { |
| const Value *const tX = X; |
| EXPECT_TRUE(match(X, m_Deferred(tX))); |
| EXPECT_FALSE(match(Y, m_Deferred(tX))); |
| } |
| |
| { |
| Value *tX = nullptr; |
| EXPECT_TRUE(match(IRB.CreateAnd(X, X), m_And(m_Value(tX), m_Deferred(tX)))); |
| EXPECT_EQ(tX, X); |
| } |
| { |
| Value *tX = nullptr; |
| EXPECT_FALSE( |
| match(IRB.CreateAnd(X, Y), m_c_And(m_Value(tX), m_Deferred(tX)))); |
| } |
| |
| auto checkMatch = [X, Y](Value *Pattern) { |
| Value *tX = nullptr, *tY = nullptr; |
| EXPECT_TRUE(match( |
| Pattern, m_c_And(m_Value(tX), m_c_And(m_Deferred(tX), m_Value(tY))))); |
| EXPECT_EQ(tX, X); |
| EXPECT_EQ(tY, Y); |
| }; |
| |
| checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(X, Y))); |
| checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(Y, X))); |
| checkMatch(IRB.CreateAnd(IRB.CreateAnd(X, Y), X)); |
| checkMatch(IRB.CreateAnd(IRB.CreateAnd(Y, X), X)); |
| } |
| |
| TEST_F(PatternMatchTest, FloatingPointOrderedMin) { |
| Type *FltTy = IRB.getFloatTy(); |
| Value *L = ConstantFP::get(FltTy, 1.0); |
| Value *R = ConstantFP::get(FltTy, 2.0); |
| Value *MatchL, *MatchR; |
| |
| // Test OLT. |
| EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // Test OLE. |
| EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // Test no match on OGE. |
| EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R))); |
| |
| // Test no match on OGT. |
| EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R))); |
| |
| // Test inverted selects. Note, that this "inverts" the ordering, e.g.: |
| // %cmp = fcmp oge L, R |
| // %min = select %cmp R, L |
| // Given L == NaN |
| // the above is expanded to %cmp == false ==> %min = L |
| // which is true for UnordFMin, not OrdFMin, so test that: |
| |
| // [OU]GE with inverted select. |
| EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L))); |
| EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // [OU]GT with inverted select. |
| EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L))); |
| EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| } |
| |
| TEST_F(PatternMatchTest, FloatingPointOrderedMax) { |
| Type *FltTy = IRB.getFloatTy(); |
| Value *L = ConstantFP::get(FltTy, 1.0); |
| Value *R = ConstantFP::get(FltTy, 2.0); |
| Value *MatchL, *MatchR; |
| |
| // Test OGT. |
| EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // Test OGE. |
| EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // Test no match on OLE. |
| EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R))); |
| |
| // Test no match on OLT. |
| EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R))); |
| |
| |
| // Test inverted selects. Note, that this "inverts" the ordering, e.g.: |
| // %cmp = fcmp ole L, R |
| // %max = select %cmp, R, L |
| // Given L == NaN, |
| // the above is expanded to %cmp == false ==> %max == L |
| // which is true for UnordFMax, not OrdFMax, so test that: |
| |
| // [OU]LE with inverted select. |
| EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L))); |
| EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // [OUT]LT with inverted select. |
| EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L))); |
| EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| } |
| |
| TEST_F(PatternMatchTest, FloatingPointUnorderedMin) { |
| Type *FltTy = IRB.getFloatTy(); |
| Value *L = ConstantFP::get(FltTy, 1.0); |
| Value *R = ConstantFP::get(FltTy, 2.0); |
| Value *MatchL, *MatchR; |
| |
| // Test ULT. |
| EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // Test ULE. |
| EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // Test no match on UGE. |
| EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R))); |
| |
| // Test no match on UGT. |
| EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R))); |
| |
| // Test inverted selects. Note, that this "inverts" the ordering, e.g.: |
