| //===- HexagonExpandCondsets.cpp ------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // Replace mux instructions with the corresponding legal instructions. |
| // It is meant to work post-SSA, but still on virtual registers. It was |
| // originally placed between register coalescing and machine instruction |
| // scheduler. |
| // In this place in the optimization sequence, live interval analysis had |
| // been performed, and the live intervals should be preserved. A large part |
| // of the code deals with preserving the liveness information. |
| // |
| // Liveness tracking aside, the main functionality of this pass is divided |
| // into two steps. The first step is to replace an instruction |
| // %0 = C2_mux %1, %2, %3 |
| // with a pair of conditional transfers |
| // %0 = A2_tfrt %1, %2 |
| // %0 = A2_tfrf %1, %3 |
| // It is the intention that the execution of this pass could be terminated |
| // after this step, and the code generated would be functionally correct. |
| // |
| // If the uses of the source values %1 and %2 are kills, and their |
| // definitions are predicable, then in the second step, the conditional |
| // transfers will then be rewritten as predicated instructions. E.g. |
| // %0 = A2_or %1, %2 |
| // %3 = A2_tfrt %99, killed %0 |
| // will be rewritten as |
| // %3 = A2_port %99, %1, %2 |
| // |
| // This replacement has two variants: "up" and "down". Consider this case: |
| // %0 = A2_or %1, %2 |
| // ... [intervening instructions] ... |
| // %3 = A2_tfrt %99, killed %0 |
| // variant "up": |
| // %3 = A2_port %99, %1, %2 |
| // ... [intervening instructions, %0->vreg3] ... |
| // [deleted] |
| // variant "down": |
| // [deleted] |
| // ... [intervening instructions] ... |
| // %3 = A2_port %99, %1, %2 |
| // |
| // Both, one or none of these variants may be valid, and checks are made |
| // to rule out inapplicable variants. |
| // |
| // As an additional optimization, before either of the two steps above is |
| // executed, the pass attempts to coalesce the target register with one of |
| // the source registers, e.g. given an instruction |
| // %3 = C2_mux %0, %1, %2 |
| // %3 will be coalesced with either %1 or %2. If this succeeds, |
| // the instruction would then be (for example) |
| // %3 = C2_mux %0, %3, %2 |
| // and, under certain circumstances, this could result in only one predicated |
| // instruction: |
| // %3 = A2_tfrf %0, %2 |
| // |
| |
| // Splitting a definition of a register into two predicated transfers |
| // creates a complication in liveness tracking. Live interval computation |
| // will see both instructions as actual definitions, and will mark the |
| // first one as dead. The definition is not actually dead, and this |
| // situation will need to be fixed. For example: |
| // dead %1 = A2_tfrt ... ; marked as dead |
| // %1 = A2_tfrf ... |
| // |
| // Since any of the individual predicated transfers may end up getting |
| // removed (in case it is an identity copy), some pre-existing def may |
| // be marked as dead after live interval recomputation: |
| // dead %1 = ... ; marked as dead |
| // ... |
| // %1 = A2_tfrf ... ; if A2_tfrt is removed |
| // This case happens if %1 was used as a source in A2_tfrt, which means |
| // that is it actually live at the A2_tfrf, and so the now dead definition |
| // of %1 will need to be updated to non-dead at some point. |
| // |
| // This issue could be remedied by adding implicit uses to the predicated |
| // transfers, but this will create a problem with subsequent predication, |
| // since the transfers will no longer be possible to reorder. To avoid |
| // that, the initial splitting will not add any implicit uses. These |
| // implicit uses will be added later, after predication. The extra price, |
| // however, is that finding the locations where the implicit uses need |
| // to be added, and updating the live ranges will be more involved. |
| |
| #include "HexagonInstrInfo.h" |
| #include "HexagonRegisterInfo.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/CodeGen/LiveInterval.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/MC/LaneBitmask.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <iterator> |
| #include <set> |
| #include <utility> |
| |
| #define DEBUG_TYPE "expand-condsets" |
| |
| using namespace llvm; |
| |
| static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit", |
| cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions")); |
| static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit", |
| cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings")); |
| |
| namespace llvm { |
| |
| void initializeHexagonExpandCondsetsPass(PassRegistry&); |
| FunctionPass *createHexagonExpandCondsets(); |
| |
| } // end namespace llvm |
| |
| namespace { |
| |
| class HexagonExpandCondsets : public MachineFunctionPass { |
| public: |
| static char ID; |
| |
| HexagonExpandCondsets() : MachineFunctionPass(ID) { |
| if (OptCoaLimit.getPosition()) |
| CoaLimitActive = true, CoaLimit = OptCoaLimit; |
| if (OptTfrLimit.getPosition()) |
| TfrLimitActive = true, TfrLimit = OptTfrLimit; |
| initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| StringRef getPassName() const override { return "Hexagon Expand Condsets"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<LiveIntervals>(); |
| AU.addPreserved<LiveIntervals>(); |
| AU.addPreserved<SlotIndexes>(); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| private: |
| const HexagonInstrInfo *HII = nullptr; |
