| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "Debug.hpp" |
| #include "Print.hpp" |
| #include "Reactor.hpp" |
| #include "ReactorDebugInfo.hpp" |
| #include "SIMD.hpp" |
| |
| #include "ExecutableMemory.hpp" |
| #include "Optimizer.hpp" |
| #include "PragmaInternals.hpp" |
| |
| #include "src/IceCfg.h" |
| #include "src/IceCfgNode.h" |
| #include "src/IceELFObjectWriter.h" |
| #include "src/IceELFStreamer.h" |
| #include "src/IceGlobalContext.h" |
| #include "src/IceGlobalInits.h" |
| #include "src/IceTypes.h" |
| |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/raw_os_ostream.h" |
| |
| #include "marl/event.h" |
| |
| #if __has_feature(memory_sanitizer) |
| # include <sanitizer/msan_interface.h> |
| #endif |
| |
| #if defined(_WIN32) |
| # ifndef WIN32_LEAN_AND_MEAN |
| # define WIN32_LEAN_AND_MEAN |
| # endif // !WIN32_LEAN_AND_MEAN |
| # ifndef NOMINMAX |
| # define NOMINMAX |
| # endif // !NOMINMAX |
| # include <Windows.h> |
| #endif |
| |
| #include <array> |
| #include <cmath> |
| #include <iostream> |
| #include <limits> |
| #include <mutex> |
| |
| // Subzero utility functions |
| // These functions only accept and return Subzero (Ice) types, and do not access any globals. |
| namespace { |
| namespace sz { |
| |
| Ice::Cfg *createFunction(Ice::GlobalContext *context, Ice::Type returnType, const std::vector<Ice::Type> ¶mTypes) |
| { |
| uint32_t sequenceNumber = 0; |
| auto *function = Ice::Cfg::create(context, sequenceNumber).release(); |
| |
| function->setStackSizeLimit(512 * 1024); // 512 KiB |
| |
| Ice::CfgLocalAllocatorScope allocScope{ function }; |
| |
| for(auto type : paramTypes) |
| { |
| Ice::Variable *arg = function->makeVariable(type); |
| function->addArg(arg); |
| } |
| |
| Ice::CfgNode *node = function->makeNode(); |
| function->setEntryNode(node); |
| |
| return function; |
| } |
| |
| Ice::Type getPointerType(Ice::Type elementType) |
| { |
| if(sizeof(void *) == 8) |
| { |
| return Ice::IceType_i64; |
| } |
| else |
| { |
| return Ice::IceType_i32; |
| } |
| } |
| |
| Ice::Variable *allocateStackVariable(Ice::Cfg *function, Ice::Type type, int arraySize = 0) |
| { |
| int typeSize = Ice::typeWidthInBytes(type); |
| int totalSize = typeSize * (arraySize ? arraySize : 1); |
| |
| auto bytes = Ice::ConstantInteger32::create(function->getContext(), Ice::IceType_i32, totalSize); |
| auto address = function->makeVariable(getPointerType(type)); |
| auto alloca = Ice::InstAlloca::create(function, address, bytes, typeSize); // SRoA depends on the alignment to match the type size. |
| function->getEntryNode()->getInsts().push_front(alloca); |
| |
| ASSERT(!rr::getPragmaState(rr::InitializeLocalVariables) && "Subzero does not support initializing local variables"); |
| |
| return address; |
| } |
| |
| Ice::Constant *getConstantPointer(Ice::GlobalContext *context, void const *ptr) |
| { |
| if(sizeof(void *) == 8) |
| { |
| return context->getConstantInt64(reinterpret_cast<intptr_t>(ptr)); |
| } |
| else |
| { |
| return context->getConstantInt32(reinterpret_cast<intptr_t>(ptr)); |
| } |
| } |
| |
| // TODO(amaiorano): remove this prototype once these are moved to separate header/cpp |
| Ice::Variable *createTruncate(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Operand *from, Ice::Type toType); |
| |
| // Wrapper for calls on C functions with Ice types |
| Ice::Variable *Call(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Type retTy, Ice::Operand *callTarget, const std::vector<Ice::Operand *> &iceArgs, bool isVariadic) |
| { |
| Ice::Variable *ret = nullptr; |
| |
| // Subzero doesn't support boolean return values. Replace with an i32 temporarily, |
| // then truncate result to bool. |
| // TODO(b/151158858): Add support to Subzero's InstCall for bool-returning functions |
| const bool returningBool = (retTy == Ice::IceType_i1); |
| if(returningBool) |
| { |
| ret = function->makeVariable(Ice::IceType_i32); |
| } |
| else if(retTy != Ice::IceType_void) |
| { |
| ret = function->makeVariable(retTy); |
| } |
| |
| auto call = Ice::InstCall::create(function, iceArgs.size(), ret, callTarget, false, false, isVariadic); |
| for(auto arg : iceArgs) |
| { |
| call->addArg(arg); |
| } |
| |
| basicBlock->appendInst(call); |
| |
| if(returningBool) |
| { |
| // Truncate result to bool so that if any (lsb) bits were set, result will be true |
| ret = createTruncate(function, basicBlock, ret, Ice::IceType_i1); |
| } |
| |
| return ret; |
| } |
| |
| Ice::Variable *Call(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Type retTy, void const *fptr, const std::vector<Ice::Operand *> &iceArgs, bool isVariadic) |
| { |
| Ice::Operand *callTarget = getConstantPointer(function->getContext(), fptr); |
| return Call(function, basicBlock, retTy, callTarget, iceArgs, isVariadic); |
| } |
| |
| // Wrapper for calls on C functions with Ice types |
| template<typename Return, typename... CArgs, typename... RArgs> |
| Ice::Variable *Call(Ice::Cfg *function, Ice::CfgNode *basicBlock, Return(fptr)(CArgs...), RArgs &&...args) |
| { |
| static_assert(sizeof...(CArgs) == sizeof...(RArgs), "Expected number of args don't match"); |
| |
| Ice::Type retTy = T(rr::CToReactorT<Return>::type()); |
| std::vector<Ice::Operand *> iceArgs{ std::forward<RArgs>(args)... }; |
| return Call(function, basicBlock, retTy, reinterpret_cast<void const *>(fptr), iceArgs, false); |
| } |
| |
| Ice::Variable *createTruncate(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Operand *from, Ice::Type toType) |
| { |
| Ice::Variable *to = function->makeVariable(toType); |
| Ice::InstCast *cast = Ice::InstCast::create(function, Ice::InstCast::Trunc, to, from); |
| basicBlock->appendInst(cast); |
| return to; |
| } |
| |
| Ice::Variable *createLoad(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Operand *ptr, Ice::Type type, unsigned int align) |
| { |
| Ice::Variable *result = function->makeVariable(type); |
| auto load = Ice::InstLoad::create(function, result, ptr, align); |
| basicBlock->appendInst(load); |
| |
| return result; |
| } |
| |
| } // namespace sz |
| } // namespace |
| |
| namespace rr { |
| class ELFMemoryStreamer; |
| class CoroutineGenerator; |
| } // namespace rr |
| |
| namespace { |
| |
| // Used to automatically invoke llvm_shutdown() when driver is unloaded |
| llvm::llvm_shutdown_obj llvmShutdownObj; |
| |
| Ice::GlobalContext *context = nullptr; |
| Ice::Cfg *function = nullptr; |
| Ice::CfgNode *entryBlock = nullptr; |
| Ice::CfgNode *basicBlockTop = nullptr; |
| Ice::CfgNode *basicBlock = nullptr; |
| Ice::CfgLocalAllocatorScope *allocator = nullptr; |
| rr::ELFMemoryStreamer *routine = nullptr; |
| |
| std::mutex codegenMutex; |
| |
| Ice::ELFFileStreamer *elfFile = nullptr; |
| Ice::Fdstream *out = nullptr; |
| |
| // Coroutine globals |
| rr::Type *coroYieldType = nullptr; |
| std::shared_ptr<rr::CoroutineGenerator> coroGen; |
| marl::Scheduler &getOrCreateScheduler() |
| { |
| static auto scheduler = [] { |
| marl::Scheduler::Config cfg; |
| cfg.setWorkerThreadCount(8); |
| return std::make_unique<marl::Scheduler>(cfg); |
| }(); |
| |
| return *scheduler; |
| } |
| |
| rr::Nucleus::OptimizerCallback *optimizerCallback = nullptr; |
| |
| } // Anonymous namespace |
| |
| namespace { |
| |
| #if !defined(__i386__) && defined(_M_IX86) |
| # define __i386__ 1 |
| #endif |
| |
| #if !defined(__x86_64__) && (defined(_M_AMD64) || defined(_M_X64)) |
| # define __x86_64__ 1 |
| #endif |
| |
| Ice::OptLevel toIce(int level) |
| { |
| switch(level) |
| { |
| // Note that O0 and O1 are not implemented by Subzero |
| case 0: return Ice::Opt_m1; |
| case 1: return Ice::Opt_m1; |
| case 2: return Ice::Opt_2; |
| case 3: return Ice::Opt_2; |
| default: UNREACHABLE("Unknown Optimization Level %d", int(level)); |
| } |
| return Ice::Opt_2; |
| } |
| |
| Ice::Intrinsics::MemoryOrder stdToIceMemoryOrder(std::memory_order memoryOrder) |
| { |
| switch(memoryOrder) |
| { |
| case std::memory_order_relaxed: return Ice::Intrinsics::MemoryOrderRelaxed; |
| case std::memory_order_consume: return Ice::Intrinsics::MemoryOrderConsume; |
| case std::memory_order_acquire: return Ice::Intrinsics::MemoryOrderAcquire; |
| case std::memory_order_release: return Ice::Intrinsics::MemoryOrderRelease; |
| case std::memory_order_acq_rel: return Ice::Intrinsics::MemoryOrderAcquireRelease; |
| case std::memory_order_seq_cst: return Ice::Intrinsics::MemoryOrderSequentiallyConsistent; |
| } |
| return Ice::Intrinsics::MemoryOrderInvalid; |
| } |
| |
| class CPUID |
| { |
| public: |
| const static bool ARM; |
| const static bool SSE4_1; |
| |
| private: |
| static void cpuid(int registers[4], int info) |
| { |
| #if defined(__i386__) || defined(__x86_64__) |
| # if defined(_WIN32) |
| __cpuid(registers, info); |
| # else |
| __asm volatile("cpuid" |
| : "=a"(registers[0]), "=b"(registers[1]), "=c"(registers[2]), "=d"(registers[3]) |
| : "a"(info)); |
| # endif |
| #else |
| registers[0] = 0; |
| registers[1] = 0; |
| registers[2] = 0; |
| registers[3] = 0; |
| #endif |
| } |
| |
| constexpr static bool detectARM() |
| { |
| #if defined(__arm__) || defined(__aarch64__) |
| return true; |
| #elif defined(__i386__) || defined(__x86_64__) |
| return false; |
| #elif defined(__mips__) |
| return false; |
| #else |
| # error "Unknown architecture" |
| #endif |
| } |
| |
| static bool detectSSE4_1() |
| { |
| #if defined(__i386__) || defined(__x86_64__) |
| int registers[4]; |
| cpuid(registers, 1); |
| return (registers[2] & 0x00080000) != 0; |
| #else |
| return false; |
| #endif |
| } |
| }; |
| |
| constexpr bool CPUID::ARM = CPUID::detectARM(); |
| const bool CPUID::SSE4_1 = CPUID::detectSSE4_1(); |
| constexpr bool emulateIntrinsics = false; |
| constexpr bool emulateMismatchedBitCast = CPUID::ARM; |
| |
| constexpr bool subzeroDumpEnabled = false; |
| constexpr bool subzeroEmitTextAsm = false; |
| |
| #if !ALLOW_DUMP |
| static_assert(!subzeroDumpEnabled, "Compile Subzero with ALLOW_DUMP=1 for subzeroDumpEnabled"); |
| static_assert(!subzeroEmitTextAsm, "Compile Subzero with ALLOW_DUMP=1 for subzeroEmitTextAsm"); |
| #endif |
| |
| } // anonymous namespace |
| |
| namespace rr { |
| |
| const int SIMD::Width = 4; |
| |
| std::string Caps::backendName() |
| { |
| return "Subzero"; |
| } |
| |
| bool Caps::coroutinesSupported() |
| { |
| return true; |
| } |
| |
| bool Caps::fmaIsFast() |
| { |
| // TODO(b/214591655): Subzero currently never emits FMA instructions. std::fma() is called instead. |
| return false; |
| } |
| |
| enum EmulatedType |
| { |
| EmulatedShift = 16, |
| EmulatedV2 = 2 << EmulatedShift, |
| EmulatedV4 = 4 << EmulatedShift, |
| EmulatedV8 = 8 << EmulatedShift, |
| EmulatedBits = EmulatedV2 | EmulatedV4 | EmulatedV8, |
| |
| Type_v2i32 = Ice::IceType_v4i32 | EmulatedV2, |
| Type_v4i16 = Ice::IceType_v8i16 | EmulatedV4, |
| Type_v2i16 = Ice::IceType_v8i16 | EmulatedV2, |
| Type_v8i8 = Ice::IceType_v16i8 | EmulatedV8, |
| Type_v4i8 = Ice::IceType_v16i8 | EmulatedV4, |
| Type_v2f32 = Ice::IceType_v4f32 | EmulatedV2, |
| }; |
| |
| class Value : public Ice::Operand |
| {}; |
| class SwitchCases : public Ice::InstSwitch |
| {}; |
| class BasicBlock : public Ice::CfgNode |
| {}; |
| |
| Ice::Type T(Type *t) |
| { |
| static_assert(static_cast<unsigned int>(Ice::IceType_NUM) < static_cast<unsigned int>(EmulatedBits), "Ice::Type overlaps with our emulated types!"); |
| return (Ice::Type)(reinterpret_cast<std::intptr_t>(t) & ~EmulatedBits); |
| } |
| |
| Type *T(Ice::Type t) |
| { |
| return reinterpret_cast<Type *>(t); |
| } |
| |
| Type *T(EmulatedType t) |
| { |
| return reinterpret_cast<Type *>(t); |
| } |
| |
| std::vector<Ice::Type> T(const std::vector<Type *> &types) |
| { |
| std::vector<Ice::Type> result; |
| result.reserve(types.size()); |
| for(auto &t : types) |
| { |
| result.push_back(T(t)); |
| } |
| return result; |
| } |
| |
| Value *V(Ice::Operand *v) |
| { |
| return reinterpret_cast<Value *>(v); |
| } |
| |
| Ice::Operand *V(Value *v) |
| { |
| return reinterpret_cast<Ice::Operand *>(v); |
| } |
| |
| std::vector<Ice::Operand *> V(const std::vector<Value *> &values) |
| { |
| std::vector<Ice::Operand *> result; |
| result.reserve(values.size()); |
| for(auto &v : values) |
| { |
| result.push_back(V(v)); |
| } |
| return result; |
| } |
| |
| BasicBlock *B(Ice::CfgNode *b) |
| { |
| return reinterpret_cast<BasicBlock *>(b); |
| } |
| |
| static size_t typeSize(Type *type) |
| { |
| if(reinterpret_cast<std::intptr_t>(type) & EmulatedBits) |
| { |
| switch(reinterpret_cast<std::intptr_t>(type)) |
| { |
| case Type_v2i32: return 8; |
| case Type_v4i16: return 8; |
| case Type_v2i16: return 4; |
| case Type_v8i8: return 8; |
| case Type_v4i8: return 4; |
| case Type_v2f32: return 8; |
| default: ASSERT(false); |
| } |
| } |
| |
| return Ice::typeWidthInBytes(T(type)); |
| } |
| |
| static void finalizeFunction() |
| { |
| // Create a return if none was added |
| if(::basicBlock->getInsts().empty() || ::basicBlock->getInsts().back().getKind() != Ice::Inst::Ret) |
| { |
| Nucleus::createRetVoid(); |
| } |
| |
| // Connect the entry block to the top of the initial basic block |
| auto br = Ice::InstBr::create(::function, ::basicBlockTop); |
| ::entryBlock->appendInst(br); |
| } |
| |
| using ElfHeader = std::conditional<sizeof(void *) == 8, Elf64_Ehdr, Elf32_Ehdr>::type; |
| using SectionHeader = std::conditional<sizeof(void *) == 8, Elf64_Shdr, Elf32_Shdr>::type; |
| |
| inline const SectionHeader *sectionHeader(const ElfHeader *elfHeader) |
| { |
| return reinterpret_cast<const SectionHeader *>((intptr_t)elfHeader + elfHeader->e_shoff); |
| } |
| |
| inline const SectionHeader *elfSection(const ElfHeader *elfHeader, int index) |
| { |
| return §ionHeader(elfHeader)[index]; |
| } |
| |
| static void *relocateSymbol(const ElfHeader *elfHeader, const Elf32_Rel &relocation, const SectionHeader &relocationTable) |
| { |
| const SectionHeader *target = elfSection(elfHeader, relocationTable.sh_info); |
| |
| uint32_t index = relocation.getSymbol(); |
| int table = relocationTable.sh_link; |
| void *symbolValue = nullptr; |
| |
| if(index != SHN_UNDEF) |
| { |
| if(table == SHN_UNDEF) return nullptr; |
| const SectionHeader *symbolTable = elfSection(elfHeader, table); |
| |
| uint32_t symtab_entries = symbolTable->sh_size / symbolTable->sh_entsize; |
| if(index >= symtab_entries) |
| { |
| ASSERT(index < symtab_entries && "Symbol Index out of range"); |
| return nullptr; |
| } |
| |
| intptr_t symbolAddress = (intptr_t)elfHeader + symbolTable->sh_offset; |
| Elf32_Sym &symbol = ((Elf32_Sym *)symbolAddress)[index]; |
| uint16_t section = symbol.st_shndx; |
| |
| if(section != SHN_UNDEF && section < SHN_LORESERVE) |
| { |
| const SectionHeader *target = elfSection(elfHeader, symbol.st_shndx); |
| symbolValue = reinterpret_cast<void *>((intptr_t)elfHeader + symbol.st_value + target->sh_offset); |
| } |
| else |
| { |
| return nullptr; |
| } |
| } |
| |
| intptr_t address = (intptr_t)elfHeader + target->sh_offset; |
| unaligned_ptr<int32_t> patchSite = (int32_t *)(address + relocation.r_offset); |
| |
| if(CPUID::ARM) |
| { |
| switch(relocation.getType()) |
| { |
| case R_ARM_NONE: |
| // No relocation |
| break; |
| case R_ARM_MOVW_ABS_NC: |
| { |
| uint32_t thumb = 0; // Calls to Thumb code not supported. |
| uint32_t lo = (uint32_t)(intptr_t)symbolValue | thumb; |
| *patchSite = (*patchSite & 0xFFF0F000) | ((lo & 0xF000) << 4) | (lo & 0x0FFF); |
| } |
| break; |
| case R_ARM_MOVT_ABS: |
| { |
| uint32_t hi = (uint32_t)(intptr_t)(symbolValue) >> 16; |
| *patchSite = (*patchSite & 0xFFF0F000) | ((hi & 0xF000) << 4) | (hi & 0x0FFF); |
| } |
| break; |
| default: |
| ASSERT(false && "Unsupported relocation type"); |
| return nullptr; |
| } |
| } |
| else |
| { |
| switch(relocation.getType()) |
| { |
| case R_386_NONE: |
| // No relocation |
| break; |
| case R_386_32: |
| *patchSite = (int32_t)((intptr_t)symbolValue + *patchSite); |
| break; |
| case R_386_PC32: |
| *patchSite = (int32_t)((intptr_t)symbolValue + *patchSite - (intptr_t)patchSite); |
| break; |
| default: |
| ASSERT(false && "Unsupported relocation type"); |
| return nullptr; |
| } |
| } |
| |
| return symbolValue; |
| } |
| |
| static void *relocateSymbol(const ElfHeader *elfHeader, const Elf64_Rela &relocation, const SectionHeader &relocationTable) |
| { |
| const SectionHeader *target = elfSection(elfHeader, relocationTable.sh_info); |
| |
| uint32_t index = relocation.getSymbol(); |
| int table = relocationTable.sh_link; |
| void *symbolValue = nullptr; |
| |
| if(index != SHN_UNDEF) |
| { |
| if(table == SHN_UNDEF) return nullptr; |
| const SectionHeader *symbolTable = elfSection(elfHeader, table); |
| |
| uint32_t symtab_entries = symbolTable->sh_size / symbolTable->sh_entsize; |
| if(index >= symtab_entries) |
| { |
| ASSERT(index < symtab_entries && "Symbol Index out of range"); |
| return nullptr; |
| } |
| |
| intptr_t symbolAddress = (intptr_t)elfHeader + symbolTable->sh_offset; |
| Elf64_Sym &symbol = ((Elf64_Sym *)symbolAddress)[index]; |
| uint16_t section = symbol.st_shndx; |
| |
| if(section != SHN_UNDEF && section < SHN_LORESERVE) |
| { |
| const SectionHeader *target = elfSection(elfHeader, symbol.st_shndx); |
| symbolValue = reinterpret_cast<void *>((intptr_t)elfHeader + symbol.st_value + target->sh_offset); |
| } |
| else |
| { |
| return nullptr; |
| } |
| } |
| |
| intptr_t address = (intptr_t)elfHeader + target->sh_offset; |
| unaligned_ptr<int32_t> patchSite32 = (int32_t *)(address + relocation.r_offset); |
| unaligned_ptr<int64_t> patchSite64 = (int64_t *)(address + relocation.r_offset); |
| |
| switch(relocation.getType()) |
| { |
| case R_X86_64_NONE: |
| // No relocation |
| break; |
| case R_X86_64_64: |
| *patchSite64 = (int64_t)((intptr_t)symbolValue + *patchSite64 + relocation.r_addend); |
| break; |
| case R_X86_64_PC32: |
| *patchSite32 = (int32_t)((intptr_t)symbolValue + *patchSite32 - (intptr_t)patchSite32 + relocation.r_addend); |
| break; |
| case R_X86_64_32S: |
| *patchSite32 = (int32_t)((intptr_t)symbolValue + *patchSite32 + relocation.r_addend); |
| break; |
| default: |
| ASSERT(false && "Unsupported relocation type"); |
| return nullptr; |
| } |
| |
| return symbolValue; |
| } |
| |
| struct EntryPoint |
| { |
| const void *entry; |
| size_t codeSize = 0; |
| }; |
| |
| std::vector<EntryPoint> loadImage(uint8_t *const elfImage, const std::vector<const char *> &functionNames) |
| { |
| ASSERT(functionNames.size() > 0); |
| std::vector<EntryPoint> entryPoints(functionNames.size()); |
| |
| ElfHeader *elfHeader = (ElfHeader *)elfImage; |
| |
| // TODO: assert? |
| if(!elfHeader->checkMagic()) |
| { |
| return {}; |
| } |
| |
| // Expect ELF bitness to match platform |
| ASSERT(sizeof(void *) == 8 ? elfHeader->getFileClass() == ELFCLASS64 : elfHeader->getFileClass() == ELFCLASS32); |
| #if defined(__i386__) |
| ASSERT(sizeof(void *) == 4 && elfHeader->e_machine == EM_386); |