| // %cmp = fcmp uge L, R |
| // %min = select %cmp R, L |
| // Given L == NaN |
| // the above is expanded to %cmp == true ==> %min = R |
| // which is true for OrdFMin, not UnordFMin, so test that: |
| |
| // [UO]GE with inverted select. |
| EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L))); |
| EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // [UO]GT with inverted select. |
| EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L))); |
| EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| } |
| |
| TEST_F(PatternMatchTest, FloatingPointUnorderedMax) { |
| Type *FltTy = IRB.getFloatTy(); |
| Value *L = ConstantFP::get(FltTy, 1.0); |
| Value *R = ConstantFP::get(FltTy, 2.0); |
| Value *MatchL, *MatchR; |
| |
| // Test UGT. |
| EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // Test UGE. |
| EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // Test no match on ULE. |
| EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R))); |
| |
| // Test no match on ULT. |
| EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R))); |
| |
| // Test inverted selects. Note, that this "inverts" the ordering, e.g.: |
| // %cmp = fcmp ule L, R |
| // %max = select %cmp R, L |
| // Given L == NaN |
| // the above is expanded to %cmp == true ==> %max = R |
| // which is true for OrdFMax, not UnordFMax, so test that: |
| |
| // [UO]LE with inverted select. |
| EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L))); |
| EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // [UO]LT with inverted select. |
| EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L))); |
| EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| } |
| |
| TEST_F(PatternMatchTest, OverflowingBinOps) { |
| Value *L = IRB.getInt32(1); |
| Value *R = IRB.getInt32(2); |
| Value *MatchL, *MatchR; |
| |
| EXPECT_TRUE( |
| m_NSWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWAdd(L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| MatchL = MatchR = nullptr; |
| EXPECT_TRUE( |
| m_NSWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWSub(L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| MatchL = MatchR = nullptr; |
| EXPECT_TRUE( |
| m_NSWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWMul(L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| MatchL = MatchR = nullptr; |
| EXPECT_TRUE(m_NSWShl(m_Value(MatchL), m_Value(MatchR)).match( |
| IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| EXPECT_TRUE( |
| m_NUWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWAdd(L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| MatchL = MatchR = nullptr; |
| EXPECT_TRUE( |
| m_NUWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWSub(L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| MatchL = MatchR = nullptr; |
| EXPECT_TRUE( |
| m_NUWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWMul(L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| MatchL = MatchR = nullptr; |
| EXPECT_TRUE(m_NUWShl(m_Value(MatchL), m_Value(MatchR)).match( |
| IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R))); |
| EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); |
| EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R))); |
| EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R))); |
| EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R))); |
| EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); |
| EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R))); |
| EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNUWMul(L, R))); |
| EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); |
| EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R))); |
| EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match( |
| IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false))); |
| EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); |