| const TargetRegisterInfo *TRI = nullptr; |
| MachineDominatorTree *MDT; |
| MachineRegisterInfo *MRI = nullptr; |
| LiveIntervals *LIS = nullptr; |
| bool CoaLimitActive = false; |
| bool TfrLimitActive = false; |
| unsigned CoaLimit; |
| unsigned TfrLimit; |
| unsigned CoaCounter = 0; |
| unsigned TfrCounter = 0; |
| |
| struct RegisterRef { |
| RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()), |
| Sub(Op.getSubReg()) {} |
| RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {} |
| |
| bool operator== (RegisterRef RR) const { |
| return Reg == RR.Reg && Sub == RR.Sub; |
| } |
| bool operator!= (RegisterRef RR) const { return !operator==(RR); } |
| bool operator< (RegisterRef RR) const { |
| return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub); |
| } |
| |
| unsigned Reg, Sub; |
| }; |
| |
| using ReferenceMap = DenseMap<unsigned, unsigned>; |
| enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) }; |
| enum { Exec_Then = 0x10, Exec_Else = 0x20 }; |
| |
| unsigned getMaskForSub(unsigned Sub); |
| bool isCondset(const MachineInstr &MI); |
| LaneBitmask getLaneMask(unsigned Reg, unsigned Sub); |
| |
| void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec); |
| bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec); |
| |
| void updateDeadsInRange(unsigned Reg, LaneBitmask LM, LiveRange &Range); |
| void updateKillFlags(unsigned Reg); |
| void updateDeadFlags(unsigned Reg); |
| void recalculateLiveInterval(unsigned Reg); |
| void removeInstr(MachineInstr &MI); |
| void updateLiveness(std::set<unsigned> &RegSet, bool Recalc, |
| bool UpdateKills, bool UpdateDeads); |
| |
| unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond); |
| MachineInstr *genCondTfrFor(MachineOperand &SrcOp, |
| MachineBasicBlock::iterator At, unsigned DstR, |
| unsigned DstSR, const MachineOperand &PredOp, bool PredSense, |
| bool ReadUndef, bool ImpUse); |
| bool split(MachineInstr &MI, std::set<unsigned> &UpdRegs); |
| |
| bool isPredicable(MachineInstr *MI); |
| MachineInstr *getReachingDefForPred(RegisterRef RD, |
| MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond); |
| bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses); |
| bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown); |
| void predicateAt(const MachineOperand &DefOp, MachineInstr &MI, |
| MachineBasicBlock::iterator Where, |
| const MachineOperand &PredOp, bool Cond, |
| std::set<unsigned> &UpdRegs); |
| void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR, |
| bool Cond, MachineBasicBlock::iterator First, |
| MachineBasicBlock::iterator Last); |
| bool predicate(MachineInstr &TfrI, bool Cond, std::set<unsigned> &UpdRegs); |
| bool predicateInBlock(MachineBasicBlock &B, |
| std::set<unsigned> &UpdRegs); |
| |
| bool isIntReg(RegisterRef RR, unsigned &BW); |
| bool isIntraBlocks(LiveInterval &LI); |
| bool coalesceRegisters(RegisterRef R1, RegisterRef R2); |
| bool coalesceSegments(const SmallVectorImpl<MachineInstr*> &Condsets, |
| std::set<unsigned> &UpdRegs); |
| }; |
| |
| } // end anonymous namespace |
| |
| char HexagonExpandCondsets::ID = 0; |
| |
| namespace llvm { |
| |
| char &HexagonExpandCondsetsID = HexagonExpandCondsets::ID; |
| |
| } // end namespace llvm |
| |
| INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets", |
| "Hexagon Expand Condsets", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes) |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals) |
| INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets", |
| "Hexagon Expand Condsets", false, false) |
| |
| unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) { |
| switch (Sub) { |
| case Hexagon::isub_lo: |
| case Hexagon::vsub_lo: |
| return Sub_Low; |
| case Hexagon::isub_hi: |
| case Hexagon::vsub_hi: |
| return Sub_High; |
| case Hexagon::NoSubRegister: |
| return Sub_None; |
| } |
| llvm_unreachable("Invalid subregister"); |
| } |
| |
| bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) { |
| unsigned Opc = MI.getOpcode(); |
| switch (Opc) { |
| case Hexagon::C2_mux: |
| case Hexagon::C2_muxii: |
| case Hexagon::C2_muxir: |
| case Hexagon::C2_muxri: |
| case Hexagon::PS_pselect: |
| return true; |
| break; |
| } |
| return false; |
| } |
| |
| LaneBitmask HexagonExpandCondsets::getLaneMask(unsigned Reg, unsigned Sub) { |
| assert(TargetRegisterInfo::isVirtualRegister(Reg)); |
| return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) |
| : MRI->getMaxLaneMaskForVReg(Reg); |
| } |
| |
| void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map, |
| unsigned Exec) { |
| unsigned Mask = getMaskForSub(RR.Sub) | Exec; |
| ReferenceMap::iterator F = Map.find(RR.Reg); |
| if (F == Map.end()) |
| Map.insert(std::make_pair(RR.Reg, Mask)); |
| else |
| F->second |= Mask; |
| } |
| |
| bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map, |
| unsigned Exec) { |
| ReferenceMap::iterator F = Map.find(RR.Reg); |
| if (F == Map.end()) |
| return false; |
| unsigned Mask = getMaskForSub(RR.Sub) | Exec; |
| if (Mask & F->second) |
| return true; |
| return false; |
| } |
| |
| void HexagonExpandCondsets::updateKillFlags(unsigned Reg) { |
| auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void { |
| // Set the <kill> flag on a use of Reg whose lane mask is contained in LM. |
| MachineInstr *MI = LIS->getInstructionFromIndex(K); |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &Op = MI->getOperand(i); |
| if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg || |
| MI->isRegTiedToDefOperand(i)) |
| continue; |
| LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg()); |
| if ((SLM & LM) == SLM) { |
| // Only set the kill flag on the first encountered use of Reg in this |
| // instruction. |
| Op.setIsKill(true); |
| break; |
| } |
| } |
| }; |
| |
| LiveInterval &LI = LIS->getInterval(Reg); |
| for (auto I = LI.begin(), E = LI.end(); I != E; ++I) { |
| if (!I->end.isRegister()) |
| continue; |
| // Do not mark the end of the segment as <kill>, if the next segment |
| // starts with a predicated instruction. |
| auto NextI = std::next(I); |
| if (NextI != E && NextI->start.isRegister()) { |
| MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start); |
| if (HII->isPredicated(*DefI)) |
| continue; |
| } |
| bool WholeReg = true; |
| if (LI.hasSubRanges()) { |
| auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool { |
| LiveRange::iterator F = S.find(I->end); |
| return F != S.end() && I->end == F->end; |
| }; |
| // Check if all subranges end at I->end. If so, make sure to kill |
| // the whole register. |
| for (LiveInterval::SubRange &S : LI.subranges()) { |
| if (EndsAtI(S)) |
| KillAt(I->end, S.LaneMask); |
| else |
| WholeReg = false; |
| } |
| } |
| if (WholeReg) |
| KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg)); |
| } |
| } |
| |
| void HexagonExpandCondsets::updateDeadsInRange(unsigned Reg, LaneBitmask LM, |
| LiveRange &Range) { |
| assert(TargetRegisterInfo::isVirtualRegister(Reg)); |
| if (Range.empty()) |
| return; |
| |
| // Return two booleans: { def-modifes-reg, def-covers-reg }. |
| auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> std::pair<bool,bool> { |
| if (!Op.isReg() || !Op.isDef()) |
| return { false, false }; |
| unsigned DR = Op.getReg(), DSR = Op.getSubReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(DR) || DR != Reg) |
| return { false, false }; |
| LaneBitmask SLM = getLaneMask(DR, DSR); |
| LaneBitmask A = SLM & LM; |
| return { A.any(), A == SLM }; |
| }; |
| |
| // The splitting step will create pairs of predicated definitions without |
| // any implicit uses (since implicit uses would interfere with predication). |
| // This can cause the reaching defs to become dead after live range |
| // recomputation, even though they are not really dead. |
| // We need to identify predicated defs that need implicit uses, and |
| // dead defs that are not really dead, and correct both problems. |
| |
| auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs, |
| MachineBasicBlock *Dest) -> bool { |
| for (MachineBasicBlock *D : Defs) |
| if (D != Dest && MDT->dominates(D, Dest)) |
| return true; |
| |
| MachineBasicBlock *Entry = &Dest->getParent()->front(); |
| SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end()); |
| for (unsigned i = 0; i < Work.size(); ++i) { |
| MachineBasicBlock *B = Work[i]; |
| if (Defs.count(B)) |
| continue; |
| if (B == Entry) |
| return false; |
| for (auto *P : B->predecessors()) |
| Work.insert(P); |
| } |
| return true; |
| }; |
| |
| // First, try to extend live range within individual basic blocks. This |
| // will leave us only with dead defs that do not reach any predicated |
| // defs in the same block. |
| SetVector<MachineBasicBlock*> Defs; |
| SmallVector<SlotIndex,4> PredDefs; |
| for (auto &Seg : Range) { |
| if (!Seg.start.isRegister()) |
| continue; |
| MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); |
| Defs.insert(DefI->getParent()); |
| if (HII->isPredicated(*DefI)) |
| PredDefs.push_back(Seg.start); |
| } |
| |
| SmallVector<SlotIndex,8> Undefs; |
| LiveInterval &LI = LIS->getInterval(Reg); |
| LI.computeSubRangeUndefs(Undefs, LM, *MRI, *LIS->getSlotIndexes()); |
| |
| for (auto &SI : PredDefs) { |
| MachineBasicBlock *BB = LIS->getMBBFromIndex(SI); |
| auto P = Range.extendInBlock(Undefs, LIS->getMBBStartIdx(BB), SI); |
| if (P.first != nullptr || P.second) |
| SI = SlotIndex(); |
| } |
| |
| // Calculate reachability for those predicated defs that were not handled |
| // by the in-block extension. |
| SmallVector<SlotIndex,4> ExtTo; |
| for (auto &SI : PredDefs) { |
| if (!SI.isValid()) |
| continue; |
| MachineBasicBlock *BB = LIS->getMBBFromIndex(SI); |
| if (BB->pred_empty()) |
| continue; |
| // If the defs from this range reach SI via all predecessors, it is live. |
| // It can happen that SI is reached by the defs through some paths, but |
| // not all. In the IR coming into this optimization, SI would not be |
| // considered live, since the defs would then not jointly dominate SI. |
| // That means that SI is an overwriting def, and no implicit use is |
| // needed at this point. Do not add SI to the extension points, since |
| // extendToIndices will abort if there is no joint dominance. |
| // If the abort was avoided by adding extra undefs added to Undefs, |
| // extendToIndices could actually indicate that SI is live, contrary |
| // to the original IR. |
| if (Dominate(Defs, BB)) |
| ExtTo.push_back(SI); |
| } |
| |
| if (!ExtTo.empty()) |
| LIS->extendToIndices(Range, ExtTo, Undefs); |
| |
| // Remove <dead> flags from all defs that are not dead after live range |
| // extension, and collect all def operands. They will be used to generate |
| // the necessary implicit uses. |
| // At the same time, add <dead> flag to all defs that are actually dead. |
| // This can happen, for example, when a mux with identical inputs is |
| // replaced with a COPY: the use of the predicate register disappears and |
| // the dead can become dead. |