| #elif defined(__x86_64__) |
| ASSERT(sizeof(void *) == 8 && elfHeader->e_machine == EM_X86_64); |
| #elif defined(__arm__) |
| ASSERT(sizeof(void *) == 4 && elfHeader->e_machine == EM_ARM); |
| #elif defined(__aarch64__) |
| ASSERT(sizeof(void *) == 8 && elfHeader->e_machine == EM_AARCH64); |
| #elif defined(__mips__) |
| ASSERT(sizeof(void *) == 4 && elfHeader->e_machine == EM_MIPS); |
| #else |
| # error "Unsupported platform" |
| #endif |
| |
| SectionHeader *sectionHeader = (SectionHeader *)(elfImage + elfHeader->e_shoff); |
| |
| for(int i = 0; i < elfHeader->e_shnum; i++) |
| { |
| if(sectionHeader[i].sh_type == SHT_PROGBITS) |
| { |
| if(sectionHeader[i].sh_flags & SHF_EXECINSTR) |
| { |
| auto findSectionNameEntryIndex = [&]() -> size_t { |
| auto sectionNameOffset = sectionHeader[elfHeader->e_shstrndx].sh_offset + sectionHeader[i].sh_name; |
| const char *sectionName = reinterpret_cast<const char *>(elfImage + sectionNameOffset); |
| |
| for(size_t j = 0; j < functionNames.size(); ++j) |
| { |
| if(strstr(sectionName, functionNames[j]) != nullptr) |
| { |
| return j; |
| } |
| } |
| |
| UNREACHABLE("Failed to find executable section that matches input function names"); |
| return static_cast<size_t>(-1); |
| }; |
| |
| size_t index = findSectionNameEntryIndex(); |
| entryPoints[index].entry = elfImage + sectionHeader[i].sh_offset; |
| entryPoints[index].codeSize = sectionHeader[i].sh_size; |
| } |
| } |
| else if(sectionHeader[i].sh_type == SHT_REL) |
| { |
| ASSERT(sizeof(void *) == 4 && "UNIMPLEMENTED"); // Only expected/implemented for 32-bit code |
| |
| for(Elf32_Word index = 0; index < sectionHeader[i].sh_size / sectionHeader[i].sh_entsize; index++) |
| { |
| const Elf32_Rel &relocation = ((const Elf32_Rel *)(elfImage + sectionHeader[i].sh_offset))[index]; |
| relocateSymbol(elfHeader, relocation, sectionHeader[i]); |
| } |
| } |
| else if(sectionHeader[i].sh_type == SHT_RELA) |
| { |
| ASSERT(sizeof(void *) == 8 && "UNIMPLEMENTED"); // Only expected/implemented for 64-bit code |
| |
| for(Elf32_Word index = 0; index < sectionHeader[i].sh_size / sectionHeader[i].sh_entsize; index++) |
| { |
| const Elf64_Rela &relocation = ((const Elf64_Rela *)(elfImage + sectionHeader[i].sh_offset))[index]; |
| relocateSymbol(elfHeader, relocation, sectionHeader[i]); |
| } |
| } |
| } |
| |
| return entryPoints; |
| } |
| |
| template<typename T> |
| struct ExecutableAllocator |
| { |
| ExecutableAllocator() {} |
| template<class U> |
| ExecutableAllocator(const ExecutableAllocator<U> &other) |
| {} |
| |
| using value_type = T; |
| using size_type = std::size_t; |
| |
| T *allocate(size_type n) |
| { |
| return (T *)allocateMemoryPages( |
| sizeof(T) * n, PERMISSION_READ | PERMISSION_WRITE, true); |
| } |
| |
| void deallocate(T *p, size_type n) |
| { |
| deallocateMemoryPages(p, sizeof(T) * n); |
| } |
| }; |
| |
| class ELFMemoryStreamer : public Ice::ELFStreamer, public Routine |
| { |
| ELFMemoryStreamer(const ELFMemoryStreamer &) = delete; |
| ELFMemoryStreamer &operator=(const ELFMemoryStreamer &) = delete; |
| |
| public: |
| ELFMemoryStreamer() |
| : Routine() |
| { |
| position = 0; |
| buffer.reserve(0x1000); |
| } |
| |
| ~ELFMemoryStreamer() override |
| { |
| } |
| |
| void write8(uint8_t Value) override |
| { |
| if(position == (uint64_t)buffer.size()) |
| { |
| buffer.push_back(Value); |
| position++; |
| } |
| else if(position < (uint64_t)buffer.size()) |
| { |
| buffer[position] = Value; |
| position++; |
| } |
| else |
| ASSERT(false && "UNIMPLEMENTED"); |
| } |
| |
| void writeBytes(llvm::StringRef Bytes) override |
| { |
| std::size_t oldSize = buffer.size(); |
| buffer.resize(oldSize + Bytes.size()); |
| memcpy(&buffer[oldSize], Bytes.begin(), Bytes.size()); |
| position += Bytes.size(); |
| } |
| |
| uint64_t tell() const override |
| { |
| return position; |
| } |
| |
| void seek(uint64_t Off) override |
| { |
| position = Off; |
| } |
| |
| std::vector<EntryPoint> loadImageAndGetEntryPoints(const std::vector<const char *> &functionNames) |
| { |
| auto entryPoints = loadImage(&buffer[0], functionNames); |
| |
| #if defined(_WIN32) |
| FlushInstructionCache(GetCurrentProcess(), NULL, 0); |
| #else |
| for(auto &entryPoint : entryPoints) |
| { |
| __builtin___clear_cache((char *)entryPoint.entry, (char *)entryPoint.entry + entryPoint.codeSize); |
| } |
| #endif |
| |
| return entryPoints; |
| } |
| |
| void finalize() |
| { |
| position = std::numeric_limits<std::size_t>::max(); // Can't stream more data after this |
| |
| protectMemoryPages(&buffer[0], buffer.size(), PERMISSION_READ | PERMISSION_EXECUTE); |
| } |
| |
| void setEntry(int index, const void *func) |
| { |
| ASSERT(func); |
| funcs[index] = func; |
| } |
| |
| const void *getEntry(int index) const override |
| { |
| ASSERT(funcs[index]); |
| return funcs[index]; |
| } |
| |
| const void *addConstantData(const void *data, size_t size, size_t alignment = 1) |
| { |
| // Check if we already have a suitable constant. |
| for(const auto &c : constantsPool) |
| { |
| void *ptr = c.data.get(); |
| size_t space = c.space; |
| |
| void *alignedPtr = std::align(alignment, size, ptr, space); |
| |
| if(space < size) |
| { |
| continue; |
| } |
| |
| if(memcmp(data, alignedPtr, size) == 0) |
| { |
| return alignedPtr; |
| } |
| } |
| |
| // TODO(b/148086935): Replace with a buffer allocator. |
| size_t space = size + alignment; |
| auto buf = std::unique_ptr<uint8_t[]>(new uint8_t[space]); |
| void *ptr = buf.get(); |
| void *alignedPtr = std::align(alignment, size, ptr, space); |
| ASSERT(alignedPtr); |
| memcpy(alignedPtr, data, size); |
| constantsPool.emplace_back(std::move(buf), space); |
| |
| return alignedPtr; |
| } |
| |
| private: |
| struct Constant |
| { |
| Constant(std::unique_ptr<uint8_t[]> data, size_t space) |
| : data(std::move(data)) |
| , space(space) |
| {} |
| |
| std::unique_ptr<uint8_t[]> data; |
| size_t space; |
| }; |
| |
| std::array<const void *, Nucleus::CoroutineEntryCount> funcs = {}; |
| std::vector<uint8_t, ExecutableAllocator<uint8_t>> buffer; |
| std::size_t position; |
| std::vector<Constant> constantsPool; |
| }; |
| |
| #ifdef ENABLE_RR_PRINT |
| void VPrintf(const std::vector<Value *> &vals) |
| { |
| sz::Call(::function, ::basicBlock, Ice::IceType_i32, reinterpret_cast<const void *>(rr::DebugPrintf), V(vals), true); |
| } |
| #endif // ENABLE_RR_PRINT |
| |
| Nucleus::Nucleus() |
| { |
| ::codegenMutex.lock(); // SubzeroReactor is currently not thread safe |
| |
| Ice::ClFlags &Flags = Ice::ClFlags::Flags; |
| Ice::ClFlags::getParsedClFlags(Flags); |
| |
| #if defined(__arm__) |
| Flags.setTargetArch(Ice::Target_ARM32); |
| Flags.setTargetInstructionSet(Ice::ARM32InstructionSet_HWDivArm); |
| #elif defined(__mips__) |
| Flags.setTargetArch(Ice::Target_MIPS32); |
| Flags.setTargetInstructionSet(Ice::BaseInstructionSet); |
| #else // x86 |
| Flags.setTargetArch(sizeof(void *) == 8 ? Ice::Target_X8664 : Ice::Target_X8632); |
| Flags.setTargetInstructionSet(CPUID::SSE4_1 ? Ice::X86InstructionSet_SSE4_1 : Ice::X86InstructionSet_SSE2); |
| #endif |
| Flags.setOutFileType(Ice::FT_Elf); |
| Flags.setOptLevel(toIce(rr::getPragmaState(rr::OptimizationLevel))); |
| Flags.setVerbose(subzeroDumpEnabled ? Ice::IceV_Most : Ice::IceV_None); |
| Flags.setDisableHybridAssembly(true); |
| |
| // Emit functions into separate sections in the ELF so we can find them by name |
| Flags.setFunctionSections(true); |
| |
| static llvm::raw_os_ostream cout(std::cout); |
| static llvm::raw_os_ostream cerr(std::cerr); |
| |
| if(subzeroEmitTextAsm) |
| { |
| // Decorate text asm with liveness info |
| Flags.setDecorateAsm(true); |
| } |
| |
| if(false) // Write out to a file |
| { |
| std::error_code errorCode; |
| ::out = new Ice::Fdstream("out.o", errorCode, llvm::sys::fs::F_None); |
| ::elfFile = new Ice::ELFFileStreamer(*out); |
| ::context = new Ice::GlobalContext(&cout, &cout, &cerr, elfFile); |
| } |
| else |
| { |
| ELFMemoryStreamer *elfMemory = new ELFMemoryStreamer(); |
| ::context = new Ice::GlobalContext(&cout, &cout, &cerr, elfMemory); |
| ::routine = elfMemory; |
| } |
| |
| #if !__has_feature(memory_sanitizer) |
| // thread_local variables in shared libraries are initialized at load-time, |
| // but this is not observed by MemorySanitizer if the loader itself was not |
| // instrumented, leading to false-positive uninitialized variable errors. |
| ASSERT(Variable::unmaterializedVariables == nullptr); |
| #endif |
| Variable::unmaterializedVariables = new Variable::UnmaterializedVariables{}; |
| } |
| |
| Nucleus::~Nucleus() |
| { |
| delete Variable::unmaterializedVariables; |
| Variable::unmaterializedVariables = nullptr; |
| |
| delete ::routine; |
| ::routine = nullptr; |
| |
| delete ::allocator; |
| ::allocator = nullptr; |
| |
| delete ::function; |
| ::function = nullptr; |
| |
| delete ::context; |
| ::context = nullptr; |
| |
| delete ::elfFile; |
| ::elfFile = nullptr; |
| |
| delete ::out; |
| ::out = nullptr; |
| |
| ::entryBlock = nullptr; |
| ::basicBlock = nullptr; |
| ::basicBlockTop = nullptr; |
| |
| ::codegenMutex.unlock(); |
| } |
| |
| // This function lowers and produces executable binary code in memory for the input functions, |
| // and returns a Routine with the entry points to these functions. |
| template<size_t Count> |
| static std::shared_ptr<Routine> acquireRoutine(Ice::Cfg *const (&functions)[Count], const char *const (&names)[Count]) |
| { |
| // This logic is modeled after the IceCompiler, as well as GlobalContext::translateFunctions |
| // and GlobalContext::emitItems. |
| |
| if(subzeroDumpEnabled) |
| { |
| // Output dump strings immediately, rather than once buffer is full. Useful for debugging. |
| ::context->getStrDump().SetUnbuffered(); |
| } |
| |
| ::context->emitFileHeader(); |
| |
| // Translate |
| |
| for(size_t i = 0; i < Count; ++i) |
| { |
| Ice::Cfg *currFunc = functions[i]; |
| |
| // Install function allocator in TLS for Cfg-specific container allocators |
| Ice::CfgLocalAllocatorScope allocScope(currFunc); |
| |
| currFunc->setFunctionName(Ice::GlobalString::createWithString(::context, names[i])); |
| |
| if(::optimizerCallback) |
| { |
| Nucleus::OptimizerReport report; |
| rr::optimize(currFunc, &report); |
| ::optimizerCallback(&report); |
| ::optimizerCallback = nullptr; |
| } |
| else |
| { |
| rr::optimize(currFunc); |
| } |
| |
| currFunc->computeInOutEdges(); |
| ASSERT_MSG(!currFunc->hasError(), "%s", currFunc->getError().c_str()); |
| |
| currFunc->translate(); |
| ASSERT_MSG(!currFunc->hasError(), "%s", currFunc->getError().c_str()); |
| |
| currFunc->getAssembler<>()->setInternal(currFunc->getInternal()); |
| |
| if(subzeroEmitTextAsm) |
| { |
| currFunc->emit(); |
| } |
| |
| currFunc->emitIAS(); |
| |
| if(currFunc->hasError()) |
| { |
| return nullptr; |
| } |
| } |
| |
| // Emit items |
| |
| ::context->lowerGlobals(""); |
| |
| auto objectWriter = ::context->getObjectWriter(); |
| |
| for(size_t i = 0; i < Count; ++i) |
| { |
| Ice::Cfg *currFunc = functions[i]; |
| |
| // Accumulate globals from functions to emit into the "last" section at the end |
| auto globals = currFunc->getGlobalInits(); |
| if(globals && !globals->empty()) |
| { |
| ::context->getGlobals()->merge(globals.get()); |
| } |
| |
| auto assembler = currFunc->releaseAssembler(); |
| assembler->alignFunction(); |
| objectWriter->writeFunctionCode(currFunc->getFunctionName(), currFunc->getInternal(), assembler.get()); |
| } |
| |
| ::context->lowerGlobals("last"); |
| ::context->lowerConstants(); |
| ::context->lowerJumpTables(); |
| |
| objectWriter->setUndefinedSyms(::context->getConstantExternSyms()); |
| ::context->emitTargetRODataSections(); |
| objectWriter->writeNonUserSections(); |
| |
| // Done compiling functions, get entry pointers to each of them |
| auto entryPoints = ::routine->loadImageAndGetEntryPoints({ names, names + Count }); |
| ASSERT(entryPoints.size() == Count); |
| for(size_t i = 0; i < entryPoints.size(); ++i) |
| { |
| ::routine->setEntry(i, entryPoints[i].entry); |
| } |
| |
| ::routine->finalize(); |
| |
| Routine *handoffRoutine = ::routine; |
| ::routine = nullptr; |
| |
| return std::shared_ptr<Routine>(handoffRoutine); |
| } |
| |
| std::shared_ptr<Routine> Nucleus::acquireRoutine(const char *name) |
| { |
| finalizeFunction(); |
| return rr::acquireRoutine({ ::function }, { name }); |
| } |
| |
| Value *Nucleus::allocateStackVariable(Type *t, int arraySize) |
| { |
| Ice::Type type = T(t); |
| int typeSize = Ice::typeWidthInBytes(type); |
| int totalSize = typeSize * (arraySize ? arraySize : 1); |
| |
| auto bytes = Ice::ConstantInteger32::create(::context, Ice::IceType_i32, totalSize); |
| auto address = ::function->makeVariable(T(getPointerType(t))); |
| auto alloca = Ice::InstAlloca::create(::function, address, bytes, typeSize); // SRoA depends on the alignment to match the type size. |
| ::function->getEntryNode()->getInsts().push_front(alloca); |
| |
| return V(address); |
| } |
| |
| BasicBlock *Nucleus::createBasicBlock() |
| { |
| return B(::function->makeNode()); |
| } |
| |
| BasicBlock *Nucleus::getInsertBlock() |
| { |
| return B(::basicBlock); |
| } |
| |
| void Nucleus::setInsertBlock(BasicBlock *basicBlock) |
| { |
| // ASSERT(::basicBlock->getInsts().back().getTerminatorEdges().size() >= 0 && "Previous basic block must have a terminator"); |
| |
| ::basicBlock = basicBlock; |
| } |
| |
| void Nucleus::createFunction(Type *returnType, const std::vector<Type *> ¶mTypes) |
| { |
| ASSERT(::function == nullptr); |
| ASSERT(::allocator == nullptr); |
| ASSERT(::entryBlock == nullptr); |
| ASSERT(::basicBlock == nullptr); |
| ASSERT(::basicBlockTop == nullptr); |
| |
| ::function = sz::createFunction(::context, T(returnType), T(paramTypes)); |
| |
| // NOTE: The scoped allocator sets the TLS allocator to the one in the function. This global one |
| // becomes invalid if another one is created; for example, when creating await and destroy functions |
| // for coroutines, in which case, we must make sure to create a new scoped allocator for ::function again. |
| // TODO: Get rid of this as a global, and create scoped allocs in every Nucleus function instead. |
| ::allocator = new Ice::CfgLocalAllocatorScope(::function); |
| |
| ::entryBlock = ::function->getEntryNode(); |
| ::basicBlock = ::function->makeNode(); |
| ::basicBlockTop = ::basicBlock; |
| } |
| |
| Value *Nucleus::getArgument(unsigned int index) |
| { |
| return V(::function->getArgs()[index]); |
| } |
| |
| void Nucleus::createRetVoid() |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| |
| // Code generated after this point is unreachable, so any variables |
| // being read can safely return an undefined value. We have to avoid |
| // materializing variables after the terminator ret instruction. |
| Variable::killUnmaterialized(); |
| |
| Ice::InstRet *ret = Ice::InstRet::create(::function); |
| ::basicBlock->appendInst(ret); |
| } |
| |
| void Nucleus::createRet(Value *v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| |
| // Code generated after this point is unreachable, so any variables |
| // being read can safely return an undefined value. We have to avoid |
| // materializing variables after the terminator ret instruction. |
| Variable::killUnmaterialized(); |
| |
| Ice::InstRet *ret = Ice::InstRet::create(::function, v); |
| ::basicBlock->appendInst(ret); |
| } |
| |
| void Nucleus::createBr(BasicBlock *dest) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Variable::materializeAll(); |
| |
| auto br = Ice::InstBr::create(::function, dest); |
| ::basicBlock->appendInst(br); |
| } |
| |
| void Nucleus::createCondBr(Value *cond, BasicBlock *ifTrue, BasicBlock *ifFalse) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Variable::materializeAll(); |
| |
| auto br = Ice::InstBr::create(::function, cond, ifTrue, ifFalse); |
| ::basicBlock->appendInst(br); |
| } |
| |
| static bool isCommutative(Ice::InstArithmetic::OpKind op) |
| { |
| switch(op) |
| { |
| case Ice::InstArithmetic::Add: |
| case Ice::InstArithmetic::Fadd: |
| case Ice::InstArithmetic::Mul: |
| case Ice::InstArithmetic::Fmul: |
| case Ice::InstArithmetic::And: |
| case Ice::InstArithmetic::Or: |
| case Ice::InstArithmetic::Xor: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static Value *createArithmetic(Ice::InstArithmetic::OpKind op, Value *lhs, Value *rhs) |
| { |
| ASSERT(lhs->getType() == rhs->getType() || llvm::isa<Ice::Constant>(rhs)); |
| |
| bool swapOperands = llvm::isa<Ice::Constant>(lhs) && isCommutative(op); |
| |
| Ice::Variable *result = ::function->makeVariable(lhs->getType()); |
| Ice::InstArithmetic *arithmetic = Ice::InstArithmetic::create(::function, op, result, swapOperands ? rhs : lhs, swapOperands ? lhs : rhs); |
| ::basicBlock->appendInst(arithmetic); |
| |
| return V(result); |
| } |
| |
| Value *Nucleus::createAdd(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createArithmetic(Ice::InstArithmetic::Add, lhs, rhs); |
| } |
| |
| Value *Nucleus::createSub(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createArithmetic(Ice::InstArithmetic::Sub, lhs, rhs); |
| } |
| |
| Value *Nucleus::createMul(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createArithmetic(Ice::InstArithmetic::Mul, lhs, rhs); |
| } |
| |
| Value *Nucleus::createUDiv(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createArithmetic(Ice::InstArithmetic::Udiv, lhs, rhs); |
| } |
| |
| Value *Nucleus::createSDiv(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createArithmetic(Ice::InstArithmetic::Sdiv, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFAdd(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createArithmetic(Ice::InstArithmetic::Fadd, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFSub(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createArithmetic(Ice::InstArithmetic::Fsub, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFMul(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createArithmetic(Ice::InstArithmetic::Fmul, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFDiv(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createArithmetic(Ice::InstArithmetic::Fdiv, lhs, rhs); |
| } |
| |
| Value *Nucleus::createURem(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createArithmetic(Ice::InstArithmetic::Urem, lhs, rhs); |
| } |
| |
| Value *Nucleus::createSRem(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createArithmetic(Ice::InstArithmetic::Srem, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFRem(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // TODO(b/148139679) Fix Subzero generating invalid code for FRem on vector types |
| // createArithmetic(Ice::InstArithmetic::Frem, lhs, rhs); |
| UNIMPLEMENTED("b/148139679 Nucleus::createFRem"); |
| return nullptr; |
| } |
| |
| Value *Nucleus::createShl(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createArithmetic(Ice::InstArithmetic::Shl, lhs, rhs); |