| |
| EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R))); |
| EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); |
| EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R))); |
| EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R))); |
| EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R))); |
| EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); |
| EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R))); |
| EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNSWMul(L, R))); |
| EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); |
| EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R))); |
| EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match( |
| IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true))); |
| EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); |
| } |
| |
| TEST_F(PatternMatchTest, LoadStoreOps) { |
| // Create this load/store sequence: |
| // |
| // %p = alloca i32* |
| // %0 = load i32*, i32** %p |
| // store i32 42, i32* %0 |
| |
| Value *Alloca = IRB.CreateAlloca(IRB.getInt32Ty()); |
| Value *LoadInst = IRB.CreateLoad(Alloca); |
| Value *FourtyTwo = IRB.getInt32(42); |
| Value *StoreInst = IRB.CreateStore(FourtyTwo, Alloca); |
| Value *MatchLoad, *MatchStoreVal, *MatchStorePointer; |
| |
| EXPECT_TRUE(m_Load(m_Value(MatchLoad)).match(LoadInst)); |
| EXPECT_EQ(Alloca, MatchLoad); |
| |
| EXPECT_TRUE(m_Load(m_Specific(Alloca)).match(LoadInst)); |
| |
| EXPECT_FALSE(m_Load(m_Value(MatchLoad)).match(Alloca)); |
| |
| EXPECT_TRUE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer)) |
| .match(StoreInst)); |
| EXPECT_EQ(FourtyTwo, MatchStoreVal); |
| EXPECT_EQ(Alloca, MatchStorePointer); |
| |
| EXPECT_FALSE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer)) |
| .match(Alloca)); |
| |
| EXPECT_TRUE(m_Store(m_SpecificInt(42), m_Specific(Alloca)) |
| .match(StoreInst)); |
| EXPECT_FALSE(m_Store(m_SpecificInt(42), m_Specific(FourtyTwo)) |
| .match(StoreInst)); |
| EXPECT_FALSE(m_Store(m_SpecificInt(43), m_Specific(Alloca)) |
| .match(StoreInst)); |
| } |
| |
| TEST_F(PatternMatchTest, VectorOps) { |
| // Build up small tree of vector operations |
| // |
| // Val = 0 + 1 |
| // Val2 = Val + 3 |
| // VI1 = insertelement <2 x i8> undef, i8 1, i32 0 = <1, undef> |
| // VI2 = insertelement <2 x i8> %VI1, i8 %Val2, i8 %Val = <1, 4> |
| // VI3 = insertelement <2 x i8> %VI1, i8 %Val2, i32 1 = <1, 4> |
| // VI4 = insertelement <2 x i8> %VI1, i8 2, i8 %Val = <1, 2> |
| // |
| // SI1 = shufflevector <2 x i8> %VI1, <2 x i8> undef, zeroinitializer |
| // SI2 = shufflevector <2 x i8> %VI3, <2 x i8> %VI4, <2 x i8> <i8 0, i8 2> |
| // SI3 = shufflevector <2 x i8> %VI3, <2 x i8> undef, zeroinitializer |
| // SI4 = shufflevector <2 x i8> %VI4, <2 x i8> undef, zeroinitializer |
| // |
| // SP1 = VectorSplat(2, i8 2) |
| // SP2 = VectorSplat(2, i8 %Val) |
| Type *VecTy = VectorType::get(IRB.getInt8Ty(), 2); |
| Type *i32 = IRB.getInt32Ty(); |
| Type *i32VecTy = VectorType::get(i32, 2); |
| |
| Value *Val = IRB.CreateAdd(IRB.getInt8(0), IRB.getInt8(1)); |
| Value *Val2 = IRB.CreateAdd(Val, IRB.getInt8(3)); |
| |
| SmallVector<Constant *, 2> VecElemIdxs; |
| VecElemIdxs.push_back(ConstantInt::get(i32, 0)); |
| VecElemIdxs.push_back(ConstantInt::get(i32, 2)); |
| auto *IdxVec = ConstantVector::get(VecElemIdxs); |
| |
| Value *UndefVec = UndefValue::get(VecTy); |
| Value *VI1 = IRB.CreateInsertElement(UndefVec, IRB.getInt8(1), (uint64_t)0); |
| Value *VI2 = IRB.CreateInsertElement(VI1, Val2, Val); |
| Value *VI3 = IRB.CreateInsertElement(VI1, Val2, (uint64_t)1); |
| Value *VI4 = IRB.CreateInsertElement(VI1, IRB.getInt8(2), Val); |
| |
| Value *EX1 = IRB.CreateExtractElement(VI4, Val); |
| Value *EX2 = IRB.CreateExtractElement(VI4, (uint64_t)0); |
| Value *EX3 = IRB.CreateExtractElement(IdxVec, (uint64_t)1); |