| std::set<RegisterRef> DefRegs; |
| for (auto &Seg : Range) { |
| if (!Seg.start.isRegister()) |
| continue; |
| MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); |
| for (auto &Op : DefI->operands()) { |
| auto P = IsRegDef(Op); |
| if (P.second && Seg.end.isDead()) { |
| Op.setIsDead(true); |
| } else if (P.first) { |
| DefRegs.insert(Op); |
| Op.setIsDead(false); |
| } |
| } |
| } |
| |
| // Now, add implicit uses to each predicated def that is reached |
| // by other defs. |
| for (auto &Seg : Range) { |
| if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot())) |
| continue; |
| MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); |
| if (!HII->isPredicated(*DefI)) |
| continue; |
| // Construct the set of all necessary implicit uses, based on the def |
| // operands in the instruction. We need to tie the implicit uses to |
| // the corresponding defs. |
| std::map<RegisterRef,unsigned> ImpUses; |
| for (unsigned i = 0, e = DefI->getNumOperands(); i != e; ++i) { |
| MachineOperand &Op = DefI->getOperand(i); |
| if (!Op.isReg() || !DefRegs.count(Op)) |
| continue; |
| if (Op.isDef()) { |
| // Tied defs will always have corresponding uses, so no extra |
| // implicit uses are needed. |
| if (!Op.isTied()) |
| ImpUses.insert({Op, i}); |
| } else { |
| // This function can be called for the same register with different |
| // lane masks. If the def in this instruction was for the whole |
| // register, we can get here more than once. Avoid adding multiple |
| // implicit uses (or adding an implicit use when an explicit one is |
| // present). |
| if (Op.isTied()) |
| ImpUses.erase(Op); |
| } |
| } |
| if (ImpUses.empty()) |
| continue; |
| MachineFunction &MF = *DefI->getParent()->getParent(); |
| for (std::pair<RegisterRef, unsigned> P : ImpUses) { |
| RegisterRef R = P.first; |
| MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub); |
| DefI->tieOperands(P.second, DefI->getNumOperands()-1); |
| } |
| } |
| } |
| |
| void HexagonExpandCondsets::updateDeadFlags(unsigned Reg) { |
| LiveInterval &LI = LIS->getInterval(Reg); |
| if (LI.hasSubRanges()) { |
| for (LiveInterval::SubRange &S : LI.subranges()) { |
| updateDeadsInRange(Reg, S.LaneMask, S); |
| LIS->shrinkToUses(S, Reg); |
| } |
| LI.clear(); |
| LIS->constructMainRangeFromSubranges(LI); |
| } else { |
| updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI); |
| } |
| } |
| |
| void HexagonExpandCondsets::recalculateLiveInterval(unsigned Reg) { |
| LIS->removeInterval(Reg); |
| LIS->createAndComputeVirtRegInterval(Reg); |
| } |
| |
| void HexagonExpandCondsets::removeInstr(MachineInstr &MI) { |
| LIS->RemoveMachineInstrFromMaps(MI); |
| MI.eraseFromParent(); |
| } |
| |
| void HexagonExpandCondsets::updateLiveness(std::set<unsigned> &RegSet, |
| bool Recalc, bool UpdateKills, bool UpdateDeads) { |
| UpdateKills |= UpdateDeads; |
| for (unsigned R : RegSet) { |
| if (!TargetRegisterInfo::isVirtualRegister(R)) { |
| assert(TargetRegisterInfo::isPhysicalRegister(R)); |
| // There shouldn't be any physical registers as operands, except |
| // possibly reserved registers. |
| assert(MRI->isReserved(R)); |
| continue; |
| } |
| if (Recalc) |
| recalculateLiveInterval(R); |
| if (UpdateKills) |
| MRI->clearKillFlags(R); |
| if (UpdateDeads) |
| updateDeadFlags(R); |
| // Fixing <dead> flags may extend live ranges, so reset <kill> flags |
| // after that. |
| if (UpdateKills) |
| updateKillFlags(R); |
| LIS->getInterval(R).verify(); |
| } |
| } |
| |
| /// Get the opcode for a conditional transfer of the value in SO (source |
| /// operand). The condition (true/false) is given in Cond. |
| unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO, |
| bool IfTrue) { |
| using namespace Hexagon; |
| |
| if (SO.isReg()) { |
| unsigned PhysR; |
| RegisterRef RS = SO; |
| if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) { |
| const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg); |
| assert(VC->begin() != VC->end() && "Empty register class"); |
| PhysR = *VC->begin(); |
| } else { |
| assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg)); |
| PhysR = RS.Reg; |
| } |
| unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub); |
| const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS); |
| switch (TRI->getRegSizeInBits(*RC)) { |
| case 32: |
| return IfTrue ? A2_tfrt : A2_tfrf; |
| case 64: |
| return IfTrue ? A2_tfrpt : A2_tfrpf; |
| } |
| llvm_unreachable("Invalid register operand"); |
| } |
| switch (SO.getType()) { |
| case MachineOperand::MO_Immediate: |
| case MachineOperand::MO_FPImmediate: |
| case MachineOperand::MO_ConstantPoolIndex: |
| case MachineOperand::MO_TargetIndex: |
| case MachineOperand::MO_JumpTableIndex: |
| case MachineOperand::MO_ExternalSymbol: |
| case MachineOperand::MO_GlobalAddress: |
| case MachineOperand::MO_BlockAddress: |
| return IfTrue ? C2_cmoveit : C2_cmoveif; |
| default: |
| break; |
| } |
| llvm_unreachable("Unexpected source operand"); |
| } |
| |
| /// Generate a conditional transfer, copying the value SrcOp to the |
| /// destination register DstR:DstSR, and using the predicate register from |
| /// PredOp. The Cond argument specifies whether the predicate is to be |
| /// if(PredOp), or if(!PredOp). |
| MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp, |
| MachineBasicBlock::iterator At, |
| unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, |
| bool PredSense, bool ReadUndef, bool ImpUse) { |
| MachineInstr *MI = SrcOp.getParent(); |