| } |
| |
| Value *Nucleus::createLShr(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createArithmetic(Ice::InstArithmetic::Lshr, lhs, rhs); |
| } |
| |
| Value *Nucleus::createAShr(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createArithmetic(Ice::InstArithmetic::Ashr, lhs, rhs); |
| } |
| |
| Value *Nucleus::createAnd(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createArithmetic(Ice::InstArithmetic::And, lhs, rhs); |
| } |
| |
| Value *Nucleus::createOr(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createArithmetic(Ice::InstArithmetic::Or, lhs, rhs); |
| } |
| |
| Value *Nucleus::createXor(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createArithmetic(Ice::InstArithmetic::Xor, lhs, rhs); |
| } |
| |
| Value *Nucleus::createNeg(Value *v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createSub(createNullValue(T(v->getType())), v); |
| } |
| |
| Value *Nucleus::createFNeg(Value *v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| std::vector<double> c = { -0.0 }; |
| Value *negativeZero = Ice::isVectorType(v->getType()) ? createConstantVector(c, T(v->getType())) : V(::context->getConstantFloat(-0.0f)); |
| |
| return createFSub(negativeZero, v); |
| } |
| |
| Value *Nucleus::createNot(Value *v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(Ice::isScalarIntegerType(v->getType())) |
| { |
| return createXor(v, V(::context->getConstantInt(v->getType(), -1))); |
| } |
| else // Vector |
| { |
| std::vector<int64_t> c = { -1 }; |
| return createXor(v, createConstantVector(c, T(v->getType()))); |
| } |
| } |
| |
| static void validateAtomicAndMemoryOrderArgs(bool atomic, std::memory_order memoryOrder) |
| { |
| #if defined(__i386__) || defined(__x86_64__) |
| // We're good, atomics and strictest memory order (except seq_cst) are guaranteed. |
| // Note that sequential memory ordering could be guaranteed by using x86's LOCK prefix. |
| // Note also that relaxed memory order could be implemented using MOVNTPS and friends. |
| #else |
| if(atomic) |
| { |
| UNIMPLEMENTED("b/150475088 Atomic load/store not implemented for current platform"); |
| } |
| if(memoryOrder != std::memory_order_relaxed) |
| { |
| UNIMPLEMENTED("b/150475088 Memory order other than memory_order_relaxed not implemented for current platform"); |
| } |
| #endif |
| |
| // Vulkan doesn't allow sequential memory order |
| ASSERT(memoryOrder != std::memory_order_seq_cst); |
| } |
| |
| Value *Nucleus::createLoad(Value *ptr, Type *type, bool isVolatile, unsigned int align, bool atomic, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| validateAtomicAndMemoryOrderArgs(atomic, memoryOrder); |
| |
| int valueType = (int)reinterpret_cast<intptr_t>(type); |
| Ice::Variable *result = nullptr; |
| |
| if((valueType & EmulatedBits) && (align != 0)) // Narrow vector not stored on stack. |
| { |
| if(emulateIntrinsics) |
| { |
| if(typeSize(type) == 4) |
| { |
| auto pointer = RValue<Pointer<Byte>>(ptr); |
| Int x = *Pointer<Int>(pointer); |
| |
| Int4 vector; |
| vector = Insert(vector, x, 0); |
| |
| result = ::function->makeVariable(T(type)); |
| auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, result, vector.loadValue()); |
| ::basicBlock->appendInst(bitcast); |
| } |
| else if(typeSize(type) == 8) |
| { |
| ASSERT_MSG(!atomic, "Emulated 64-bit loads are not atomic"); |
| auto pointer = RValue<Pointer<Byte>>(ptr); |
| Int x = *Pointer<Int>(pointer); |
| Int y = *Pointer<Int>(pointer + 4); |
| |
| Int4 vector; |
| vector = Insert(vector, x, 0); |
| vector = Insert(vector, y, 1); |
| |
| result = ::function->makeVariable(T(type)); |
| auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, result, vector.loadValue()); |
| ::basicBlock->appendInst(bitcast); |
| } |
| else |
| UNREACHABLE("typeSize(type): %d", int(typeSize(type))); |
| } |
| else |
| { |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::LoadSubVector, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| result = ::function->makeVariable(T(type)); |
| auto load = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| load->addArg(ptr); |
| load->addArg(::context->getConstantInt32(typeSize(type))); |
| ::basicBlock->appendInst(load); |
| } |
| } |
| else |
| { |
| result = sz::createLoad(::function, ::basicBlock, V(ptr), T(type), align); |
| } |
| |
| ASSERT(result); |
| return V(result); |
| } |
| |
| Value *Nucleus::createStore(Value *value, Value *ptr, Type *type, bool isVolatile, unsigned int align, bool atomic, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| validateAtomicAndMemoryOrderArgs(atomic, memoryOrder); |
| |
| #if __has_feature(memory_sanitizer) |
| // Mark all (non-stack) memory writes as initialized by calling __msan_unpoison |
| if(align != 0) |
| { |
| auto call = Ice::InstCall::create(::function, 2, nullptr, ::context->getConstantInt64(reinterpret_cast<intptr_t>(__msan_unpoison)), false); |
| call->addArg(ptr); |
| call->addArg(::context->getConstantInt64(typeSize(type))); |
| ::basicBlock->appendInst(call); |
| } |
| #endif |
| |
| int valueType = (int)reinterpret_cast<intptr_t>(type); |
| |
| if((valueType & EmulatedBits) && (align != 0)) // Narrow vector not stored on stack. |
| { |
| if(emulateIntrinsics) |
| { |
| if(typeSize(type) == 4) |
| { |
| Ice::Variable *vector = ::function->makeVariable(Ice::IceType_v4i32); |
| auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, vector, value); |
| ::basicBlock->appendInst(bitcast); |
| |
| RValue<Int4> v(V(vector)); |
| |
| auto pointer = RValue<Pointer<Byte>>(ptr); |
| Int x = Extract(v, 0); |
| *Pointer<Int>(pointer) = x; |
| } |
| else if(typeSize(type) == 8) |
| { |
| ASSERT_MSG(!atomic, "Emulated 64-bit stores are not atomic"); |
| Ice::Variable *vector = ::function->makeVariable(Ice::IceType_v4i32); |
| auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, vector, value); |
| ::basicBlock->appendInst(bitcast); |
| |
| RValue<Int4> v(V(vector)); |
| |
| auto pointer = RValue<Pointer<Byte>>(ptr); |
| Int x = Extract(v, 0); |
| *Pointer<Int>(pointer) = x; |
| Int y = Extract(v, 1); |
| *Pointer<Int>(pointer + 4) = y; |
| } |
| else |
| UNREACHABLE("typeSize(type): %d", int(typeSize(type))); |
| } |
| else |
| { |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::StoreSubVector, Ice::Intrinsics::SideEffects_T, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_T }; |
| auto store = Ice::InstIntrinsic::create(::function, 3, nullptr, intrinsic); |
| store->addArg(value); |
| store->addArg(ptr); |
| store->addArg(::context->getConstantInt32(typeSize(type))); |
| ::basicBlock->appendInst(store); |
| } |
| } |
| else |
| { |
| ASSERT(value->getType() == T(type)); |
| |
| auto store = Ice::InstStore::create(::function, V(value), V(ptr), align); |
| ::basicBlock->appendInst(store); |
| } |
| |
| return value; |
| } |
| |
| Value *Nucleus::createGEP(Value *ptr, Type *type, Value *index, bool unsignedIndex) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| ASSERT(index->getType() == Ice::IceType_i32); |
| |
| if(auto *constant = llvm::dyn_cast<Ice::ConstantInteger32>(index)) |
| { |
| int32_t offset = constant->getValue() * (int)typeSize(type); |
| |
| if(offset == 0) |
| { |
| return ptr; |
| } |
| |
| return createAdd(ptr, createConstantInt(offset)); |
| } |
| |
| if(!Ice::isByteSizedType(T(type))) |
| { |
| index = createMul(index, createConstantInt((int)typeSize(type))); |
| } |
| |
| if(sizeof(void *) == 8) |
| { |
| if(unsignedIndex) |
| { |
| index = createZExt(index, T(Ice::IceType_i64)); |
| } |
| else |
| { |
| index = createSExt(index, T(Ice::IceType_i64)); |
| } |
| } |
| |
| return createAdd(ptr, index); |
| } |
| |
| static Value *createAtomicRMW(Ice::Intrinsics::AtomicRMWOperation rmwOp, Value *ptr, Value *value, std::memory_order memoryOrder) |
| { |
| Ice::Variable *result = ::function->makeVariable(value->getType()); |
| |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AtomicRMW, Ice::Intrinsics::SideEffects_T, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_T }; |
| auto inst = Ice::InstIntrinsic::create(::function, 0, result, intrinsic); |
| auto op = ::context->getConstantInt32(rmwOp); |
| auto order = ::context->getConstantInt32(stdToIceMemoryOrder(memoryOrder)); |
| inst->addArg(op); |
| inst->addArg(ptr); |
| inst->addArg(value); |
| inst->addArg(order); |
| ::basicBlock->appendInst(inst); |
| |
| return V(result); |
| } |
| |
| Value *Nucleus::createAtomicAdd(Value *ptr, Value *value, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createAtomicRMW(Ice::Intrinsics::AtomicAdd, ptr, value, memoryOrder); |
| } |
| |
| Value *Nucleus::createAtomicSub(Value *ptr, Value *value, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createAtomicRMW(Ice::Intrinsics::AtomicSub, ptr, value, memoryOrder); |
| } |
| |
| Value *Nucleus::createAtomicAnd(Value *ptr, Value *value, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createAtomicRMW(Ice::Intrinsics::AtomicAnd, ptr, value, memoryOrder); |
| } |
| |
| Value *Nucleus::createAtomicOr(Value *ptr, Value *value, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createAtomicRMW(Ice::Intrinsics::AtomicOr, ptr, value, memoryOrder); |
| } |
| |
| Value *Nucleus::createAtomicXor(Value *ptr, Value *value, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createAtomicRMW(Ice::Intrinsics::AtomicXor, ptr, value, memoryOrder); |
| } |
| |
| Value *Nucleus::createAtomicExchange(Value *ptr, Value *value, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createAtomicRMW(Ice::Intrinsics::AtomicExchange, ptr, value, memoryOrder); |
| } |
| |
| Value *Nucleus::createAtomicCompareExchange(Value *ptr, Value *value, Value *compare, std::memory_order memoryOrderEqual, std::memory_order memoryOrderUnequal) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::Variable *result = ::function->makeVariable(value->getType()); |
| |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AtomicCmpxchg, Ice::Intrinsics::SideEffects_T, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_T }; |
| auto inst = Ice::InstIntrinsic::create(::function, 0, result, intrinsic); |
| auto orderEq = ::context->getConstantInt32(stdToIceMemoryOrder(memoryOrderEqual)); |
| auto orderNeq = ::context->getConstantInt32(stdToIceMemoryOrder(memoryOrderUnequal)); |
| inst->addArg(ptr); |
| inst->addArg(compare); |
| inst->addArg(value); |
| inst->addArg(orderEq); |
| inst->addArg(orderNeq); |
| ::basicBlock->appendInst(inst); |
| |
| return V(result); |
| } |
| |
| static Value *createCast(Ice::InstCast::OpKind op, Value *v, Type *destType) |
| { |
| if(v->getType() == T(destType)) |
| { |
| return v; |
| } |
| |
| Ice::Variable *result = ::function->makeVariable(T(destType)); |
| Ice::InstCast *cast = Ice::InstCast::create(::function, op, result, v); |
| ::basicBlock->appendInst(cast); |
| |
| return V(result); |
| } |
| |
| Value *Nucleus::createTrunc(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createCast(Ice::InstCast::Trunc, v, destType); |
| } |
| |
| Value *Nucleus::createZExt(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createCast(Ice::InstCast::Zext, v, destType); |
| } |
| |
| Value *Nucleus::createSExt(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createCast(Ice::InstCast::Sext, v, destType); |
| } |
| |
| Value *Nucleus::createFPToUI(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createCast(Ice::InstCast::Fptoui, v, destType); |
| } |
| |
| Value *Nucleus::createFPToSI(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createCast(Ice::InstCast::Fptosi, v, destType); |
| } |
| |
| Value *Nucleus::createSIToFP(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createCast(Ice::InstCast::Sitofp, v, destType); |
| } |
| |
| Value *Nucleus::createFPTrunc(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createCast(Ice::InstCast::Fptrunc, v, destType); |
| } |
| |
| Value *Nucleus::createFPExt(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createCast(Ice::InstCast::Fpext, v, destType); |
| } |
| |
| Value *Nucleus::createBitCast(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // Bitcasts must be between types of the same logical size. But with emulated narrow vectors we need |
| // support for casting between scalars and wide vectors. For platforms where this is not supported, |
| // emulate them by writing to the stack and reading back as the destination type. |
| if(emulateMismatchedBitCast || (v->getType() == Ice::Type::IceType_i64)) |
| { |
| if(!Ice::isVectorType(v->getType()) && Ice::isVectorType(T(destType))) |
| { |
| Value *address = allocateStackVariable(destType); |
| createStore(v, address, T(v->getType())); |
| return createLoad(address, destType); |
| } |
| else if(Ice::isVectorType(v->getType()) && !Ice::isVectorType(T(destType))) |
| { |
| Value *address = allocateStackVariable(T(v->getType())); |
| createStore(v, address, T(v->getType())); |
| return createLoad(address, destType); |
| } |
| } |
| |
| return createCast(Ice::InstCast::Bitcast, v, destType); |
| } |
| |
| static Value *createIntCompare(Ice::InstIcmp::ICond condition, Value *lhs, Value *rhs) |
| { |
| ASSERT(lhs->getType() == rhs->getType()); |
| |
| auto result = ::function->makeVariable(Ice::isScalarIntegerType(lhs->getType()) ? Ice::IceType_i1 : lhs->getType()); |
| auto cmp = Ice::InstIcmp::create(::function, condition, result, lhs, rhs); |
| ::basicBlock->appendInst(cmp); |
| |
| return V(result); |
| } |
| |
| Value *Nucleus::createICmpEQ(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createIntCompare(Ice::InstIcmp::Eq, lhs, rhs); |
| } |
| |
| Value *Nucleus::createICmpNE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createIntCompare(Ice::InstIcmp::Ne, lhs, rhs); |
| } |
| |
| Value *Nucleus::createICmpUGT(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createIntCompare(Ice::InstIcmp::Ugt, lhs, rhs); |
| } |
| |
| Value *Nucleus::createICmpUGE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createIntCompare(Ice::InstIcmp::Uge, lhs, rhs); |
| } |
| |
| Value *Nucleus::createICmpULT(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createIntCompare(Ice::InstIcmp::Ult, lhs, rhs); |
| } |
| |
| Value *Nucleus::createICmpULE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createIntCompare(Ice::InstIcmp::Ule, lhs, rhs); |
| } |
| |
| Value *Nucleus::createICmpSGT(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createIntCompare(Ice::InstIcmp::Sgt, lhs, rhs); |
| } |
| |
| Value *Nucleus::createICmpSGE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createIntCompare(Ice::InstIcmp::Sge, lhs, rhs); |
| } |
| |
| Value *Nucleus::createICmpSLT(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createIntCompare(Ice::InstIcmp::Slt, lhs, rhs); |
| } |
| |
| Value *Nucleus::createICmpSLE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createIntCompare(Ice::InstIcmp::Sle, lhs, rhs); |
| } |
| |
| static Value *createFloatCompare(Ice::InstFcmp::FCond condition, Value *lhs, Value *rhs) |
| { |
| ASSERT(lhs->getType() == rhs->getType()); |
| ASSERT(Ice::isScalarFloatingType(lhs->getType()) || lhs->getType() == Ice::IceType_v4f32); |
| |
| auto result = ::function->makeVariable(Ice::isScalarFloatingType(lhs->getType()) ? Ice::IceType_i1 : Ice::IceType_v4i32); |
| auto cmp = Ice::InstFcmp::create(::function, condition, result, lhs, rhs); |
| ::basicBlock->appendInst(cmp); |
| |
| return V(result); |
| } |
| |
| Value *Nucleus::createFCmpOEQ(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createFloatCompare(Ice::InstFcmp::Oeq, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFCmpOGT(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createFloatCompare(Ice::InstFcmp::Ogt, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFCmpOGE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createFloatCompare(Ice::InstFcmp::Oge, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFCmpOLT(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createFloatCompare(Ice::InstFcmp::Olt, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFCmpOLE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createFloatCompare(Ice::InstFcmp::Ole, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFCmpONE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createFloatCompare(Ice::InstFcmp::One, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFCmpORD(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createFloatCompare(Ice::InstFcmp::Ord, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFCmpUNO(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createFloatCompare(Ice::InstFcmp::Uno, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFCmpUEQ(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createFloatCompare(Ice::InstFcmp::Ueq, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFCmpUGT(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createFloatCompare(Ice::InstFcmp::Ugt, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFCmpUGE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createFloatCompare(Ice::InstFcmp::Uge, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFCmpULT(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createFloatCompare(Ice::InstFcmp::Ult, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFCmpULE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createFloatCompare(Ice::InstFcmp::Ule, lhs, rhs); |
| } |
| |
| Value *Nucleus::createFCmpUNE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createFloatCompare(Ice::InstFcmp::Une, lhs, rhs); |
| } |
| |
| Value *Nucleus::createExtractElement(Value *vector, Type *type, int index) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| auto result = ::function->makeVariable(T(type)); |
| auto extract = Ice::InstExtractElement::create(::function, result, V(vector), ::context->getConstantInt32(index)); |
| ::basicBlock->appendInst(extract); |
| |
| return V(result); |
| } |
| |
| Value *Nucleus::createInsertElement(Value *vector, Value *element, int index) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| auto result = ::function->makeVariable(vector->getType()); |
| auto insert = Ice::InstInsertElement::create(::function, result, vector, element, ::context->getConstantInt32(index)); |
| ::basicBlock->appendInst(insert); |
| |
| return V(result); |
| } |
| |
| Value *Nucleus::createShuffleVector(Value *V1, Value *V2, std::vector<int> select) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| ASSERT(V1->getType() == V2->getType()); |
| |
| size_t size = Ice::typeNumElements(V1->getType()); |
| auto result = ::function->makeVariable(V1->getType()); |
| auto shuffle = Ice::InstShuffleVector::create(::function, result, V1, V2); |
| |
| const size_t selectSize = select.size(); |
| for(size_t i = 0; i < size; i++) |
| { |
| shuffle->addIndex(llvm::cast<Ice::ConstantInteger32>(::context->getConstantInt32(select[i % selectSize]))); |
| } |
| |
| ::basicBlock->appendInst(shuffle); |
| |
| return V(result); |