| |
| Value *Zero = ConstantAggregateZero::get(i32VecTy); |
| Value *SI1 = IRB.CreateShuffleVector(VI1, UndefVec, Zero); |
| Value *SI2 = IRB.CreateShuffleVector(VI3, VI4, IdxVec); |
| Value *SI3 = IRB.CreateShuffleVector(VI3, UndefVec, Zero); |
| Value *SI4 = IRB.CreateShuffleVector(VI4, UndefVec, Zero); |
| |
| Value *SP1 = IRB.CreateVectorSplat(2, IRB.getInt8(2)); |
| Value *SP2 = IRB.CreateVectorSplat(2, Val); |
| |
| Value *A = nullptr, *B = nullptr, *C = nullptr; |
| |
| // Test matching insertelement |
| EXPECT_TRUE(match(VI1, m_InsertElement(m_Value(), m_Value(), m_Value()))); |
| EXPECT_TRUE( |
| match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_ConstantInt()))); |
| EXPECT_TRUE( |
| match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_Zero()))); |
| EXPECT_TRUE( |
| match(VI1, m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero()))); |
| EXPECT_TRUE(match(VI2, m_InsertElement(m_Value(), m_Value(), m_Value()))); |
| EXPECT_FALSE( |
| match(VI2, m_InsertElement(m_Value(), m_Value(), m_ConstantInt()))); |
| EXPECT_FALSE( |
| match(VI2, m_InsertElement(m_Value(), m_ConstantInt(), m_Value()))); |
| EXPECT_FALSE(match(VI2, m_InsertElement(m_Constant(), m_Value(), m_Value()))); |
| EXPECT_TRUE(match(VI3, m_InsertElement(m_Value(A), m_Value(B), m_Value(C)))); |
| EXPECT_TRUE(A == VI1); |
| EXPECT_TRUE(B == Val2); |
| EXPECT_TRUE(isa<ConstantInt>(C)); |
| A = B = C = nullptr; // reset |
| |
| // Test matching extractelement |
| EXPECT_TRUE(match(EX1, m_ExtractElement(m_Value(A), m_Value(B)))); |
| EXPECT_TRUE(A == VI4); |
| EXPECT_TRUE(B == Val); |
| A = B = C = nullptr; // reset |
| EXPECT_FALSE(match(EX1, m_ExtractElement(m_Value(), m_ConstantInt()))); |
| EXPECT_TRUE(match(EX2, m_ExtractElement(m_Value(), m_ConstantInt()))); |
| EXPECT_TRUE(match(EX3, m_ExtractElement(m_Constant(), m_ConstantInt()))); |
| |
| // Test matching shufflevector |
| EXPECT_TRUE(match(SI1, m_ShuffleVector(m_Value(), m_Undef(), m_Zero()))); |
| EXPECT_TRUE(match(SI2, m_ShuffleVector(m_Value(A), m_Value(B), m_Value(C)))); |
| EXPECT_TRUE(A == VI3); |
| EXPECT_TRUE(B == VI4); |
| EXPECT_TRUE(C == IdxVec); |
| A = B = C = nullptr; // reset |
| |
| // Test matching the vector splat pattern |
| EXPECT_TRUE(match( |
| SI1, |
| m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero()), |
| m_Undef(), m_Zero()))); |
| EXPECT_FALSE(match( |
| SI3, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()), |
| m_Undef(), m_Zero()))); |
| EXPECT_FALSE(match( |
| SI4, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()), |
| m_Undef(), m_Zero()))); |
| EXPECT_TRUE(match( |
| SP1, |
| m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(2), m_Zero()), |
| m_Undef(), m_Zero()))); |
| EXPECT_TRUE(match( |
| SP2, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(A), m_Zero()), |
| m_Undef(), m_Zero()))); |
| EXPECT_TRUE(A == Val); |
| } |
| |
| template <typename T> struct MutableConstTest : PatternMatchTest { }; |
| |
| typedef ::testing::Types<std::tuple<Value*, Instruction*>, |
| std::tuple<const Value*, const Instruction *>> |
| MutableConstTestTypes; |
| TYPED_TEST_CASE(MutableConstTest, MutableConstTestTypes); |
| |
| TYPED_TEST(MutableConstTest, ICmp) { |
| auto &IRB = PatternMatchTest::IRB; |
| |
| typedef typename std::tuple_element<0, TypeParam>::type ValueType; |
| typedef typename std::tuple_element<1, TypeParam>::type InstructionType; |
| |
| Value *L = IRB.getInt32(1); |
| Value *R = IRB.getInt32(2); |
| ICmpInst::Predicate Pred = ICmpInst::ICMP_UGT; |
| |
| ValueType MatchL; |
| ValueType MatchR; |
| ICmpInst::Predicate MatchPred; |
| |
| EXPECT_TRUE(m_ICmp(MatchPred, m_Value(MatchL), m_Value(MatchR)) |
| .match((InstructionType)IRB.CreateICmp(Pred, L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| } |
| |
| } // anonymous namespace. |