| MachineBasicBlock &B = *At->getParent(); |
| const DebugLoc &DL = MI->getDebugLoc(); |
| |
| // Don't avoid identity copies here (i.e. if the source and the destination |
| // are the same registers). It is actually better to generate them here, |
| // since this would cause the copy to potentially be predicated in the next |
| // step. The predication will remove such a copy if it is unable to |
| /// predicate. |
| |
| unsigned Opc = getCondTfrOpcode(SrcOp, PredSense); |
| unsigned DstState = RegState::Define | (ReadUndef ? RegState::Undef : 0); |
| unsigned PredState = getRegState(PredOp) & ~RegState::Kill; |
| MachineInstrBuilder MIB; |
| |
| if (SrcOp.isReg()) { |
| unsigned SrcState = getRegState(SrcOp); |
| if (RegisterRef(SrcOp) == RegisterRef(DstR, DstSR)) |
| SrcState &= ~RegState::Kill; |
| MIB = BuildMI(B, At, DL, HII->get(Opc)) |
| .addReg(DstR, DstState, DstSR) |
| .addReg(PredOp.getReg(), PredState, PredOp.getSubReg()) |
| .addReg(SrcOp.getReg(), SrcState, SrcOp.getSubReg()); |
| } else { |
| MIB = BuildMI(B, At, DL, HII->get(Opc)) |
| .addReg(DstR, DstState, DstSR) |
| .addReg(PredOp.getReg(), PredState, PredOp.getSubReg()) |
| .add(SrcOp); |
| } |
| |
| LLVM_DEBUG(dbgs() << "created an initial copy: " << *MIB); |
| return &*MIB; |
| } |
| |
| /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function |
| /// performs all necessary changes to complete the replacement. |
| bool HexagonExpandCondsets::split(MachineInstr &MI, |
| std::set<unsigned> &UpdRegs) { |
| if (TfrLimitActive) { |
| if (TfrCounter >= TfrLimit) |
| return false; |
| TfrCounter++; |
| } |
| LLVM_DEBUG(dbgs() << "\nsplitting " << printMBBReference(*MI.getParent()) |
| << ": " << MI); |
| MachineOperand &MD = MI.getOperand(0); // Definition |
| MachineOperand &MP = MI.getOperand(1); // Predicate register |
| assert(MD.isDef()); |
| unsigned DR = MD.getReg(), DSR = MD.getSubReg(); |
| bool ReadUndef = MD.isUndef(); |
| MachineBasicBlock::iterator At = MI; |
| |
| auto updateRegs = [&UpdRegs] (const MachineInstr &MI) -> void { |
| for (auto &Op : MI.operands()) |
| if (Op.isReg()) |
| UpdRegs.insert(Op.getReg()); |
| }; |
| |
| // If this is a mux of the same register, just replace it with COPY. |
| // Ideally, this would happen earlier, so that register coalescing would |
| // see it. |
| MachineOperand &ST = MI.getOperand(2); |
| MachineOperand &SF = MI.getOperand(3); |
| if (ST.isReg() && SF.isReg()) { |
| RegisterRef RT(ST); |
| if (RT == RegisterRef(SF)) { |
| // Copy regs to update first. |
| updateRegs(MI); |
| MI.setDesc(HII->get(TargetOpcode::COPY)); |
| unsigned S = getRegState(ST); |
| while (MI.getNumOperands() > 1) |
| MI.RemoveOperand(MI.getNumOperands()-1); |
| MachineFunction &MF = *MI.getParent()->getParent(); |
| MachineInstrBuilder(MF, MI).addReg(RT.Reg, S, RT.Sub); |
| return true; |
| } |
| } |
| |
| // First, create the two invididual conditional transfers, and add each |
| // of them to the live intervals information. Do that first and then remove |
| // the old instruction from live intervals. |
| MachineInstr *TfrT = |
| genCondTfrFor(ST, At, DR, DSR, MP, true, ReadUndef, false); |
| MachineInstr *TfrF = |
| genCondTfrFor(SF, At, DR, DSR, MP, false, ReadUndef, true); |
| LIS->InsertMachineInstrInMaps(*TfrT); |
| LIS->InsertMachineInstrInMaps(*TfrF); |
| |
| // Will need to recalculate live intervals for all registers in MI. |
| updateRegs(MI); |
| |
| removeInstr(MI); |
| return true; |
| } |
| |
| bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) { |
| if (HII->isPredicated(*MI) || !HII->isPredicable(*MI)) |
| return false; |
| if (MI->hasUnmodeledSideEffects() || MI->mayStore()) |
| return false; |
| // Reject instructions with multiple defs (e.g. post-increment loads). |
| bool HasDef = false; |
| for (auto &Op : MI->operands()) { |
| if (!Op.isReg() || !Op.isDef()) |
| continue; |
| if (HasDef) |
| return false; |
| HasDef = true; |
| } |
| for (auto &Mo : MI->memoperands()) |
| if (Mo->isVolatile()) |
| return false; |
| return true; |
| } |
| |
| /// Find the reaching definition for a predicated use of RD. The RD is used |
| /// under the conditions given by PredR and Cond, and this function will ignore |
| /// definitions that set RD under the opposite conditions. |
| MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD, |
| MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) { |
| MachineBasicBlock &B = *UseIt->getParent(); |
| MachineBasicBlock::iterator I = UseIt, S = B.begin(); |
| if (I == S) |
| return nullptr; |
| |
| bool PredValid = true; |
| do { |
| --I; |
| MachineInstr *MI = &*I; |
| // Check if this instruction can be ignored, i.e. if it is predicated |
| // on the complementary condition. |
| if (PredValid && HII->isPredicated(*MI)) { |
| if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI))) |
| continue; |
| } |
| |
| // Check the defs. If the PredR is defined, invalidate it. If RD is |
| // defined, return the instruction or 0, depending on the circumstances. |
| for (auto &Op : MI->operands()) { |
| if (!Op.isReg() || !Op.isDef()) |
| continue; |
| RegisterRef RR = Op; |
| if (RR.Reg == PredR) { |
| PredValid = false; |
| continue; |
| } |
| if (RR.Reg != RD.Reg) |
| continue; |
| // If the "Reg" part agrees, there is still the subregister to check. |
| // If we are looking for %1:loreg, we can skip %1:hireg, but |
| // not %1 (w/o subregisters). |
| if (RR.Sub == RD.Sub) |
| return MI; |
| if (RR.Sub == 0 || RD.Sub == 0) |
| return nullptr; |