| } |
| |
| Value *Nucleus::createSelect(Value *C, Value *ifTrue, Value *ifFalse) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| ASSERT(ifTrue->getType() == ifFalse->getType()); |
| |
| auto result = ::function->makeVariable(ifTrue->getType()); |
| auto *select = Ice::InstSelect::create(::function, result, C, ifTrue, ifFalse); |
| ::basicBlock->appendInst(select); |
| |
| return V(result); |
| } |
| |
| SwitchCases *Nucleus::createSwitch(Value *control, BasicBlock *defaultBranch, unsigned numCases) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| auto switchInst = Ice::InstSwitch::create(::function, numCases, control, defaultBranch); |
| ::basicBlock->appendInst(switchInst); |
| |
| return reinterpret_cast<SwitchCases *>(switchInst); |
| } |
| |
| void Nucleus::addSwitchCase(SwitchCases *switchCases, int label, BasicBlock *branch) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| switchCases->addBranch(label, label, branch); |
| } |
| |
| void Nucleus::createUnreachable() |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::InstUnreachable *unreachable = Ice::InstUnreachable::create(::function); |
| ::basicBlock->appendInst(unreachable); |
| } |
| |
| Type *Nucleus::getType(Value *value) |
| { |
| return T(V(value)->getType()); |
| } |
| |
| Type *Nucleus::getContainedType(Type *vectorType) |
| { |
| Ice::Type vecTy = T(vectorType); |
| switch(vecTy) |
| { |
| case Ice::IceType_v4i1: return T(Ice::IceType_i1); |
| case Ice::IceType_v8i1: return T(Ice::IceType_i1); |
| case Ice::IceType_v16i1: return T(Ice::IceType_i1); |
| case Ice::IceType_v16i8: return T(Ice::IceType_i8); |
| case Ice::IceType_v8i16: return T(Ice::IceType_i16); |
| case Ice::IceType_v4i32: return T(Ice::IceType_i32); |
| case Ice::IceType_v4f32: return T(Ice::IceType_f32); |
| default: |
| ASSERT_MSG(false, "getContainedType: input type is not a vector type"); |
| return {}; |
| } |
| } |
| |
| Type *Nucleus::getPointerType(Type *ElementType) |
| { |
| return T(sz::getPointerType(T(ElementType))); |
| } |
| |
| static constexpr Ice::Type getNaturalIntType() |
| { |
| constexpr size_t intSize = sizeof(int); |
| static_assert(intSize == 4 || intSize == 8, ""); |
| return intSize == 4 ? Ice::IceType_i32 : Ice::IceType_i64; |
| } |
| |
| Type *Nucleus::getPrintfStorageType(Type *valueType) |
| { |
| Ice::Type valueTy = T(valueType); |
| switch(valueTy) |
| { |
| case Ice::IceType_i32: |
| return T(getNaturalIntType()); |
| |
| case Ice::IceType_f32: |
| return T(Ice::IceType_f64); |
| |
| default: |
| UNIMPLEMENTED_NO_BUG("getPrintfStorageType: add more cases as needed"); |
| return {}; |
| } |
| } |
| |
| Value *Nucleus::createNullValue(Type *Ty) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(Ice::isVectorType(T(Ty))) |
| { |
| ASSERT(Ice::typeNumElements(T(Ty)) <= 16); |
| std::vector<int64_t> c = { 0 }; |
| return createConstantVector(c, Ty); |
| } |
| else |
| { |
| return V(::context->getConstantZero(T(Ty))); |
| } |
| } |
| |
| Value *Nucleus::createConstantLong(int64_t i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(::context->getConstantInt64(i)); |
| } |
| |
| Value *Nucleus::createConstantInt(int i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(::context->getConstantInt32(i)); |
| } |
| |
| Value *Nucleus::createConstantInt(unsigned int i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(::context->getConstantInt32(i)); |
| } |
| |
| Value *Nucleus::createConstantBool(bool b) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(::context->getConstantInt1(b)); |
| } |
| |
| Value *Nucleus::createConstantByte(signed char i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(::context->getConstantInt8(i)); |
| } |
| |
| Value *Nucleus::createConstantByte(unsigned char i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(::context->getConstantInt8(i)); |
| } |
| |
| Value *Nucleus::createConstantShort(short i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(::context->getConstantInt16(i)); |
| } |
| |
| Value *Nucleus::createConstantShort(unsigned short i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(::context->getConstantInt16(i)); |
| } |
| |
| Value *Nucleus::createConstantFloat(float x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(::context->getConstantFloat(x)); |
| } |
| |
| Value *Nucleus::createNullPointer(Type *Ty) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return createNullValue(T(sizeof(void *) == 8 ? Ice::IceType_i64 : Ice::IceType_i32)); |
| } |
| |
| static Ice::Constant *IceConstantData(void const *data, size_t size, size_t alignment = 1) |
| { |
| return sz::getConstantPointer(::context, ::routine->addConstantData(data, size, alignment)); |
| } |
| |
| Value *Nucleus::createConstantVector(std::vector<int64_t> constants, Type *type) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| const int vectorSize = 16; |
| ASSERT(Ice::typeWidthInBytes(T(type)) == vectorSize); |
| const int alignment = vectorSize; |
| |
| const auto &i = constants; |
| const size_t s = constants.size(); |
| |
| // TODO(b/148082873): Fix global variable constants when generating multiple functions |
| Ice::Constant *ptr = nullptr; |
| |
| switch((int)reinterpret_cast<intptr_t>(type)) |
| { |
| case Ice::IceType_v4i32: |
| case Ice::IceType_v4i1: |
| { |
| const int initializer[4] = { (int)i[0 % s], (int)i[1 % s], (int)i[2 % s], (int)i[3 % s] }; |
| static_assert(sizeof(initializer) == vectorSize); |
| ptr = IceConstantData(initializer, vectorSize, alignment); |
| } |
| break; |
| case Ice::IceType_v8i16: |
| case Ice::IceType_v8i1: |
| { |
| const short initializer[8] = { (short)i[0 % s], (short)i[1 % s], (short)i[2 % s], (short)i[3 % s], (short)i[4 % s], (short)i[5 % s], (short)i[6 % s], (short)i[7 % s] }; |
| static_assert(sizeof(initializer) == vectorSize); |
| ptr = IceConstantData(initializer, vectorSize, alignment); |
| } |
| break; |
| case Ice::IceType_v16i8: |
| case Ice::IceType_v16i1: |
| { |
| const char initializer[16] = { (char)i[0 % s], (char)i[1 % s], (char)i[2 % s], (char)i[3 % s], (char)i[4 % s], (char)i[5 % s], (char)i[6 % s], (char)i[7 % s], |
| (char)i[8 % s], (char)i[9 % s], (char)i[10 % s], (char)i[11 % s], (char)i[12 % s], (char)i[13 % s], (char)i[14 % s], (char)i[15 % s] }; |
| static_assert(sizeof(initializer) == vectorSize); |
| ptr = IceConstantData(initializer, vectorSize, alignment); |
| } |
| break; |
| case Type_v2i32: |
| { |
| const int initializer[4] = { (int)i[0 % s], (int)i[1 % s], (int)i[0 % s], (int)i[1 % s] }; |
| static_assert(sizeof(initializer) == vectorSize); |
| ptr = IceConstantData(initializer, vectorSize, alignment); |
| } |
| break; |
| case Type_v4i16: |
| { |
| const short initializer[8] = { (short)i[0 % s], (short)i[1 % s], (short)i[2 % s], (short)i[3 % s], (short)i[0 % s], (short)i[1 % s], (short)i[2 % s], (short)i[3 % s] }; |
| static_assert(sizeof(initializer) == vectorSize); |
| ptr = IceConstantData(initializer, vectorSize, alignment); |
| } |
| break; |
| case Type_v8i8: |
| { |
| const char initializer[16] = { (char)i[0 % s], (char)i[1 % s], (char)i[2 % s], (char)i[3 % s], (char)i[4 % s], (char)i[5 % s], (char)i[6 % s], (char)i[7 % s], (char)i[0 % s], (char)i[1 % s], (char)i[2 % s], (char)i[3 % s], (char)i[4 % s], (char)i[5 % s], (char)i[6 % s], (char)i[7 % s] }; |
| static_assert(sizeof(initializer) == vectorSize); |
| ptr = IceConstantData(initializer, vectorSize, alignment); |
| } |
| break; |
| case Type_v4i8: |
| { |
| const char initializer[16] = { (char)i[0 % s], (char)i[1 % s], (char)i[2 % s], (char)i[3 % s], (char)i[0 % s], (char)i[1 % s], (char)i[2 % s], (char)i[3 % s], (char)i[0 % s], (char)i[1 % s], (char)i[2 % s], (char)i[3 % s], (char)i[0 % s], (char)i[1 % s], (char)i[2 % s], (char)i[3 % s] }; |
| static_assert(sizeof(initializer) == vectorSize); |
| ptr = IceConstantData(initializer, vectorSize, alignment); |
| } |
| break; |
| default: |
| UNREACHABLE("Unknown constant vector type: %d", (int)reinterpret_cast<intptr_t>(type)); |
| } |
| |
| ASSERT(ptr); |
| |
| Ice::Variable *result = sz::createLoad(::function, ::basicBlock, ptr, T(type), alignment); |
| return V(result); |
| } |
| |
| Value *Nucleus::createConstantVector(std::vector<double> constants, Type *type) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| const int vectorSize = 16; |
| ASSERT(Ice::typeWidthInBytes(T(type)) == vectorSize); |
| const int alignment = vectorSize; |
| |
| const auto &f = constants; |
| const size_t s = constants.size(); |
| |
| // TODO(b/148082873): Fix global variable constants when generating multiple functions |
| Ice::Constant *ptr = nullptr; |
| |
| switch((int)reinterpret_cast<intptr_t>(type)) |
| { |
| case Ice::IceType_v4f32: |
| { |
| const float initializer[4] = { (float)f[0 % s], (float)f[1 % s], (float)f[2 % s], (float)f[3 % s] }; |
| static_assert(sizeof(initializer) == vectorSize); |
| ptr = IceConstantData(initializer, vectorSize, alignment); |
| } |
| break; |
| case Type_v2f32: |
| { |
| const float initializer[4] = { (float)f[0 % s], (float)f[1 % s], (float)f[0 % s], (float)f[1 % s] }; |
| static_assert(sizeof(initializer) == vectorSize); |
| ptr = IceConstantData(initializer, vectorSize, alignment); |
| } |
| break; |
| default: |
| UNREACHABLE("Unknown constant vector type: %d", (int)reinterpret_cast<intptr_t>(type)); |
| } |
| |
| ASSERT(ptr); |
| |
| Ice::Variable *result = sz::createLoad(::function, ::basicBlock, ptr, T(type), alignment); |
| return V(result); |
| } |
| |
| Value *Nucleus::createConstantString(const char *v) |
| { |
| // NOTE: Do not call RR_DEBUG_INFO_UPDATE_LOC() here to avoid recursion when called from rr::Printv |
| return V(IceConstantData(v, strlen(v) + 1)); |
| } |
| |
| void Nucleus::setOptimizerCallback(OptimizerCallback *callback) |
| { |
| ::optimizerCallback = callback; |
| } |
| |
| Type *Void::type() |
| { |
| return T(Ice::IceType_void); |
| } |
| |
| Type *Bool::type() |
| { |
| return T(Ice::IceType_i1); |
| } |
| |
| Type *Byte::type() |
| { |
| return T(Ice::IceType_i8); |
| } |
| |
| Type *SByte::type() |
| { |
| return T(Ice::IceType_i8); |
| } |
| |
| Type *Short::type() |
| { |
| return T(Ice::IceType_i16); |
| } |
| |
| Type *UShort::type() |
| { |
| return T(Ice::IceType_i16); |
| } |
| |
| Type *Byte4::type() |
| { |
| return T(Type_v4i8); |
| } |
| |
| Type *SByte4::type() |
| { |
| return T(Type_v4i8); |
| } |
| |
| static RValue<Byte> SaturateUnsigned(RValue<Short> x) |
| { |
| return Byte(IfThenElse(Int(x) > 0xFF, Int(0xFF), IfThenElse(Int(x) < 0, Int(0), Int(x)))); |
| } |
| |
| static RValue<Byte> Extract(RValue<Byte8> val, int i) |
| { |
| return RValue<Byte>(Nucleus::createExtractElement(val.value(), Byte::type(), i)); |
| } |
| |
| static RValue<Byte8> Insert(RValue<Byte8> val, RValue<Byte> element, int i) |
| { |
| return RValue<Byte8>(Nucleus::createInsertElement(val.value(), element.value(), i)); |
| } |
| |
| RValue<Byte8> AddSat(RValue<Byte8> x, RValue<Byte8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([](auto a, auto b) { return SaturateUnsigned(Short(Int(a) + Int(b))); }, x, y); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AddSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto paddusb = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| paddusb->addArg(x.value()); |
| paddusb->addArg(y.value()); |
| ::basicBlock->appendInst(paddusb); |
| |
| return RValue<Byte8>(V(result)); |
| } |
| } |
| |
| RValue<Byte8> SubSat(RValue<Byte8> x, RValue<Byte8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([](auto a, auto b) { return SaturateUnsigned(Short(Int(a) - Int(b))); }, x, y); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SubtractSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto psubusw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| psubusw->addArg(x.value()); |
| psubusw->addArg(y.value()); |
| ::basicBlock->appendInst(psubusw); |
| |
| return RValue<Byte8>(V(result)); |
| } |
| } |
| |
| RValue<SByte> Extract(RValue<SByte8> val, int i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SByte>(Nucleus::createExtractElement(val.value(), SByte::type(), i)); |
| } |
| |
| RValue<SByte8> Insert(RValue<SByte8> val, RValue<SByte> element, int i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SByte8>(Nucleus::createInsertElement(val.value(), element.value(), i)); |
| } |
| |
| RValue<SByte8> operator>>(RValue<SByte8> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto a) { return a >> SByte(rhs); }, lhs); |
| } |
| else |
| { |
| #if defined(__i386__) || defined(__x86_64__) |
| // SSE2 doesn't support byte vector shifts, so shift as shorts and recombine. |
| RValue<Short4> hi = (As<Short4>(lhs) >> rhs) & Short4(0xFF00u); |
| RValue<Short4> lo = As<Short4>(As<UShort4>((As<Short4>(lhs) << 8) >> rhs) >> 8); |
| |
| return As<SByte8>(hi | lo); |
| #else |
| return RValue<SByte8>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| #endif |
| } |
| } |
| |
| RValue<Int> SignMask(RValue<Byte8> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics || CPUID::ARM) |
| { |
| Byte8 xx = As<Byte8>(As<SByte8>(x) >> 7) & Byte8(0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80); |
| return Int(Extract(xx, 0)) | Int(Extract(xx, 1)) | Int(Extract(xx, 2)) | Int(Extract(xx, 3)) | Int(Extract(xx, 4)) | Int(Extract(xx, 5)) | Int(Extract(xx, 6)) | Int(Extract(xx, 7)); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto movmsk = Ice::InstIntrinsic::create(::function, 1, result, intrinsic); |
| movmsk->addArg(x.value()); |
| ::basicBlock->appendInst(movmsk); |
| |
| return RValue<Int>(V(result)) & 0xFF; |
| } |
| } |
| |
| // RValue<Byte8> CmpGT(RValue<Byte8> x, RValue<Byte8> y) |
| // { |
| // return RValue<Byte8>(createIntCompare(Ice::InstIcmp::Ugt, x.value(), y.value())); |
| // } |
| |
| RValue<Byte8> CmpEQ(RValue<Byte8> x, RValue<Byte8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Byte8>(Nucleus::createICmpEQ(x.value(), y.value())); |
| } |
| |
| Type *Byte8::type() |
| { |
| return T(Type_v8i8); |
| } |
| |
| // RValue<SByte8> operator<<(RValue<SByte8> lhs, unsigned char rhs) |
| // { |
| // return RValue<SByte8>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| // } |
| |
| // RValue<SByte8> operator>>(RValue<SByte8> lhs, unsigned char rhs) |
| // { |
| // return RValue<SByte8>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| // } |
| |
| RValue<SByte> SaturateSigned(RValue<Short> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return SByte(IfThenElse(Int(x) > 0x7F, Int(0x7F), IfThenElse(Int(x) < -0x80, Int(0x80), Int(x)))); |
| } |
| |
| RValue<SByte8> AddSat(RValue<SByte8> x, RValue<SByte8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([](auto a, auto b) { return SaturateSigned(Short(Int(a) + Int(b))); }, x, y); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AddSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto paddsb = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| paddsb->addArg(x.value()); |
| paddsb->addArg(y.value()); |
| ::basicBlock->appendInst(paddsb); |
| |
| return RValue<SByte8>(V(result)); |
| } |
| } |
| |
| RValue<SByte8> SubSat(RValue<SByte8> x, RValue<SByte8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([](auto a, auto b) { return SaturateSigned(Short(Int(a) - Int(b))); }, x, y); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SubtractSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto psubsb = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| psubsb->addArg(x.value()); |
| psubsb->addArg(y.value()); |
| ::basicBlock->appendInst(psubsb); |
| |
| return RValue<SByte8>(V(result)); |
| } |
| } |
| |
| RValue<Int> SignMask(RValue<SByte8> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics || CPUID::ARM) |
| { |
| SByte8 xx = (x >> 7) & SByte8(0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80); |
| return Int(Extract(xx, 0)) | Int(Extract(xx, 1)) | Int(Extract(xx, 2)) | Int(Extract(xx, 3)) | Int(Extract(xx, 4)) | Int(Extract(xx, 5)) | Int(Extract(xx, 6)) | Int(Extract(xx, 7)); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto movmsk = Ice::InstIntrinsic::create(::function, 1, result, intrinsic); |
| movmsk->addArg(x.value()); |
| ::basicBlock->appendInst(movmsk); |
| |
| return RValue<Int>(V(result)) & 0xFF; |
| } |
| } |
| |
| RValue<Byte8> CmpGT(RValue<SByte8> x, RValue<SByte8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Byte8>(createIntCompare(Ice::InstIcmp::Sgt, x.value(), y.value())); |
| } |
| |
| RValue<Byte8> CmpEQ(RValue<SByte8> x, RValue<SByte8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Byte8>(Nucleus::createICmpEQ(x.value(), y.value())); |
| } |
| |
| Type *SByte8::type() |
| { |
| return T(Type_v8i8); |
| } |
| |
| Type *Byte16::type() |
| { |
| return T(Ice::IceType_v16i8); |
| } |
| |
| Type *SByte16::type() |
| { |
| return T(Ice::IceType_v16i8); |
| } |
| |
| Type *Short2::type() |
| { |
| return T(Type_v2i16); |
| } |
| |
| Type *UShort2::type() |
| { |
| return T(Type_v2i16); |
| } |
| |
| Short4::Short4(RValue<Int4> cast) |
| { |
| std::vector<int> select = { 0, 2, 4, 6, 0, 2, 4, 6 }; |
| Value *short8 = Nucleus::createBitCast(cast.value(), Short8::type()); |
| Value *packed = Nucleus::createShuffleVector(short8, short8, select); |
| |
| Value *int2 = RValue<Int2>(Int2(As<Int4>(packed))).value(); |
| Value *short4 = Nucleus::createBitCast(int2, Short4::type()); |
| |
| storeValue(short4); |
| } |
| |
| // Short4::Short4(RValue<Float> cast) |
| // { |
| // } |
| |
| Short4::Short4(RValue<Float4> cast) |
| { |
| // TODO(b/150791192): Generalize and optimize |
| auto smin = std::numeric_limits<short>::min(); |
| auto smax = std::numeric_limits<short>::max(); |
| *this = Short4(Int4(Max(Min(cast, Float4(smax)), Float4(smin)))); |
| } |
| |
| RValue<Short4> operator<<(RValue<Short4> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x << Short(rhs); }, lhs); |
| } |
| else |
| { |
| return RValue<Short4>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<Short4> operator>>(RValue<Short4> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x >> Short(rhs); }, lhs); |
| } |
| else |
| { |
| return RValue<Short4>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<Short4> Max(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1); |
| auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sle, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(cmp); |
| |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); |
| auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value()); |
| ::basicBlock->appendInst(select); |
| |
| return RValue<Short4>(V(result)); |
| } |
| |
| RValue<Short4> Min(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1); |
| auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sgt, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(cmp); |
| |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); |
| auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value()); |
| ::basicBlock->appendInst(select); |
| |
| return RValue<Short4>(V(result)); |
| } |
| |
| RValue<Short> SaturateSigned(RValue<Int> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return Short(IfThenElse(x > 0x7FFF, Int(0x7FFF), IfThenElse(x < -0x8000, Int(0x8000), x))); |
| } |
| |
| RValue<Short4> AddSat(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([](auto a, auto b) { return SaturateSigned(Int(a) + Int(b)); }, x, y); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AddSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto paddsw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| paddsw->addArg(x.value()); |
| paddsw->addArg(y.value()); |
| ::basicBlock->appendInst(paddsw); |
| |
| return RValue<Short4>(V(result)); |
| } |
| } |
| |
| RValue<Short4> SubSat(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([](auto a, auto b) { return SaturateSigned(Int(a) - Int(b)); }, x, y); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SubtractSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto psubsw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| psubsw->addArg(x.value()); |
| psubsw->addArg(y.value()); |
| ::basicBlock->appendInst(psubsw); |
| |
| return RValue<Short4>(V(result)); |
| } |
| } |
| |
| RValue<Short4> MulHigh(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([](auto a, auto b) { return Short((Int(a) * Int(b)) >> 16); }, x, y); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::MultiplyHighSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto pmulhw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| pmulhw->addArg(x.value()); |
| pmulhw->addArg(y.value()); |
| ::basicBlock->appendInst(pmulhw); |
| |
| return RValue<Short4>(V(result)); |
| } |
| } |
| |
| RValue<Int2> MulAdd(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| Int2 result; |
| result = Insert(result, Int(Extract(x, 0)) * Int(Extract(y, 0)) + Int(Extract(x, 1)) * Int(Extract(y, 1)), 0); |
| result = Insert(result, Int(Extract(x, 2)) * Int(Extract(y, 2)) + Int(Extract(x, 3)) * Int(Extract(y, 3)), 1); |
| |
| return result; |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::MultiplyAddPairs, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto pmaddwd = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| pmaddwd->addArg(x.value()); |
| pmaddwd->addArg(y.value()); |
| ::basicBlock->appendInst(pmaddwd); |
| |
| return As<Int2>(V(result)); |
| } |
| } |
| |
| RValue<SByte8> PackSigned(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| SByte8 result; |
| result = Insert(result, SaturateSigned(Extract(x, 0)), 0); |
| result = Insert(result, SaturateSigned(Extract(x, 1)), 1); |
| result = Insert(result, SaturateSigned(Extract(x, 2)), 2); |
| result = Insert(result, SaturateSigned(Extract(x, 3)), 3); |
| result = Insert(result, SaturateSigned(Extract(y, 0)), 4); |
| result = Insert(result, SaturateSigned(Extract(y, 1)), 5); |
| result = Insert(result, SaturateSigned(Extract(y, 2)), 6); |
| result = Insert(result, SaturateSigned(Extract(y, 3)), 7); |
| |
| return result; |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::VectorPackSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto pack = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| pack->addArg(x.value()); |
| pack->addArg(y.value()); |
| ::basicBlock->appendInst(pack); |
| |
| return As<SByte8>(Swizzle(As<Int4>(V(result)), 0x0202)); |
| } |
| } |
| |
| RValue<Byte8> PackUnsigned(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| Byte8 result; |
| result = Insert(result, SaturateUnsigned(Extract(x, 0)), 0); |
| result = Insert(result, SaturateUnsigned(Extract(x, 1)), 1); |
| result = Insert(result, SaturateUnsigned(Extract(x, 2)), 2); |
| result = Insert(result, SaturateUnsigned(Extract(x, 3)), 3); |
| result = Insert(result, SaturateUnsigned(Extract(y, 0)), 4); |
| result = Insert(result, SaturateUnsigned(Extract(y, 1)), 5); |
| result = Insert(result, SaturateUnsigned(Extract(y, 2)), 6); |
| result = Insert(result, SaturateUnsigned(Extract(y, 3)), 7); |
| |
| return result; |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::VectorPackUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto pack = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| pack->addArg(x.value()); |
| pack->addArg(y.value()); |
| ::basicBlock->appendInst(pack); |
| |
| return As<Byte8>(Swizzle(As<Int4>(V(result)), 0x0202)); |
| } |
| } |
| |
| RValue<Short4> CmpGT(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Short4>(createIntCompare(Ice::InstIcmp::Sgt, x.value(), y.value())); |
| } |
| |
| RValue<Short4> CmpEQ(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Short4>(Nucleus::createICmpEQ(x.value(), y.value())); |
| } |
| |
| Type *Short4::type() |
| { |
| return T(Type_v4i16); |
| } |
| |
| UShort4::UShort4(RValue<Float4> cast, bool saturate) |
| { |
| if(saturate) |
| { |
| if(CPUID::SSE4_1) |
| { |
| // x86 produces 0x80000000 on 32-bit integer overflow/underflow. |
| // PackUnsigned takes care of 0x0000 saturation. |
| Int4 int4(Min(cast, Float4(0xFFFF))); |
| *this = As<UShort4>(PackUnsigned(int4, int4)); |
| } |
| else if(CPUID::ARM) |
| { |
| // ARM saturates the 32-bit integer result on overflow/undeflow. |
| Int4 int4(cast); |
| *this = As<UShort4>(PackUnsigned(int4, int4)); |
| } |
| else |
| { |
| *this = Short4(Int4(Max(Min(cast, Float4(0xFFFF)), Float4(0x0000)))); |
| } |
| } |
| else |
| { |
| *this = Short4(Int4(cast)); |
| } |
| } |
| |
| RValue<UShort> Extract(RValue<UShort4> val, int i) |
| { |
| return RValue<UShort>(Nucleus::createExtractElement(val.value(), UShort::type(), i)); |
| } |
| |
| RValue<UShort4> operator<<(RValue<UShort4> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x << UShort(rhs); }, lhs); |
| } |
| else |
| { |
| return RValue<UShort4>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<UShort4> operator>>(RValue<UShort4> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x >> UShort(rhs); }, lhs); |
| } |
| else |
| { |
| return RValue<UShort4>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<UShort4> Max(RValue<UShort4> x, RValue<UShort4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1); |
| auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ule, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(cmp); |
| |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); |
| auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value()); |
| ::basicBlock->appendInst(select); |
| |
| return RValue<UShort4>(V(result)); |
| } |
| |
| RValue<UShort4> Min(RValue<UShort4> x, RValue<UShort4> y) |
| { |
| Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1); |
| auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ugt, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(cmp); |
| |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); |
| auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value()); |
| ::basicBlock->appendInst(select); |
| |
| return RValue<UShort4>(V(result)); |
| } |
| |
| RValue<UShort> SaturateUnsigned(RValue<Int> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return UShort(IfThenElse(x > 0xFFFF, Int(0xFFFF), IfThenElse(x < 0, Int(0), x))); |
| } |
| |
| RValue<UShort4> AddSat(RValue<UShort4> x, RValue<UShort4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([](auto a, auto b) { return SaturateUnsigned(Int(a) + Int(b)); }, x, y); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AddSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto paddusw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| paddusw->addArg(x.value()); |
| paddusw->addArg(y.value()); |
| ::basicBlock->appendInst(paddusw); |
| |
| return RValue<UShort4>(V(result)); |
| } |
| } |
| |
| RValue<UShort4> SubSat(RValue<UShort4> x, RValue<UShort4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([](auto a, auto b) { return SaturateUnsigned(Int(a) - Int(b)); }, x, y); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SubtractSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto psubusw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| psubusw->addArg(x.value()); |
| psubusw->addArg(y.value()); |
| ::basicBlock->appendInst(psubusw); |
| |
| return RValue<UShort4>(V(result)); |
| } |
| } |
| |
| RValue<UShort4> MulHigh(RValue<UShort4> x, RValue<UShort4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([](auto a, auto b) { return UShort((UInt(a) * UInt(b)) >> 16); }, x, y); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::MultiplyHighUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto pmulhuw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| pmulhuw->addArg(x.value()); |
| pmulhuw->addArg(y.value()); |
| ::basicBlock->appendInst(pmulhuw); |
| |
| return RValue<UShort4>(V(result)); |
| } |
| } |
| |
| RValue<Int4> MulHigh(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // TODO: For x86, build an intrinsics version of this which uses shuffles + pmuludq. |
| |
| return Scalarize([](auto a, auto b) { return Int((Long(a) * Long(b)) >> Long(Int(32))); }, x, y); |
| } |
| |
| RValue<UInt4> MulHigh(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // TODO: For x86, build an intrinsics version of this which uses shuffles + pmuludq. |
| |
| if(false) // Partial product based implementation. |
| { |
| auto xh = x >> 16; |
| auto yh = y >> 16; |
| auto xl = x & UInt4(0x0000FFFF); |
| auto yl = y & UInt4(0x0000FFFF); |
| auto xlyh = xl * yh; |
| auto xhyl = xh * yl; |
| auto xlyhh = xlyh >> 16; |
| auto xhylh = xhyl >> 16; |
| auto xlyhl = xlyh & UInt4(0x0000FFFF); |
| auto xhyll = xhyl & UInt4(0x0000FFFF); |
| auto xlylh = (xl * yl) >> 16; |
| auto oflow = (xlyhl + xhyll + xlylh) >> 16; |
| |
| return (xh * yh) + (xlyhh + xhylh) + oflow; |
| } |
| |
| return Scalarize([](auto a, auto b) { return UInt((Long(a) * Long(b)) >> Long(Int(32))); }, x, y); |
| } |
| |
| RValue<UShort4> Average(RValue<UShort4> x, RValue<UShort4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| UNIMPLEMENTED_NO_BUG("RValue<UShort4> Average(RValue<UShort4> x, RValue<UShort4> y)"); |
| return UShort4(0); |
| } |
| |
| Type *UShort4::type() |
| { |
| return T(Type_v4i16); |
| } |
| |
| RValue<Short> Extract(RValue<Short8> val, int i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Short>(Nucleus::createExtractElement(val.value(), Short::type(), i)); |
| } |
| |
| RValue<Short8> Insert(RValue<Short8> val, RValue<Short> element, int i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Short8>(Nucleus::createInsertElement(val.value(), element.value(), i)); |
| } |
| |
| RValue<Short8> operator<<(RValue<Short8> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x << Short(rhs); }, lhs); |
| } |
| else |
| { |
| return RValue<Short8>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<Short8> operator>>(RValue<Short8> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x >> Short(rhs); }, lhs); |
| } |
| else |
| { |
| return RValue<Short8>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<Int4> MulAdd(RValue<Short8> x, RValue<Short8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| UNIMPLEMENTED_NO_BUG("RValue<Int4> MulAdd(RValue<Short8> x, RValue<Short8> y)"); |
| return Int4(0); |
| } |
| |
| RValue<Short8> MulHigh(RValue<Short8> x, RValue<Short8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| UNIMPLEMENTED_NO_BUG("RValue<Short8> MulHigh(RValue<Short8> x, RValue<Short8> y)"); |
| return Short8(0); |
| } |
| |
| Type *Short8::type() |
| { |
| return T(Ice::IceType_v8i16); |
| } |
| |
| RValue<UShort> Extract(RValue<UShort8> val, int i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<UShort>(Nucleus::createExtractElement(val.value(), UShort::type(), i)); |
| } |
| |
| RValue<UShort8> Insert(RValue<UShort8> val, RValue<UShort> element, int i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<UShort8>(Nucleus::createInsertElement(val.value(), element.value(), i)); |
| } |
| |
| RValue<UShort8> operator<<(RValue<UShort8> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x << UShort(rhs); }, lhs); |
| } |
| else |
| { |
| return RValue<UShort8>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<UShort8> operator>>(RValue<UShort8> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x >> UShort(rhs); }, lhs); |
| } |
| else |
| { |
| return RValue<UShort8>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<UShort8> MulHigh(RValue<UShort8> x, RValue<UShort8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| UNIMPLEMENTED_NO_BUG("RValue<UShort8> MulHigh(RValue<UShort8> x, RValue<UShort8> y)"); |
| return UShort8(0); |
| } |
| |
| Type *UShort8::type() |
| { |
| return T(Ice::IceType_v8i16); |
| } |
| |
| RValue<Int> operator++(Int &val, int) // Post-increment |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| RValue<Int> res = val; |
| val += 1; |
| return res; |
| } |
| |
| const Int &operator++(Int &val) // Pre-increment |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| val += 1; |
| return val; |
| } |
| |
| RValue<Int> operator--(Int &val, int) // Post-decrement |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| RValue<Int> res = val; |
| val -= 1; |
| return res; |
| } |
| |
| const Int &operator--(Int &val) // Pre-decrement |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| val -= 1; |
| return val; |
| } |
| |
| RValue<Int> RoundInt(RValue<Float> cast) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics || CPUID::ARM) |
| { |
| // Push the fractional part off the mantissa. Accurate up to +/-2^22. |
| return Int((cast + Float(0x00C00000)) - Float(0x00C00000)); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto nearbyint = Ice::InstIntrinsic::create(::function, 1, result, intrinsic); |
| nearbyint->addArg(cast.value()); |
| ::basicBlock->appendInst(nearbyint); |
| |
| return RValue<Int>(V(result)); |
| } |
| } |
| |
| Type *Int::type() |
| { |
| return T(Ice::IceType_i32); |
| } |
| |
| Type *Long::type() |
| { |
| return T(Ice::IceType_i64); |
| } |
| |
| UInt::UInt(RValue<Float> cast) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // Smallest positive value representable in UInt, but not in Int |
| const unsigned int ustart = 0x80000000u; |
| const float ustartf = float(ustart); |
| |
| // If the value is negative, store 0, otherwise store the result of the conversion |
| storeValue((~(As<Int>(cast) >> 31) & |
| // Check if the value can be represented as an Int |
| IfThenElse(cast >= ustartf, |
| // If the value is too large, subtract ustart and re-add it after conversion. |
| As<Int>(As<UInt>(Int(cast - Float(ustartf))) + UInt(ustart)), |
| // Otherwise, just convert normally |
| Int(cast))) |
| .value()); |
| } |
| |
| RValue<UInt> operator++(UInt &val, int) // Post-increment |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| RValue<UInt> res = val; |
| val += 1; |
| return res; |
| } |
| |
| const UInt &operator++(UInt &val) // Pre-increment |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| val += 1; |
| return val; |
| } |
| |
| RValue<UInt> operator--(UInt &val, int) // Post-decrement |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| RValue<UInt> res = val; |
| val -= 1; |
| return res; |
| } |
| |
| const UInt &operator--(UInt &val) // Pre-decrement |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| val -= 1; |
| return val; |
| } |
| |
| // RValue<UInt> RoundUInt(RValue<Float> cast) |
| // { |
| // ASSERT(false && "UNIMPLEMENTED"); return RValue<UInt>(V(nullptr)); |
| // } |
| |
| Type *UInt::type() |
| { |
| return T(Ice::IceType_i32); |
| } |
| |
| // Int2::Int2(RValue<Int> cast) |
| // { |
| // Value *extend = Nucleus::createZExt(cast.value(), Long::type()); |
| // Value *vector = Nucleus::createBitCast(extend, Int2::type()); |
| // |
| // Constant *shuffle[2]; |
| // shuffle[0] = Nucleus::createConstantInt(0); |
| // shuffle[1] = Nucleus::createConstantInt(0); |
| // |
| // Value *replicate = Nucleus::createShuffleVector(vector, UndefValue::get(Int2::type()), Nucleus::createConstantVector(shuffle, 2)); |
| // |
| // storeValue(replicate); |
| // } |
| |
| RValue<Int2> operator<<(RValue<Int2> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x << rhs; }, lhs); |
| } |
| else |
| { |
| return RValue<Int2>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<Int2> operator>>(RValue<Int2> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x >> rhs; }, lhs); |
| } |
| else |
| { |
| return RValue<Int2>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| Type *Int2::type() |
| { |
| return T(Type_v2i32); |
| } |
| |
| RValue<UInt2> operator<<(RValue<UInt2> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x << rhs; }, lhs); |
| } |
| else |
| { |
| return RValue<UInt2>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<UInt2> operator>>(RValue<UInt2> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x >> rhs; }, lhs); |
| } |
| else |
| { |
| return RValue<UInt2>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| Type *UInt2::type() |
| { |
| return T(Type_v2i32); |
| } |
| |
| Int4::Int4(RValue<Byte4> cast) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Value *x = Nucleus::createBitCast(cast.value(), Int::type()); |
| Value *a = Nucleus::createInsertElement(loadValue(), x, 0); |
| |
| Value *e; |
| std::vector<int> swizzle = { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 }; |
| Value *b = Nucleus::createBitCast(a, Byte16::type()); |
| Value *c = Nucleus::createShuffleVector(b, Nucleus::createNullValue(Byte16::type()), swizzle); |
| |
| std::vector<int> swizzle2 = { 0, 8, 1, 9, 2, 10, 3, 11 }; |
| Value *d = Nucleus::createBitCast(c, Short8::type()); |
| e = Nucleus::createShuffleVector(d, Nucleus::createNullValue(Short8::type()), swizzle2); |
| |
| Value *f = Nucleus::createBitCast(e, Int4::type()); |
| storeValue(f); |
| } |
| |
| Int4::Int4(RValue<SByte4> cast) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Value *x = Nucleus::createBitCast(cast.value(), Int::type()); |
| Value *a = Nucleus::createInsertElement(loadValue(), x, 0); |
| |
| std::vector<int> swizzle = { 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7 }; |
| Value *b = Nucleus::createBitCast(a, Byte16::type()); |
| Value *c = Nucleus::createShuffleVector(b, b, swizzle); |
| |
| std::vector<int> swizzle2 = { 0, 0, 1, 1, 2, 2, 3, 3 }; |
| Value *d = Nucleus::createBitCast(c, Short8::type()); |
| Value *e = Nucleus::createShuffleVector(d, d, swizzle2); |
| |
| *this = As<Int4>(e) >> 24; |
| } |
| |
| Int4::Int4(RValue<Short4> cast) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| std::vector<int> swizzle = { 0, 0, 1, 1, 2, 2, 3, 3 }; |
| Value *c = Nucleus::createShuffleVector(cast.value(), cast.value(), swizzle); |
| |
| *this = As<Int4>(c) >> 16; |
| } |
| |
| Int4::Int4(RValue<UShort4> cast) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| std::vector<int> swizzle = { 0, 8, 1, 9, 2, 10, 3, 11 }; |
| Value *c = Nucleus::createShuffleVector(cast.value(), Short8(0, 0, 0, 0, 0, 0, 0, 0).loadValue(), swizzle); |
| Value *d = Nucleus::createBitCast(c, Int4::type()); |