| // We have different subregisters, so we can continue looking. |
| } |
| } while (I != S); |
| |
| return nullptr; |
| } |
| |
| /// Check if the instruction MI can be safely moved over a set of instructions |
| /// whose side-effects (in terms of register defs and uses) are expressed in |
| /// the maps Defs and Uses. These maps reflect the conditional defs and uses |
| /// that depend on the same predicate register to allow moving instructions |
| /// over instructions predicated on the opposite condition. |
| bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs, |
| ReferenceMap &Uses) { |
| // In order to be able to safely move MI over instructions that define |
| // "Defs" and use "Uses", no def operand from MI can be defined or used |
| // and no use operand can be defined. |
| for (auto &Op : MI.operands()) { |
| if (!Op.isReg()) |
| continue; |
| RegisterRef RR = Op; |
| // For physical register we would need to check register aliases, etc. |
| // and we don't want to bother with that. It would be of little value |
| // before the actual register rewriting (from virtual to physical). |
| if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) |
| return false; |
| // No redefs for any operand. |
| if (isRefInMap(RR, Defs, Exec_Then)) |
| return false; |
| // For defs, there cannot be uses. |
| if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Check if the instruction accessing memory (TheI) can be moved to the |
| /// location ToI. |
| bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI, |
| bool IsDown) { |
| bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore(); |
| if (!IsLoad && !IsStore) |
| return true; |
| if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI)) |
| return true; |
| if (TheI.hasUnmodeledSideEffects()) |
| return false; |
| |
| MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI; |
| MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI; |
| bool Ordered = TheI.hasOrderedMemoryRef(); |
| |
| // Search for aliased memory reference in (StartI, EndI). |
| for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) { |
| MachineInstr *MI = &*I; |
| if (MI->hasUnmodeledSideEffects()) |
| return false; |
| bool L = MI->mayLoad(), S = MI->mayStore(); |
| if (!L && !S) |
| continue; |
| if (Ordered && MI->hasOrderedMemoryRef()) |
| return false; |
| |
| bool Conflict = (L && IsStore) || S; |
| if (Conflict) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Generate a predicated version of MI (where the condition is given via |
| /// PredR and Cond) at the point indicated by Where. |
| void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp, |
| MachineInstr &MI, |
| MachineBasicBlock::iterator Where, |
| const MachineOperand &PredOp, bool Cond, |
| std::set<unsigned> &UpdRegs) { |
| // The problem with updating live intervals is that we can move one def |
| // past another def. In particular, this can happen when moving an A2_tfrt |
| // over an A2_tfrf defining the same register. From the point of view of |
| // live intervals, these two instructions are two separate definitions, |
| // and each one starts another live segment. LiveIntervals's "handleMove" |
| // does not allow such moves, so we need to handle it ourselves. To avoid |
| // invalidating liveness data while we are using it, the move will be |
| // implemented in 4 steps: (1) add a clone of the instruction MI at the |
| // target location, (2) update liveness, (3) delete the old instruction, |
| // and (4) update liveness again. |
| |
| MachineBasicBlock &B = *MI.getParent(); |
| DebugLoc DL = Where->getDebugLoc(); // "Where" points to an instruction. |
| unsigned Opc = MI.getOpcode(); |
| unsigned PredOpc = HII->getCondOpcode(Opc, !Cond); |
| MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc)); |
| unsigned Ox = 0, NP = MI.getNumOperands(); |
| // Skip all defs from MI first. |
| while (Ox < NP) { |
| MachineOperand &MO = MI.getOperand(Ox); |
| if (!MO.isReg() || !MO.isDef()) |
| break; |
| Ox++; |
| } |
| // Add the new def, then the predicate register, then the rest of the |
| // operands. |
| MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg()); |
| MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0, |
| PredOp.getSubReg()); |
| while (Ox < NP) { |
| MachineOperand &MO = MI.getOperand(Ox); |
| if (!MO.isReg() || !MO.isImplicit()) |
| MB.add(MO); |
| Ox++; |
| } |
| |
| MachineFunction &MF = *B.getParent(); |
| MachineInstr::mmo_iterator I = MI.memoperands_begin(); |
| unsigned NR = std::distance(I, MI.memoperands_end()); |
| MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR); |
| for (unsigned i = 0; i < NR; ++i) |
| MemRefs[i] = *I++; |
| MB.setMemRefs(MemRefs, MemRefs+NR); |
| |
| MachineInstr *NewI = MB; |
| NewI->clearKillInfo(); |
| LIS->InsertMachineInstrInMaps(*NewI); |
| |
| for (auto &Op : NewI->operands()) |
| if (Op.isReg()) |
| UpdRegs.insert(Op.getReg()); |
| } |
| |
| /// In the range [First, Last], rename all references to the "old" register RO |
| /// to the "new" register RN, but only in instructions predicated on the given |
| /// condition. |
| void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN, |
| unsigned PredR, bool Cond, MachineBasicBlock::iterator First, |
| MachineBasicBlock::iterator Last) { |
| MachineBasicBlock::iterator End = std::next(Last); |
| for (MachineBasicBlock::iterator I = First; I != End; ++I) { |
| MachineInstr *MI = &*I; |
| // Do not touch instructions that are not predicated, or are predicated |