| storeValue(d); |
| } |
| |
| Int4::Int4(RValue<Int> rhs) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Value *vector = Nucleus::createBitCast(rhs.value(), Int4::type()); |
| |
| std::vector<int> swizzle = { 0 }; |
| Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle); |
| |
| storeValue(replicate); |
| } |
| |
| RValue<Int4> operator<<(RValue<Int4> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x << rhs; }, lhs); |
| } |
| else |
| { |
| return RValue<Int4>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<Int4> operator>>(RValue<Int4> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x >> rhs; }, lhs); |
| } |
| else |
| { |
| return RValue<Int4>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<Int4> CmpEQ(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createICmpEQ(x.value(), y.value())); |
| } |
| |
| RValue<Int4> CmpLT(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createICmpSLT(x.value(), y.value())); |
| } |
| |
| RValue<Int4> CmpLE(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createICmpSLE(x.value(), y.value())); |
| } |
| |
| RValue<Int4> CmpNEQ(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createICmpNE(x.value(), y.value())); |
| } |
| |
| RValue<Int4> CmpNLT(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createICmpSGE(x.value(), y.value())); |
| } |
| |
| RValue<Int4> CmpNLE(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createICmpSGT(x.value(), y.value())); |
| } |
| |
| RValue<Int4> Abs(RValue<Int4> x) |
| { |
| // TODO: Optimize. |
| auto negative = x >> 31; |
| return (x ^ negative) - negative; |
| } |
| |
| RValue<Int4> Max(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); |
| auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sle, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(cmp); |
| |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32); |
| auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value()); |
| ::basicBlock->appendInst(select); |
| |
| return RValue<Int4>(V(result)); |
| } |
| |
| RValue<Int4> Min(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); |
| auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sgt, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(cmp); |
| |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32); |
| auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value()); |
| ::basicBlock->appendInst(select); |
| |
| return RValue<Int4>(V(result)); |
| } |
| |
| RValue<Int4> RoundInt(RValue<Float4> cast) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics || CPUID::ARM) |
| { |
| // Push the fractional part off the mantissa. Accurate up to +/-2^22. |
| return Int4((cast + Float4(0x00C00000)) - Float4(0x00C00000)); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto nearbyint = Ice::InstIntrinsic::create(::function, 1, result, intrinsic); |
| nearbyint->addArg(cast.value()); |
| ::basicBlock->appendInst(nearbyint); |
| |
| return RValue<Int4>(V(result)); |
| } |
| } |
| |
| RValue<Int4> RoundIntClamped(RValue<Float4> cast) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| |
| // cvtps2dq produces 0x80000000, a negative value, for input larger than |
| // 2147483520.0, so clamp to 2147483520. Values less than -2147483520.0 |
| // saturate to 0x80000000. |
| RValue<Float4> clamped = Min(cast, Float4(0x7FFFFF80)); |
| |
| if(emulateIntrinsics || CPUID::ARM) |
| { |
| // Push the fractional part off the mantissa. Accurate up to +/-2^22. |
| return Int4((clamped + Float4(0x00C00000)) - Float4(0x00C00000)); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto nearbyint = Ice::InstIntrinsic::create(::function, 1, result, intrinsic); |
| nearbyint->addArg(clamped.value()); |
| ::basicBlock->appendInst(nearbyint); |
| |
| return RValue<Int4>(V(result)); |
| } |
| } |
| |
| RValue<Short8> PackSigned(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| Short8 result; |
| result = Insert(result, SaturateSigned(Extract(x, 0)), 0); |
| result = Insert(result, SaturateSigned(Extract(x, 1)), 1); |
| result = Insert(result, SaturateSigned(Extract(x, 2)), 2); |
| result = Insert(result, SaturateSigned(Extract(x, 3)), 3); |
| result = Insert(result, SaturateSigned(Extract(y, 0)), 4); |
| result = Insert(result, SaturateSigned(Extract(y, 1)), 5); |
| result = Insert(result, SaturateSigned(Extract(y, 2)), 6); |
| result = Insert(result, SaturateSigned(Extract(y, 3)), 7); |
| |
| return result; |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::VectorPackSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto pack = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| pack->addArg(x.value()); |
| pack->addArg(y.value()); |
| ::basicBlock->appendInst(pack); |
| |
| return RValue<Short8>(V(result)); |
| } |
| } |
| |
| RValue<UShort8> PackUnsigned(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics || !(CPUID::SSE4_1 || CPUID::ARM)) |
| { |
| RValue<Int4> sx = As<Int4>(x); |
| RValue<Int4> bx = (sx & ~(sx >> 31)) - Int4(0x8000); |
| |
| RValue<Int4> sy = As<Int4>(y); |
| RValue<Int4> by = (sy & ~(sy >> 31)) - Int4(0x8000); |
| |
| return As<UShort8>(PackSigned(bx, by) + Short8(0x8000u)); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::VectorPackUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto pack = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| pack->addArg(x.value()); |
| pack->addArg(y.value()); |
| ::basicBlock->appendInst(pack); |
| |
| return RValue<UShort8>(V(result)); |
| } |
| } |
| |
| RValue<Int> SignMask(RValue<Int4> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics || CPUID::ARM) |
| { |
| Int4 xx = (x >> 31) & Int4(0x00000001, 0x00000002, 0x00000004, 0x00000008); |
| return Extract(xx, 0) | Extract(xx, 1) | Extract(xx, 2) | Extract(xx, 3); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto movmsk = Ice::InstIntrinsic::create(::function, 1, result, intrinsic); |
| movmsk->addArg(x.value()); |
| ::basicBlock->appendInst(movmsk); |
| |
| return RValue<Int>(V(result)); |
| } |
| } |
| |
| Type *Int4::type() |
| { |
| return T(Ice::IceType_v4i32); |
| } |
| |
| UInt4::UInt4(RValue<Float4> cast) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // Smallest positive value representable in UInt, but not in Int |
| const unsigned int ustart = 0x80000000u; |
| const float ustartf = float(ustart); |
| |
| // Check if the value can be represented as an Int |
| Int4 uiValue = CmpNLT(cast, Float4(ustartf)); |
| // If the value is too large, subtract ustart and re-add it after conversion. |
| uiValue = (uiValue & As<Int4>(As<UInt4>(Int4(cast - Float4(ustartf))) + UInt4(ustart))) | |
| // Otherwise, just convert normally |
| (~uiValue & Int4(cast)); |
| // If the value is negative, store 0, otherwise store the result of the conversion |
| storeValue((~(As<Int4>(cast) >> 31) & uiValue).value()); |
| } |
| |
| UInt4::UInt4(RValue<UInt> rhs) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Value *vector = Nucleus::createBitCast(rhs.value(), UInt4::type()); |
| |
| std::vector<int> swizzle = { 0 }; |
| Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle); |
| |
| storeValue(replicate); |
| } |
| |
| RValue<UInt4> operator<<(RValue<UInt4> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x << rhs; }, lhs); |
| } |
| else |
| { |
| return RValue<UInt4>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<UInt4> operator>>(RValue<UInt4> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x >> rhs; }, lhs); |
| } |
| else |
| { |
| return RValue<UInt4>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<UInt4> CmpEQ(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<UInt4>(Nucleus::createICmpEQ(x.value(), y.value())); |
| } |
| |
| RValue<UInt4> CmpLT(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<UInt4>(Nucleus::createICmpULT(x.value(), y.value())); |
| } |
| |
| RValue<UInt4> CmpLE(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<UInt4>(Nucleus::createICmpULE(x.value(), y.value())); |
| } |
| |
| RValue<UInt4> CmpNEQ(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<UInt4>(Nucleus::createICmpNE(x.value(), y.value())); |
| } |
| |
| RValue<UInt4> CmpNLT(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<UInt4>(Nucleus::createICmpUGE(x.value(), y.value())); |
| } |
| |
| RValue<UInt4> CmpNLE(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<UInt4>(Nucleus::createICmpUGT(x.value(), y.value())); |
| } |
| |
| RValue<UInt4> Max(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); |
| auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ule, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(cmp); |
| |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32); |
| auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value()); |
| ::basicBlock->appendInst(select); |
| |
| return RValue<UInt4>(V(result)); |
| } |
| |
| RValue<UInt4> Min(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); |
| auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ugt, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(cmp); |
| |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32); |
| auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value()); |
| ::basicBlock->appendInst(select); |
| |
| return RValue<UInt4>(V(result)); |
| } |
| |
| Type *UInt4::type() |
| { |
| return T(Ice::IceType_v4i32); |
| } |
| |
| Type *Half::type() |
| { |
| return T(Ice::IceType_i16); |
| } |
| |
| RValue<Float> Sqrt(RValue<Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_f32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Sqrt, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto sqrt = Ice::InstIntrinsic::create(::function, 1, result, intrinsic); |
| sqrt->addArg(x.value()); |
| ::basicBlock->appendInst(sqrt); |
| |
| return RValue<Float>(V(result)); |
| } |
| |
| RValue<Float> Round(RValue<Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return Float4(Round(Float4(x))).x; |
| } |
| |
| RValue<Float> Trunc(RValue<Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return Float4(Trunc(Float4(x))).x; |
| } |
| |
| RValue<Float> Frac(RValue<Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return Float4(Frac(Float4(x))).x; |
| } |
| |
| RValue<Float> Floor(RValue<Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return Float4(Floor(Float4(x))).x; |
| } |
| |
| RValue<Float> Ceil(RValue<Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return Float4(Ceil(Float4(x))).x; |
| } |
| |
| Type *Float::type() |
| { |
| return T(Ice::IceType_f32); |
| } |
| |
| Type *Float2::type() |
| { |
| return T(Type_v2f32); |
| } |
| |
| Float4::Float4(RValue<Float> rhs) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Value *vector = Nucleus::createBitCast(rhs.value(), Float4::type()); |
| |
| std::vector<int> swizzle = { 0 }; |
| Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle); |
| |
| storeValue(replicate); |
| } |
| |
| RValue<Float4> operator%(RValue<Float4> lhs, RValue<Float4> rhs) |
| { |
| return ScalarizeCall(fmodf, lhs, rhs); |
| } |
| |
| RValue<Float4> MulAdd(RValue<Float4> x, RValue<Float4> y, RValue<Float4> z) |
| { |
| // TODO(b/214591655): Use FMA when available. |
| return x * y + z; |
| } |
| |
| RValue<Float4> FMA(RValue<Float4> x, RValue<Float4> y, RValue<Float4> z) |
| { |
| // TODO(b/214591655): Use FMA instructions when available. |
| return ScalarizeCall(fmaf, x, y, z); |
| } |
| |
| RValue<Float4> Abs(RValue<Float4> x) |
| { |
| // TODO: Optimize. |
| Value *vector = Nucleus::createBitCast(x.value(), Int4::type()); |
| std::vector<int64_t> constantVector = { 0x7FFFFFFF }; |
| Value *result = Nucleus::createAnd(vector, Nucleus::createConstantVector(constantVector, Int4::type())); |
| |
| return As<Float4>(result); |
| } |
| |
| RValue<Float4> Max(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); |
| auto cmp = Ice::InstFcmp::create(::function, Ice::InstFcmp::Ogt, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(cmp); |
| |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); |
| auto select = Ice::InstSelect::create(::function, result, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(select); |
| |
| return RValue<Float4>(V(result)); |
| } |
| |
| RValue<Float4> Min(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); |
| auto cmp = Ice::InstFcmp::create(::function, Ice::InstFcmp::Olt, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(cmp); |
| |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); |
| auto select = Ice::InstSelect::create(::function, result, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(select); |
| |
| return RValue<Float4>(V(result)); |
| } |
| |
| bool HasRcpApprox() |
| { |
| // TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero |
| return false; |
| } |
| |
| RValue<Float4> RcpApprox(RValue<Float4> x, bool exactAtPow2) |
| { |
| // TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero |
| UNREACHABLE("RValue<Float4> RcpApprox()"); |
| return { 0.0f }; |
| } |
| |
| RValue<Float> RcpApprox(RValue<Float> x, bool exactAtPow2) |
| { |
| // TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero |
| UNREACHABLE("RValue<Float> RcpApprox()"); |
| return { 0.0f }; |
| } |
| |
| bool HasRcpSqrtApprox() |
| { |
| return false; |
| } |
| |
| RValue<Float4> RcpSqrtApprox(RValue<Float4> x) |
| { |
| // TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero |
| UNREACHABLE("RValue<Float4> RcpSqrtApprox()"); |
| return { 0.0f }; |
| } |
| |
| RValue<Float> RcpSqrtApprox(RValue<Float> x) |
| { |
| // TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero |
| UNREACHABLE("RValue<Float> RcpSqrtApprox()"); |
| return { 0.0f }; |
| } |
| |
| RValue<Float4> Sqrt(RValue<Float4> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics || CPUID::ARM) |
| { |
| Float4 result; |
| result.x = Sqrt(Float(Float4(x).x)); |
| result.y = Sqrt(Float(Float4(x).y)); |
| result.z = Sqrt(Float(Float4(x).z)); |
| result.w = Sqrt(Float(Float4(x).w)); |
| |
| return result; |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Sqrt, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto sqrt = Ice::InstIntrinsic::create(::function, 1, result, intrinsic); |
| sqrt->addArg(x.value()); |
| ::basicBlock->appendInst(sqrt); |
| |
| return RValue<Float4>(V(result)); |
| } |
| } |
| |
| RValue<Int> SignMask(RValue<Float4> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics || CPUID::ARM) |
| { |
| Int4 xx = (As<Int4>(x) >> 31) & Int4(0x00000001, 0x00000002, 0x00000004, 0x00000008); |
| return Extract(xx, 0) | Extract(xx, 1) | Extract(xx, 2) | Extract(xx, 3); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto movmsk = Ice::InstIntrinsic::create(::function, 1, result, intrinsic); |
| movmsk->addArg(x.value()); |
| ::basicBlock->appendInst(movmsk); |
| |
| return RValue<Int>(V(result)); |
| } |
| } |
| |
| RValue<Int4> CmpEQ(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createFCmpOEQ(x.value(), y.value())); |
| } |
| |
| RValue<Int4> CmpLT(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createFCmpOLT(x.value(), y.value())); |
| } |
| |
| RValue<Int4> CmpLE(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createFCmpOLE(x.value(), y.value())); |
| } |
| |
| RValue<Int4> CmpNEQ(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createFCmpONE(x.value(), y.value())); |
| } |
| |
| RValue<Int4> CmpNLT(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createFCmpOGE(x.value(), y.value())); |
| } |
| |
| RValue<Int4> CmpNLE(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createFCmpOGT(x.value(), y.value())); |
| } |
| |
| RValue<Int4> CmpUEQ(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createFCmpUEQ(x.value(), y.value())); |
| } |
| |
| RValue<Int4> CmpULT(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createFCmpULT(x.value(), y.value())); |
| } |
| |
| RValue<Int4> CmpULE(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createFCmpULE(x.value(), y.value())); |
| } |
| |
| RValue<Int4> CmpUNEQ(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createFCmpUNE(x.value(), y.value())); |
| } |
| |
| RValue<Int4> CmpUNLT(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createFCmpUGE(x.value(), y.value())); |
| } |
| |
| RValue<Int4> CmpUNLE(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createFCmpUGT(x.value(), y.value())); |
| } |
| |
| RValue<Float4> Round(RValue<Float4> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics || CPUID::ARM) |
| { |
| // Push the fractional part off the mantissa. Accurate up to +/-2^22. |
| return (x + Float4(0x00C00000)) - Float4(0x00C00000); |
| } |
| else if(CPUID::SSE4_1) |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| round->addArg(x.value()); |
| round->addArg(::context->getConstantInt32(0)); |
| ::basicBlock->appendInst(round); |
| |
| return RValue<Float4>(V(result)); |
| } |
| else |
| { |
| return Float4(RoundInt(x)); |
| } |
| } |
| |
| RValue<Float4> Trunc(RValue<Float4> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(CPUID::SSE4_1) |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| round->addArg(x.value()); |
| round->addArg(::context->getConstantInt32(3)); |
| ::basicBlock->appendInst(round); |
| |
| return RValue<Float4>(V(result)); |
| } |
| else |
| { |
| return Float4(Int4(x)); |
| } |
| } |
| |
| RValue<Float4> Frac(RValue<Float4> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Float4 frc; |
| |
| if(CPUID::SSE4_1) |
| { |
| frc = x - Floor(x); |
| } |
| else |
| { |
| frc = x - Float4(Int4(x)); // Signed fractional part. |
| |
| frc += As<Float4>(As<Int4>(CmpNLE(Float4(0.0f), frc)) & As<Int4>(Float4(1.0f))); // Add 1.0 if negative. |
| } |
| |
| // x - floor(x) can be 1.0 for very small negative x. |
| // Clamp against the value just below 1.0. |
| return Min(frc, As<Float4>(Int4(0x3F7FFFFF))); |
| } |
| |
| RValue<Float4> Floor(RValue<Float4> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(CPUID::SSE4_1) |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| round->addArg(x.value()); |
| round->addArg(::context->getConstantInt32(1)); |
| ::basicBlock->appendInst(round); |
| |
| return RValue<Float4>(V(result)); |
| } |
| else |
| { |
| return x - Frac(x); |
| } |
| } |
| |
| RValue<Float4> Ceil(RValue<Float4> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(CPUID::SSE4_1) |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| round->addArg(x.value()); |
| round->addArg(::context->getConstantInt32(2)); |
| ::basicBlock->appendInst(round); |
| |
| return RValue<Float4>(V(result)); |
| } |
| else |
| { |
| return -Floor(-x); |
| } |
| } |
| |
| Type *Float4::type() |
| { |
| return T(Ice::IceType_v4f32); |
| } |
| |
| RValue<Long> Ticks() |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| UNIMPLEMENTED_NO_BUG("RValue<Long> Ticks()"); |
| return Long(Int(0)); |
| } |
| |
| RValue<Pointer<Byte>> ConstantPointer(void const *ptr) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Pointer<Byte>>{ V(sz::getConstantPointer(::context, ptr)) }; |
| } |
| |
| RValue<Pointer<Byte>> ConstantData(void const *data, size_t size) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Pointer<Byte>>{ V(IceConstantData(data, size)) }; |
| } |
| |
| Value *Call(RValue<Pointer<Byte>> fptr, Type *retTy, std::initializer_list<Value *> args, std::initializer_list<Type *> argTys) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(sz::Call(::function, ::basicBlock, T(retTy), V(fptr.value()), V(args), false)); |
| } |
| |
| void Breakpoint() |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Trap, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto trap = Ice::InstIntrinsic::create(::function, 0, nullptr, intrinsic); |
| ::basicBlock->appendInst(trap); |
| } |
| |
| void Nucleus::createFence(std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AtomicFence, Ice::Intrinsics::SideEffects_T, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto inst = Ice::InstIntrinsic::create(::function, 0, nullptr, intrinsic); |
| auto order = ::context->getConstantInt32(stdToIceMemoryOrder(memoryOrder)); |
| inst->addArg(order); |
| ::basicBlock->appendInst(inst); |
| } |
| |
| Value *Nucleus::createMaskedLoad(Value *ptr, Type *elTy, Value *mask, unsigned int alignment, bool zeroMaskedLanes) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| UNIMPLEMENTED("b/155867273 Subzero createMaskedLoad()"); |
| return nullptr; |
| } |
| |
| void Nucleus::createMaskedStore(Value *ptr, Value *val, Value *mask, unsigned int alignment) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| UNIMPLEMENTED("b/155867273 Subzero createMaskedStore()"); |
| } |
| |
| template<typename T> |
| struct UnderlyingType |
| { |
| using Type = typename decltype(rr::Extract(std::declval<RValue<T>>(), 0))::rvalue_underlying_type; |
| }; |
| |
| template<typename T> |
| using UnderlyingTypeT = typename UnderlyingType<T>::Type; |
| |
| template<typename T, typename EL = UnderlyingTypeT<T>> |
| static void gather(T &out, RValue<Pointer<EL>> base, RValue<SIMD::Int> offsets, RValue<SIMD::Int> mask, unsigned int alignment, bool zeroMaskedLanes) |
| { |
| constexpr bool atomic = false; |
| constexpr std::memory_order order = std::memory_order_relaxed; |
| |
| Pointer<Byte> baseBytePtr = base; |
| |
| out = T(0); |
| for(int i = 0; i < SIMD::Width; i++) |
| { |
| If(Extract(mask, i) != 0) |
| { |
| auto offset = Extract(offsets, i); |
| auto el = Load(Pointer<EL>(&baseBytePtr[offset]), alignment, atomic, order); |
| out = Insert(out, el, i); |
| } |
| Else If(zeroMaskedLanes) |
| { |
| out = Insert(out, EL(0), i); |
| } |
| } |
| } |
| |
| template<typename T, typename EL = UnderlyingTypeT<T>> |
| static void scatter(RValue<Pointer<EL>> base, RValue<T> val, RValue<SIMD::Int> offsets, RValue<SIMD::Int> mask, unsigned int alignment) |
| { |
| constexpr bool atomic = false; |
| constexpr std::memory_order order = std::memory_order_relaxed; |
| |
| Pointer<Byte> baseBytePtr = base; |
| |
| for(int i = 0; i < SIMD::Width; i++) |
| { |
| If(Extract(mask, i) != 0) |
| { |
| auto offset = Extract(offsets, i); |
| Store(Extract(val, i), Pointer<EL>(&baseBytePtr[offset]), alignment, atomic, order); |
| } |
| } |
| } |
| |
| RValue<SIMD::Float> Gather(RValue<Pointer<Float>> base, RValue<SIMD::Int> offsets, RValue<SIMD::Int> mask, unsigned int alignment, bool zeroMaskedLanes /* = false */) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| SIMD::Float result{}; |
| gather(result, base, offsets, mask, alignment, zeroMaskedLanes); |
| return result; |
| } |
| |
| RValue<SIMD::Int> Gather(RValue<Pointer<Int>> base, RValue<SIMD::Int> offsets, RValue<SIMD::Int> mask, unsigned int alignment, bool zeroMaskedLanes /* = false */) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| SIMD::Int result{}; |
| gather(result, base, offsets, mask, alignment, zeroMaskedLanes); |
| return result; |
| } |
| |
| void Scatter(RValue<Pointer<Float>> base, RValue<SIMD::Float> val, RValue<SIMD::Int> offsets, RValue<SIMD::Int> mask, unsigned int alignment) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| scatter(base, val, offsets, mask, alignment); |
| } |
| |
| void Scatter(RValue<Pointer<Int>> base, RValue<SIMD::Int> val, RValue<SIMD::Int> offsets, RValue<SIMD::Int> mask, unsigned int alignment) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| scatter<SIMD::Int>(base, val, offsets, mask, alignment); |
| } |
| |
| RValue<UInt> Ctlz(RValue<UInt> x, bool isZeroUndef) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| UNIMPLEMENTED_NO_BUG("Subzero Ctlz()"); |
| return UInt(0); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Ctlz, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto ctlz = Ice::InstIntrinsic::create(::function, 1, result, intrinsic); |
| ctlz->addArg(x.value()); |
| ::basicBlock->appendInst(ctlz); |
| |
| return RValue<UInt>(V(result)); |
| } |
| } |
| |
| RValue<UInt4> Ctlz(RValue<UInt4> x, bool isZeroUndef) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| UNIMPLEMENTED_NO_BUG("Subzero Ctlz()"); |
| return UInt4(0); |
| } |
| else |
| { |
| return Scalarize([isZeroUndef](auto a) { return Ctlz(a, isZeroUndef); }, x); |
| } |
| } |
| |
| RValue<UInt> Cttz(RValue<UInt> x, bool isZeroUndef) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| UNIMPLEMENTED_NO_BUG("Subzero Cttz()"); |
| return UInt(0); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Cttz, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto cttz = Ice::InstIntrinsic::create(::function, 1, result, intrinsic); |
| cttz->addArg(x.value()); |
| ::basicBlock->appendInst(cttz); |
| |
| return RValue<UInt>(V(result)); |
| } |
| } |
| |
| RValue<UInt4> Cttz(RValue<UInt4> x, bool isZeroUndef) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| UNIMPLEMENTED_NO_BUG("Subzero Cttz()"); |
| return UInt4(0); |
| } |
| else |
| { |
| return Scalarize([isZeroUndef](auto a) { return Cttz(a, isZeroUndef); }, x); |
| } |
| } |
| |
| // TODO(b/148276653): Both atomicMin and atomicMax use a static (global) mutex that makes all min |
| // operations for a given T mutually exclusive, rather than only the ones on the value pointed to |
| // by ptr. Use a CAS loop, as is done for LLVMReactor's min/max atomic for Android. |
| // TODO(b/148207274): Or, move this down into Subzero as a CAS-based operation. |
| template<typename T> |
| static T atomicMin(T *ptr, T value) |
| { |
| static std::mutex m; |
| |
| std::lock_guard<std::mutex> lock(m); |
| T origValue = *ptr; |
| *ptr = std::min(origValue, value); |
| return origValue; |
| } |
| |
| template<typename T> |
| static T atomicMax(T *ptr, T value) |
| { |
| static std::mutex m; |
| |
| std::lock_guard<std::mutex> lock(m); |
| T origValue = *ptr; |
| *ptr = std::max(origValue, value); |
| return origValue; |
| } |
| |
| RValue<Int> MinAtomic(RValue<Pointer<Int>> x, RValue<Int> y, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return Call(atomicMin<int32_t>, x, y); |
| } |
| |
| RValue<UInt> MinAtomic(RValue<Pointer<UInt>> x, RValue<UInt> y, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return Call(atomicMin<uint32_t>, x, y); |
| } |
| |
| RValue<Int> MaxAtomic(RValue<Pointer<Int>> x, RValue<Int> y, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return Call(atomicMax<int32_t>, x, y); |
| } |
| |
| RValue<UInt> MaxAtomic(RValue<Pointer<UInt>> x, RValue<UInt> y, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return Call(atomicMax<uint32_t>, x, y); |
| } |
| |
| void EmitDebugLocation() |
| { |
| #ifdef ENABLE_RR_DEBUG_INFO |
| emitPrintLocation(getCallerBacktrace()); |
| #endif // ENABLE_RR_DEBUG_INFO |
| } |
| void EmitDebugVariable(Value *value) {} |
| void FlushDebug() {} |
| |
| namespace { |
| namespace coro { |
| |
| // Instance data per generated coroutine |
| // This is the "handle" type used for Coroutine functions |
| // Lifetime: from yield to when CoroutineEntryDestroy generated function is called. |
| struct CoroutineData |
| { |
| bool useInternalScheduler = false; |
| bool done = false; // the coroutine should stop at the next yield() |
| bool terminated = false; // the coroutine has finished. |
| bool inRoutine = false; // is the coroutine currently executing? |
| marl::Scheduler::Fiber *mainFiber = nullptr; |
| marl::Scheduler::Fiber *routineFiber = nullptr; |
| void *promisePtr = nullptr; |
| }; |
| |
| CoroutineData *createCoroutineData() |
| { |
| return new CoroutineData{}; |
| } |
| |
| void destroyCoroutineData(CoroutineData *coroData) |
| { |
| delete coroData; |
| } |
| |
| // suspend() pauses execution of the coroutine, and resumes execution from the |
| // caller's call to await(). |
| // Returns true if await() is called again, or false if coroutine_destroy() |
| // is called. |
| bool suspend(Nucleus::CoroutineHandle handle) |
| { |
| auto *coroData = reinterpret_cast<CoroutineData *>(handle); |
| ASSERT(marl::Scheduler::Fiber::current() == coroData->routineFiber); |
| ASSERT(coroData->inRoutine); |
| coroData->inRoutine = false; |
| coroData->mainFiber->notify(); |
| while(!coroData->inRoutine) |
| { |
| coroData->routineFiber->wait(); |
| } |
| return !coroData->done; |
| } |
| |
| // resume() is called by await(), blocking until the coroutine calls yield() |
| // or the coroutine terminates. |
| void resume(Nucleus::CoroutineHandle handle) |
| { |
| auto *coroData = reinterpret_cast<CoroutineData *>(handle); |
| ASSERT(marl::Scheduler::Fiber::current() == coroData->mainFiber); |
| ASSERT(!coroData->inRoutine); |
| coroData->inRoutine = true; |
| coroData->routineFiber->notify(); |
| while(coroData->inRoutine) |
| { |
| coroData->mainFiber->wait(); |
| } |
| } |
| |
| // stop() is called by coroutine_destroy(), signalling that it's done, then blocks |
| // until the coroutine ends, and deletes the coroutine data. |
| void stop(Nucleus::CoroutineHandle handle) |
| { |
| auto *coroData = reinterpret_cast<CoroutineData *>(handle); |
| ASSERT(marl::Scheduler::Fiber::current() == coroData->mainFiber); |
| ASSERT(!coroData->inRoutine); |
| if(!coroData->terminated) |
| { |
| coroData->done = true; |
| coroData->inRoutine = true; |
| coroData->routineFiber->notify(); |
| while(!coroData->terminated) |
| { |
| coroData->mainFiber->wait(); |
| } |
| } |
| if(coroData->useInternalScheduler) |
| { |
| ::getOrCreateScheduler().unbind(); |
| } |
| coro::destroyCoroutineData(coroData); // free the coroutine data. |
| } |
| |
| namespace detail { |
| thread_local rr::Nucleus::CoroutineHandle coroHandle{}; |
| } // namespace detail |
| |
| void setHandleParam(Nucleus::CoroutineHandle handle) |
| { |
| ASSERT(!detail::coroHandle); |
| detail::coroHandle = handle; |
| } |
| |
| Nucleus::CoroutineHandle getHandleParam() |
| { |
| ASSERT(detail::coroHandle); |
| auto handle = detail::coroHandle; |
| detail::coroHandle = {}; |
| return handle; |
| } |
| |
| bool isDone(Nucleus::CoroutineHandle handle) |
| { |
| auto *coroData = reinterpret_cast<CoroutineData *>(handle); |
| return coroData->done; |
| } |
| |
| void setPromisePtr(Nucleus::CoroutineHandle handle, void *promisePtr) |
| { |
| auto *coroData = reinterpret_cast<CoroutineData *>(handle); |
| coroData->promisePtr = promisePtr; |
| } |
| |
| void *getPromisePtr(Nucleus::CoroutineHandle handle) |
| { |
| auto *coroData = reinterpret_cast<CoroutineData *>(handle); |
| return coroData->promisePtr; |
| } |
| |
| } // namespace coro |
| } // namespace |
| |
| // Used to generate coroutines. |
| // Lifetime: from yield to acquireCoroutine |
| class CoroutineGenerator |
| { |
| public: |
| CoroutineGenerator() |
| { |
| } |
| |
| // Inserts instructions at the top of the current function to make it a coroutine. |
| void generateCoroutineBegin() |
| { |
| // Begin building the main coroutine_begin() function. |
| // We insert these instructions at the top of the entry node, |
| // before existing reactor-generated instructions. |
| |
| // CoroutineHandle coroutine_begin(<Arguments>) |
| // { |
| // this->handle = coro::getHandleParam(); |
| // |
| // YieldType promise; |
| // coro::setPromisePtr(handle, &promise); // For await |
| // |
| // ... <REACTOR CODE> ... |
| // |
| |
| // this->handle = coro::getHandleParam(); |
| this->handle = sz::Call(::function, ::entryBlock, coro::getHandleParam); |
| |
| // YieldType promise; |
| // coro::setPromisePtr(handle, &promise); // For await |
| this->promise = sz::allocateStackVariable(::function, T(::coroYieldType)); |
| sz::Call(::function, ::entryBlock, coro::setPromisePtr, this->handle, this->promise); |
| } |
| |
| // Adds instructions for Yield() calls at the current location of the main coroutine function. |
| void generateYield(Value *val) |
| { |
| // ... <REACTOR CODE> ... |
| // |
| // promise = val; |
| // if (!coro::suspend(handle)) { |
| // return false; // coroutine has been stopped by the caller. |
| // } |
| // |
| // ... <REACTOR CODE> ... |
| |
| // promise = val; |
| Nucleus::createStore(val, V(this->promise), ::coroYieldType); |
| |
| // if (!coro::suspend(handle)) { |
| auto result = sz::Call(::function, ::basicBlock, coro::suspend, this->handle); |
| auto doneBlock = Nucleus::createBasicBlock(); |
| auto resumeBlock = Nucleus::createBasicBlock(); |
| Nucleus::createCondBr(V(result), resumeBlock, doneBlock); |
| |
| // return false; // coroutine has been stopped by the caller. |
| ::basicBlock = doneBlock; |
| Nucleus::createRetVoid(); // coroutine return value is ignored. |
| |
| // ... <REACTOR CODE> ... |
| ::basicBlock = resumeBlock; |
| } |
| |
| using FunctionUniquePtr = std::unique_ptr<Ice::Cfg>; |
| |
| // Generates the await function for the current coroutine. |
| // Cannot use Nucleus functions that modify ::function and ::basicBlock. |
| static FunctionUniquePtr generateAwaitFunction() |
| { |
| // bool coroutine_await(CoroutineHandle handle, YieldType* out) |
| // { |
| // if (coro::isDone()) |
| // { |
| // return false; |
| // } |
| // else // resume |
| // { |
| // YieldType* promise = coro::getPromisePtr(handle); |
| // *out = *promise; |
| // coro::resume(handle); |
| // return true; |
| // } |
| // } |
| |
| // Subzero doesn't support bool types (IceType_i1) as return type |
| const Ice::Type ReturnType = Ice::IceType_i32; |
| const Ice::Type YieldPtrType = sz::getPointerType(T(::coroYieldType)); |
| const Ice::Type HandleType = sz::getPointerType(Ice::IceType_void); |
| |
| Ice::Cfg *awaitFunc = sz::createFunction(::context, ReturnType, std::vector<Ice::Type>{ HandleType, YieldPtrType }); |
| Ice::CfgLocalAllocatorScope scopedAlloc{ awaitFunc }; |
| |
| Ice::Variable *handle = awaitFunc->getArgs()[0]; |
| Ice::Variable *outPtr = awaitFunc->getArgs()[1]; |
| |
| auto doneBlock = awaitFunc->makeNode(); |
| { |
| // return false; |
| Ice::InstRet *ret = Ice::InstRet::create(awaitFunc, ::context->getConstantInt32(0)); |
| doneBlock->appendInst(ret); |
| } |
| |
| auto resumeBlock = awaitFunc->makeNode(); |
| { |
| // YieldType* promise = coro::getPromisePtr(handle); |
| Ice::Variable *promise = sz::Call(awaitFunc, resumeBlock, coro::getPromisePtr, handle); |
| |
| // *out = *promise; |
| // Load promise value |
| Ice::Variable *promiseVal = awaitFunc->makeVariable(T(::coroYieldType)); |
| auto load = Ice::InstLoad::create(awaitFunc, promiseVal, promise); |
| resumeBlock->appendInst(load); |
| // Then store it in output param |
| auto store = Ice::InstStore::create(awaitFunc, promiseVal, outPtr); |
| resumeBlock->appendInst(store); |
| |
| // coro::resume(handle); |
| sz::Call(awaitFunc, resumeBlock, coro::resume, handle); |
| |
| // return true; |
| Ice::InstRet *ret = Ice::InstRet::create(awaitFunc, ::context->getConstantInt32(1)); |
| resumeBlock->appendInst(ret); |
| } |
| |
| // if (coro::isDone()) |
| // { |
| // <doneBlock> |
| // } |
| // else // resume |
| // { |
| // <resumeBlock> |
| // } |
| Ice::CfgNode *bb = awaitFunc->getEntryNode(); |
| Ice::Variable *done = sz::Call(awaitFunc, bb, coro::isDone, handle); |
| auto br = Ice::InstBr::create(awaitFunc, done, doneBlock, resumeBlock); |
| bb->appendInst(br); |
| |
| return FunctionUniquePtr{ awaitFunc }; |
| } |
| |
| // Generates the destroy function for the current coroutine. |
| // Cannot use Nucleus functions that modify ::function and ::basicBlock. |
| static FunctionUniquePtr generateDestroyFunction() |
| { |
| // void coroutine_destroy(Nucleus::CoroutineHandle handle) |
| // { |
| // coro::stop(handle); // signal and wait for coroutine to stop, and delete coroutine data |
| // return; |
| // } |
| |
| const Ice::Type ReturnType = Ice::IceType_void; |
| const Ice::Type HandleType = sz::getPointerType(Ice::IceType_void); |
| |
| Ice::Cfg *destroyFunc = sz::createFunction(::context, ReturnType, std::vector<Ice::Type>{ HandleType }); |
| Ice::CfgLocalAllocatorScope scopedAlloc{ destroyFunc }; |
| |
| Ice::Variable *handle = destroyFunc->getArgs()[0]; |
| |
| auto *bb = destroyFunc->getEntryNode(); |
| |
| // coro::stop(handle); // signal and wait for coroutine to stop, and delete coroutine data |
| sz::Call(destroyFunc, bb, coro::stop, handle); |
| |
| // return; |
| Ice::InstRet *ret = Ice::InstRet::create(destroyFunc); |
| bb->appendInst(ret); |
| |
| return FunctionUniquePtr{ destroyFunc }; |
| } |
| |
| private: |
| Ice::Variable *handle{}; |
| Ice::Variable *promise{}; |
| }; |
| |
| static Nucleus::CoroutineHandle invokeCoroutineBegin(std::function<Nucleus::CoroutineHandle()> beginFunc) |
| { |
| // This doubles up as our coroutine handle |
| auto coroData = coro::createCoroutineData(); |
| |
| coroData->useInternalScheduler = (marl::Scheduler::get() == nullptr); |
| if(coroData->useInternalScheduler) |
| { |
| ::getOrCreateScheduler().bind(); |
| } |
| |
| auto run = [=] { |
| // Store handle in TLS so that the coroutine can grab it right away, before |
| // any fiber switch occurs. |
| coro::setHandleParam(coroData); |
| |
| ASSERT(!coroData->routineFiber); |
| coroData->routineFiber = marl::Scheduler::Fiber::current(); |
| |
| beginFunc(); |
| |
| ASSERT(coroData->inRoutine); |
| coroData->done = true; // coroutine is done. |
| coroData->terminated = true; // signal that the coroutine data is ready for freeing. |
| coroData->inRoutine = false; |
| coroData->mainFiber->notify(); |
| }; |
| |
| ASSERT(!coroData->mainFiber); |
| coroData->mainFiber = marl::Scheduler::Fiber::current(); |
| |
| // block until the first yield or coroutine end |
| ASSERT(!coroData->inRoutine); |
| coroData->inRoutine = true; |
| marl::schedule(marl::Task(run, marl::Task::Flags::SameThread)); |
| while(coroData->inRoutine) |
| { |
| coroData->mainFiber->wait(); |
| } |
| |
| return coroData; |
| } |
| |
| void Nucleus::createCoroutine(Type *yieldType, const std::vector<Type *> ¶ms) |
| { |
| // Start by creating a regular function |
| createFunction(yieldType, params); |
| |
| // Save in case yield() is called |
| ASSERT(::coroYieldType == nullptr); // Only one coroutine can be generated at once |
| ::coroYieldType = yieldType; |
| } |
| |
| void Nucleus::yield(Value *val) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Variable::materializeAll(); |