| // on the opposite condition. |
| if (!HII->isPredicated(*MI)) |
| continue; |
| if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(*MI))) |
| continue; |
| |
| for (auto &Op : MI->operands()) { |
| if (!Op.isReg() || RO != RegisterRef(Op)) |
| continue; |
| Op.setReg(RN.Reg); |
| Op.setSubReg(RN.Sub); |
| // In practice, this isn't supposed to see any defs. |
| assert(!Op.isDef() && "Not expecting a def"); |
| } |
| } |
| } |
| |
| /// For a given conditional copy, predicate the definition of the source of |
| /// the copy under the given condition (using the same predicate register as |
| /// the copy). |
| bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond, |
| std::set<unsigned> &UpdRegs) { |
| // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi). |
| unsigned Opc = TfrI.getOpcode(); |
| (void)Opc; |
| assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf); |
| LLVM_DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false") |
| << ": " << TfrI); |
| |
| MachineOperand &MD = TfrI.getOperand(0); |
| MachineOperand &MP = TfrI.getOperand(1); |
| MachineOperand &MS = TfrI.getOperand(2); |
| // The source operand should be a <kill>. This is not strictly necessary, |
| // but it makes things a lot simpler. Otherwise, we would need to rename |
| // some registers, which would complicate the transformation considerably. |
| if (!MS.isKill()) |
| return false; |
| // Avoid predicating instructions that define a subregister if subregister |
| // liveness tracking is not enabled. |
| if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg())) |
| return false; |
| |
| RegisterRef RT(MS); |
| unsigned PredR = MP.getReg(); |
| MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond); |
| if (!DefI || !isPredicable(DefI)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Source def: " << *DefI); |
| |
| // Collect the information about registers defined and used between the |
| // DefI and the TfrI. |
| // Map: reg -> bitmask of subregs |
| ReferenceMap Uses, Defs; |
| MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI; |
| |
| // Check if the predicate register is valid between DefI and TfrI. |
| // If it is, we can then ignore instructions predicated on the negated |
| // conditions when collecting def and use information. |
| bool PredValid = true; |
| for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) { |
| if (!I->modifiesRegister(PredR, nullptr)) |
| continue; |
| PredValid = false; |
| break; |
| } |
| |
| for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) { |
| MachineInstr *MI = &*I; |
| // If this instruction is predicated on the same register, it could |
| // potentially be ignored. |
| // By default assume that the instruction executes on the same condition |
| // as TfrI (Exec_Then), and also on the opposite one (Exec_Else). |
| unsigned Exec = Exec_Then | Exec_Else; |
| if (PredValid && HII->isPredicated(*MI) && MI->readsRegister(PredR)) |
| Exec = (Cond == HII->isPredicatedTrue(*MI)) ? Exec_Then : Exec_Else; |
| |
| for (auto &Op : MI->operands()) { |
| if (!Op.isReg()) |
| continue; |
| // We don't want to deal with physical registers. The reason is that |
| // they can be aliased with other physical registers. Aliased virtual |
| // registers must share the same register number, and can only differ |
| // in the subregisters, which we are keeping track of. Physical |
| // registers ters no longer have subregisters---their super- and |
| // subregisters are other physical registers, and we are not checking |
| // that. |
| RegisterRef RR = Op; |
| if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) |
| return false; |
| |
| ReferenceMap &Map = Op.isDef() ? Defs : Uses; |
| if (Op.isDef() && Op.isUndef()) { |
| assert(RR.Sub && "Expecting a subregister on <def,read-undef>"); |
| // If this is a <def,read-undef>, then it invalidates the non-written |
| // part of the register. For the purpose of checking the validity of |
| // the move, assume that it modifies the whole register. |
| RR.Sub = 0; |
| } |
| addRefToMap(RR, Map, Exec); |
| } |
| } |
| |
| // The situation: |
| // RT = DefI |
| // ... |
| // RD = TfrI ..., RT |
| |
| // If the register-in-the-middle (RT) is used or redefined between |
| // DefI and TfrI, we may not be able proceed with this transformation. |
| // We can ignore a def that will not execute together with TfrI, and a |
| // use that will. If there is such a use (that does execute together with |
| // TfrI), we will not be able to move DefI down. If there is a use that |
| // executed if TfrI's condition is false, then RT must be available |
| // unconditionally (cannot be predicated). |
| // Essentially, we need to be able to rename RT to RD in this segment. |
| if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else)) |
| return false; |
| RegisterRef RD = MD; |
| // If the predicate register is defined between DefI and TfrI, the only |
| // potential thing to do would be to move the DefI down to TfrI, and then |
| // predicate. The reaching def (DefI) must be movable down to the location |
| // of the TfrI. |
| // If the target register of the TfrI (RD) is not used or defined between |
| // DefI and TfrI, consider moving TfrI up to DefI. |
| bool CanUp = canMoveOver(TfrI, Defs, Uses); |
| bool CanDown = canMoveOver(*DefI, Defs, Uses); |
| // The TfrI does not access memory, but DefI could. Check if it's safe |
| // to move DefI down to TfrI. |
| if (DefI->mayLoad() || DefI->mayStore()) |
| if (!canMoveMemTo(*DefI, TfrI, true)) |