| |
| // On first yield, we start generating coroutine functions |
| if(!::coroGen) |
| { |
| ::coroGen = std::make_shared<CoroutineGenerator>(); |
| ::coroGen->generateCoroutineBegin(); |
| } |
| |
| ASSERT(::coroGen); |
| ::coroGen->generateYield(val); |
| } |
| |
| static bool coroutineEntryAwaitStub(Nucleus::CoroutineHandle, void *yieldValue) |
| { |
| return false; |
| } |
| |
| static void coroutineEntryDestroyStub(Nucleus::CoroutineHandle handle) |
| { |
| } |
| |
| std::shared_ptr<Routine> Nucleus::acquireCoroutine(const char *name) |
| { |
| if(::coroGen) |
| { |
| // Finish generating coroutine functions |
| { |
| Ice::CfgLocalAllocatorScope scopedAlloc{ ::function }; |
| finalizeFunction(); |
| } |
| |
| auto awaitFunc = ::coroGen->generateAwaitFunction(); |
| auto destroyFunc = ::coroGen->generateDestroyFunction(); |
| |
| // At this point, we no longer need the CoroutineGenerator. |
| ::coroGen.reset(); |
| ::coroYieldType = nullptr; |
| |
| auto routine = rr::acquireRoutine({ ::function, awaitFunc.get(), destroyFunc.get() }, |
| { name, "await", "destroy" }); |
| |
| return routine; |
| } |
| else |
| { |
| { |
| Ice::CfgLocalAllocatorScope scopedAlloc{ ::function }; |
| finalizeFunction(); |
| } |
| |
| ::coroYieldType = nullptr; |
| |
| // Not an actual coroutine (no yields), so return stubs for await and destroy |
| auto routine = rr::acquireRoutine({ ::function }, { name }); |
| |
| auto routineImpl = std::static_pointer_cast<ELFMemoryStreamer>(routine); |
| routineImpl->setEntry(Nucleus::CoroutineEntryAwait, reinterpret_cast<const void *>(&coroutineEntryAwaitStub)); |
| routineImpl->setEntry(Nucleus::CoroutineEntryDestroy, reinterpret_cast<const void *>(&coroutineEntryDestroyStub)); |
| return routine; |
| } |
| } |
| |
| Nucleus::CoroutineHandle Nucleus::invokeCoroutineBegin(Routine &routine, std::function<Nucleus::CoroutineHandle()> func) |
| { |
| const bool isCoroutine = routine.getEntry(Nucleus::CoroutineEntryAwait) != reinterpret_cast<const void *>(&coroutineEntryAwaitStub); |
| |
| if(isCoroutine) |
| { |
| return rr::invokeCoroutineBegin(func); |
| } |
| else |
| { |
| // For regular routines, just invoke the begin func directly |
| return func(); |
| } |
| } |
| |
| SIMD::Int::Int(RValue<scalar::Int> rhs) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Value *vector = Nucleus::createBitCast(rhs.value(), SIMD::Int::type()); |
| |
| std::vector<int> swizzle = { 0 }; |
| Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle); |
| |
| storeValue(replicate); |
| } |
| |
| RValue<SIMD::Int> operator<<(RValue<SIMD::Int> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x << rhs; }, lhs); |
| } |
| else |
| { |
| return RValue<SIMD::Int>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<SIMD::Int> operator>>(RValue<SIMD::Int> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x >> rhs; }, lhs); |
| } |
| else |
| { |
| return RValue<SIMD::Int>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<SIMD::Int> CmpEQ(RValue<SIMD::Int> x, RValue<SIMD::Int> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createICmpEQ(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Int> CmpLT(RValue<SIMD::Int> x, RValue<SIMD::Int> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createICmpSLT(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Int> CmpLE(RValue<SIMD::Int> x, RValue<SIMD::Int> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createICmpSLE(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Int> CmpNEQ(RValue<SIMD::Int> x, RValue<SIMD::Int> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createICmpNE(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Int> CmpNLT(RValue<SIMD::Int> x, RValue<SIMD::Int> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createICmpSGE(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Int> CmpNLE(RValue<SIMD::Int> x, RValue<SIMD::Int> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createICmpSGT(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Int> Abs(RValue<SIMD::Int> x) |
| { |
| // TODO: Optimize. |
| auto negative = x >> 31; |
| return (x ^ negative) - negative; |
| } |
| |
| RValue<SIMD::Int> Max(RValue<SIMD::Int> x, RValue<SIMD::Int> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); |
| auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sle, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(cmp); |
| |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32); |
| auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value()); |
| ::basicBlock->appendInst(select); |
| |
| return RValue<SIMD::Int>(V(result)); |
| } |
| |
| RValue<SIMD::Int> Min(RValue<SIMD::Int> x, RValue<SIMD::Int> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); |
| auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sgt, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(cmp); |
| |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32); |
| auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value()); |
| ::basicBlock->appendInst(select); |
| |
| return RValue<SIMD::Int>(V(result)); |
| } |
| |
| RValue<SIMD::Int> RoundInt(RValue<SIMD::Float> cast) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics || CPUID::ARM) |
| { |
| // Push the fractional part off the mantissa. Accurate up to +/-2^22. |
| return SIMD::Int((cast + SIMD::Float(0x00C00000)) - SIMD::Float(0x00C00000)); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto nearbyint = Ice::InstIntrinsic::create(::function, 1, result, intrinsic); |
| nearbyint->addArg(cast.value()); |
| ::basicBlock->appendInst(nearbyint); |
| |
| return RValue<SIMD::Int>(V(result)); |
| } |
| } |
| |
| RValue<SIMD::Int> RoundIntClamped(RValue<SIMD::Float> cast) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| |
| // cvtps2dq produces 0x80000000, a negative value, for input larger than |
| // 2147483520.0, so clamp to 2147483520. Values less than -2147483520.0 |
| // saturate to 0x80000000. |
| RValue<SIMD::Float> clamped = Min(cast, SIMD::Float(0x7FFFFF80)); |
| |
| if(emulateIntrinsics || CPUID::ARM) |
| { |
| // Push the fractional part off the mantissa. Accurate up to +/-2^22. |
| return SIMD::Int((clamped + SIMD::Float(0x00C00000)) - SIMD::Float(0x00C00000)); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto nearbyint = Ice::InstIntrinsic::create(::function, 1, result, intrinsic); |
| nearbyint->addArg(clamped.value()); |
| ::basicBlock->appendInst(nearbyint); |
| |
| return RValue<SIMD::Int>(V(result)); |
| } |
| } |
| |
| RValue<Int4> Extract128(RValue<SIMD::Int> val, int i) |
| { |
| ASSERT(SIMD::Width == 4); |
| ASSERT(i == 0); |
| |
| return As<Int4>(val); |
| } |
| |
| RValue<SIMD::Int> Insert128(RValue<SIMD::Int> val, RValue<Int4> element, int i) |
| { |
| ASSERT(SIMD::Width == 4); |
| ASSERT(i == 0); |
| |
| return As<SIMD::Int>(element); |
| } |
| |
| Type *SIMD::Int::type() |
| { |
| return T(Ice::IceType_v4i32); |
| } |
| |
| SIMD::UInt::UInt(RValue<SIMD::Float> cast) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // Smallest positive value representable in UInt, but not in Int |
| const unsigned int ustart = 0x80000000u; |
| const float ustartf = float(ustart); |
| |
| // Check if the value can be represented as an Int |
| SIMD::Int uiValue = CmpNLT(cast, SIMD::Float(ustartf)); |
| // If the value is too large, subtract ustart and re-add it after conversion. |
| uiValue = (uiValue & As<SIMD::Int>(As<SIMD::UInt>(SIMD::Int(cast - SIMD::Float(ustartf))) + SIMD::UInt(ustart))) | |
| // Otherwise, just convert normally |
| (~uiValue & SIMD::Int(cast)); |
| // If the value is negative, store 0, otherwise store the result of the conversion |
| storeValue((~(As<SIMD::Int>(cast) >> 31) & uiValue).value()); |
| } |
| |
| SIMD::UInt::UInt(RValue<scalar::UInt> rhs) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Value *vector = Nucleus::createBitCast(rhs.value(), SIMD::UInt::type()); |
| |
| std::vector<int> swizzle = { 0 }; |
| Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle); |
| |
| storeValue(replicate); |
| } |
| |
| RValue<SIMD::UInt> operator<<(RValue<SIMD::UInt> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x << rhs; }, lhs); |
| } |
| else |
| { |
| return RValue<SIMD::UInt>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<SIMD::UInt> operator>>(RValue<SIMD::UInt> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics) |
| { |
| return Scalarize([rhs](auto x) { return x >> rhs; }, lhs); |
| } |
| else |
| { |
| return RValue<SIMD::UInt>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs)))); |
| } |
| } |
| |
| RValue<SIMD::UInt> CmpEQ(RValue<SIMD::UInt> x, RValue<SIMD::UInt> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::UInt>(Nucleus::createICmpEQ(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::UInt> CmpLT(RValue<SIMD::UInt> x, RValue<SIMD::UInt> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::UInt>(Nucleus::createICmpULT(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::UInt> CmpLE(RValue<SIMD::UInt> x, RValue<SIMD::UInt> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::UInt>(Nucleus::createICmpULE(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::UInt> CmpNEQ(RValue<SIMD::UInt> x, RValue<SIMD::UInt> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::UInt>(Nucleus::createICmpNE(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::UInt> CmpNLT(RValue<SIMD::UInt> x, RValue<SIMD::UInt> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::UInt>(Nucleus::createICmpUGE(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::UInt> CmpNLE(RValue<SIMD::UInt> x, RValue<SIMD::UInt> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::UInt>(Nucleus::createICmpUGT(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::UInt> Max(RValue<SIMD::UInt> x, RValue<SIMD::UInt> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); |
| auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ule, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(cmp); |
| |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32); |
| auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value()); |
| ::basicBlock->appendInst(select); |
| |
| return RValue<SIMD::UInt>(V(result)); |
| } |
| |
| RValue<SIMD::UInt> Min(RValue<SIMD::UInt> x, RValue<SIMD::UInt> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); |
| auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ugt, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(cmp); |
| |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32); |
| auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value()); |
| ::basicBlock->appendInst(select); |
| |
| return RValue<SIMD::UInt>(V(result)); |
| } |
| |
| RValue<UInt4> Extract128(RValue<SIMD::UInt> val, int i) |
| { |
| ASSERT(SIMD::Width == 4); |
| ASSERT(i == 0); |
| |
| return As<UInt4>(val); |
| } |
| |
| RValue<SIMD::UInt> Insert128(RValue<SIMD::UInt> val, RValue<UInt4> element, int i) |
| { |
| ASSERT(SIMD::Width == 4); |
| ASSERT(i == 0); |
| |
| return As<SIMD::UInt>(element); |
| } |
| |
| Type *SIMD::UInt::type() |
| { |
| return T(Ice::IceType_v4i32); |
| } |
| |
| SIMD::Float::Float(RValue<scalar::Float> rhs) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Value *vector = Nucleus::createBitCast(rhs.value(), SIMD::Float::type()); |
| |
| std::vector<int> swizzle = { 0 }; |
| Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle); |
| |
| storeValue(replicate); |
| } |
| |
| RValue<SIMD::Float> operator%(RValue<SIMD::Float> lhs, RValue<SIMD::Float> rhs) |
| { |
| return ScalarizeCall(fmodf, lhs, rhs); |
| } |
| |
| RValue<SIMD::Float> MulAdd(RValue<SIMD::Float> x, RValue<SIMD::Float> y, RValue<SIMD::Float> z) |
| { |
| // TODO(b/214591655): Use FMA when available. |
| return x * y + z; |
| } |
| |
| RValue<SIMD::Float> FMA(RValue<SIMD::Float> x, RValue<SIMD::Float> y, RValue<SIMD::Float> z) |
| { |
| // TODO(b/214591655): Use FMA instructions when available. |
| return ScalarizeCall(fmaf, x, y, z); |
| } |
| |
| RValue<SIMD::Float> Abs(RValue<SIMD::Float> x) |
| { |
| // TODO: Optimize. |
| Value *vector = Nucleus::createBitCast(x.value(), SIMD::Int::type()); |
| std::vector<int64_t> constantVector = { 0x7FFFFFFF }; |
| Value *result = Nucleus::createAnd(vector, Nucleus::createConstantVector(constantVector, SIMD::Int::type())); |
| |
| return As<SIMD::Float>(result); |
| } |
| |
| RValue<SIMD::Float> Max(RValue<SIMD::Float> x, RValue<SIMD::Float> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); |
| auto cmp = Ice::InstFcmp::create(::function, Ice::InstFcmp::Ogt, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(cmp); |
| |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); |
| auto select = Ice::InstSelect::create(::function, result, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(select); |
| |
| return RValue<SIMD::Float>(V(result)); |
| } |
| |
| RValue<SIMD::Float> Min(RValue<SIMD::Float> x, RValue<SIMD::Float> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1); |
| auto cmp = Ice::InstFcmp::create(::function, Ice::InstFcmp::Olt, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(cmp); |
| |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); |
| auto select = Ice::InstSelect::create(::function, result, condition, x.value(), y.value()); |
| ::basicBlock->appendInst(select); |
| |
| return RValue<SIMD::Float>(V(result)); |
| } |
| |
| RValue<SIMD::Float> Sqrt(RValue<SIMD::Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics || CPUID::ARM) |
| { |
| return Scalarize([](auto a) { return Sqrt(a); }, x); |
| } |
| else |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Sqrt, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto sqrt = Ice::InstIntrinsic::create(::function, 1, result, intrinsic); |
| sqrt->addArg(x.value()); |
| ::basicBlock->appendInst(sqrt); |
| |
| return RValue<SIMD::Float>(V(result)); |
| } |
| } |
| |
| RValue<SIMD::Int> CmpEQ(RValue<SIMD::Float> x, RValue<SIMD::Float> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createFCmpOEQ(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Int> CmpLT(RValue<SIMD::Float> x, RValue<SIMD::Float> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createFCmpOLT(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Int> CmpLE(RValue<SIMD::Float> x, RValue<SIMD::Float> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createFCmpOLE(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Int> CmpNEQ(RValue<SIMD::Float> x, RValue<SIMD::Float> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createFCmpONE(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Int> CmpNLT(RValue<SIMD::Float> x, RValue<SIMD::Float> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createFCmpOGE(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Int> CmpNLE(RValue<SIMD::Float> x, RValue<SIMD::Float> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createFCmpOGT(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Int> CmpUEQ(RValue<SIMD::Float> x, RValue<SIMD::Float> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createFCmpUEQ(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Int> CmpULT(RValue<SIMD::Float> x, RValue<SIMD::Float> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createFCmpULT(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Int> CmpULE(RValue<SIMD::Float> x, RValue<SIMD::Float> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createFCmpULE(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Int> CmpUNEQ(RValue<SIMD::Float> x, RValue<SIMD::Float> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createFCmpUNE(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Int> CmpUNLT(RValue<SIMD::Float> x, RValue<SIMD::Float> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createFCmpUGE(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Int> CmpUNLE(RValue<SIMD::Float> x, RValue<SIMD::Float> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<SIMD::Int>(Nucleus::createFCmpUGT(x.value(), y.value())); |
| } |
| |
| RValue<SIMD::Float> Round(RValue<SIMD::Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(emulateIntrinsics || CPUID::ARM) |
| { |
| // Push the fractional part off the mantissa. Accurate up to +/-2^22. |
| return (x + SIMD::Float(0x00C00000)) - SIMD::Float(0x00C00000); |
| } |
| else if(CPUID::SSE4_1) |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| round->addArg(x.value()); |
| round->addArg(::context->getConstantInt32(0)); |
| ::basicBlock->appendInst(round); |
| |
| return RValue<SIMD::Float>(V(result)); |
| } |
| else |
| { |
| return SIMD::Float(RoundInt(x)); |
| } |
| } |
| |
| RValue<SIMD::Float> Trunc(RValue<SIMD::Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(CPUID::SSE4_1) |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| round->addArg(x.value()); |
| round->addArg(::context->getConstantInt32(3)); |
| ::basicBlock->appendInst(round); |
| |
| return RValue<SIMD::Float>(V(result)); |
| } |
| else |
| { |
| return SIMD::Float(SIMD::Int(x)); |
| } |
| } |
| |
| RValue<SIMD::Float> Frac(RValue<SIMD::Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| SIMD::Float frc; |
| |
| if(CPUID::SSE4_1) |
| { |
| frc = x - Floor(x); |
| } |
| else |
| { |
| frc = x - SIMD::Float(SIMD::Int(x)); // Signed fractional part. |
| |
| frc += As<SIMD::Float>(As<SIMD::Int>(CmpNLE(SIMD::Float(0.0f), frc)) & As<SIMD::Int>(SIMD::Float(1.0f))); // Add 1.0 if negative. |
| } |
| |
| // x - floor(x) can be 1.0 for very small negative x. |
| // Clamp against the value just below 1.0. |
| return Min(frc, As<SIMD::Float>(SIMD::Int(0x3F7FFFFF))); |
| } |
| |
| RValue<SIMD::Float> Floor(RValue<SIMD::Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(CPUID::SSE4_1) |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| round->addArg(x.value()); |
| round->addArg(::context->getConstantInt32(1)); |
| ::basicBlock->appendInst(round); |
| |
| return RValue<SIMD::Float>(V(result)); |
| } |
| else |
| { |
| return x - Frac(x); |
| } |
| } |
| |
| RValue<SIMD::Float> Ceil(RValue<SIMD::Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(CPUID::SSE4_1) |
| { |
| Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32); |
| const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F }; |
| auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic); |
| round->addArg(x.value()); |
| round->addArg(::context->getConstantInt32(2)); |
| ::basicBlock->appendInst(round); |
| |
| return RValue<SIMD::Float>(V(result)); |
| } |
| else |
| { |
| return -Floor(-x); |
| } |
| } |
| |
| RValue<Float4> Extract128(RValue<SIMD::Float> val, int i) |
| { |
| ASSERT(SIMD::Width == 4); |
| ASSERT(i == 0); |
| |
| return As<Float4>(val); |
| } |
| |
| RValue<SIMD::Float> Insert128(RValue<SIMD::Float> val, RValue<Float4> element, int i) |
| { |
| ASSERT(SIMD::Width == 4); |
| ASSERT(i == 0); |
| |
| return As<SIMD::Float>(element); |
| } |
| |
| Type *SIMD::Float::type() |
| { |
| return T(Ice::IceType_v4f32); |
| } |
| |
| } // namespace rr |