| CanDown = false; |
| |
| LLVM_DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no") |
| << ", can move down: " << (CanDown ? "yes\n" : "no\n")); |
| MachineBasicBlock::iterator PastDefIt = std::next(DefIt); |
| if (CanUp) |
| predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs); |
| else if (CanDown) |
| predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs); |
| else |
| return false; |
| |
| if (RT != RD) { |
| renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt); |
| UpdRegs.insert(RT.Reg); |
| } |
| |
| removeInstr(TfrI); |
| removeInstr(*DefI); |
| return true; |
| } |
| |
| /// Predicate all cases of conditional copies in the specified block. |
| bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B, |
| std::set<unsigned> &UpdRegs) { |
| bool Changed = false; |
| MachineBasicBlock::iterator I, E, NextI; |
| for (I = B.begin(), E = B.end(); I != E; I = NextI) { |
| NextI = std::next(I); |
| unsigned Opc = I->getOpcode(); |
| if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) { |
| bool Done = predicate(*I, (Opc == Hexagon::A2_tfrt), UpdRegs); |
| if (!Done) { |
| // If we didn't predicate I, we may need to remove it in case it is |
| // an "identity" copy, e.g. %1 = A2_tfrt %2, %1. |
| if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2))) { |
| for (auto &Op : I->operands()) |
| if (Op.isReg()) |
| UpdRegs.insert(Op.getReg()); |
| removeInstr(*I); |
| } |
| } |
| Changed |= Done; |
| } |
| } |
| return Changed; |
| } |
| |
| bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) { |
| if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) |
| return false; |
| const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg); |
| if (RC == &Hexagon::IntRegsRegClass) { |
| BW = 32; |
| return true; |
| } |
| if (RC == &Hexagon::DoubleRegsRegClass) { |
| BW = (RR.Sub != 0) ? 32 : 64; |
| return true; |
| } |
| return false; |
| } |
| |
| bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) { |
| for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { |
| LiveRange::Segment &LR = *I; |
| // Range must start at a register... |
| if (!LR.start.isRegister()) |
| return false; |
| // ...and end in a register or in a dead slot. |
| if (!LR.end.isRegister() && !LR.end.isDead()) |
| return false; |
| } |
| return true; |
| } |
| |
| bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) { |
| if (CoaLimitActive) { |
| if (CoaCounter >= CoaLimit) |
| return false; |
| CoaCounter++; |
| } |
| unsigned BW1, BW2; |
| if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2) |
| return false; |
| if (MRI->isLiveIn(R1.Reg)) |
| return false; |
| if (MRI->isLiveIn(R2.Reg)) |
| return false; |
| |
| LiveInterval &L1 = LIS->getInterval(R1.Reg); |
| LiveInterval &L2 = LIS->getInterval(R2.Reg); |
| if (L2.empty()) |
| return false; |
| if (L1.hasSubRanges() || L2.hasSubRanges()) |
| return false; |
| bool Overlap = L1.overlaps(L2); |
| |
| LLVM_DEBUG(dbgs() << "compatible registers: (" |
| << (Overlap ? "overlap" : "disjoint") << ")\n " |
| << printReg(R1.Reg, TRI, R1.Sub) << " " << L1 << "\n " |
| << printReg(R2.Reg, TRI, R2.Sub) << " " << L2 << "\n"); |
| if (R1.Sub || R2.Sub) |
| return false; |
| if (Overlap) |
| return false; |
| |
| // Coalescing could have a negative impact on scheduling, so try to limit |
| // to some reasonable extent. Only consider coalescing segments, when one |
| // of them does not cross basic block boundaries. |
| if (!isIntraBlocks(L1) && !isIntraBlocks(L2)) |
| return false; |
| |
| MRI->replaceRegWith(R2.Reg, R1.Reg); |
| |
| // Move all live segments from L2 to L1. |
| using ValueInfoMap = DenseMap<VNInfo *, VNInfo *>; |
| ValueInfoMap VM; |
| for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) { |
| VNInfo *NewVN, *OldVN = I->valno; |
| ValueInfoMap::iterator F = VM.find(OldVN); |
| if (F == VM.end()) { |
| NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator()); |
| VM.insert(std::make_pair(OldVN, NewVN)); |
| } else { |
| NewVN = F->second; |
| } |
| L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN)); |
| } |
| while (L2.begin() != L2.end()) |
| L2.removeSegment(*L2.begin()); |
| LIS->removeInterval(R2.Reg); |
| |
| updateKillFlags(R1.Reg); |
| LLVM_DEBUG(dbgs() << "coalesced: " << L1 << "\n"); |
| L1.verify(); |
| |
| return true; |
| } |
| |
| /// Attempt to coalesce one of the source registers to a MUX instruction with |
| /// the destination register. This could lead to having only one predicated |
| /// instruction in the end instead of two. |
| bool HexagonExpandCondsets::coalesceSegments( |
| const SmallVectorImpl<MachineInstr*> &Condsets, |
| std::set<unsigned> &UpdRegs) { |
| SmallVector<MachineInstr*,16> TwoRegs; |
| for (MachineInstr *MI : Condsets) { |
| MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3); |
| if (!S1.isReg() && !S2.isReg()) |
| continue; |
| TwoRegs.push_back(MI); |
| } |
| |
| bool Changed = false; |
| for (MachineInstr *CI : TwoRegs) { |
| RegisterRef RD = CI->getOperand(0); |
| RegisterRef RP = CI->getOperand(1); |
| MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3); |
| bool Done = false; |
| // Consider this case: |
| // %1 = instr1 ... |
| // %2 = instr2 ... |
| // %0 = C2_mux ..., %1, %2 |
| // If %0 was coalesced with %1, we could end up with the following |
| // code: |
| // %0 = instr1 ... |
| // %2 = instr2 ... |
| // %0 = A2_tfrf ..., %2 |
| // which will later become: |
| // %0 = instr1 ... |
| // %0 = instr2_cNotPt ... |
| // i.e. there will be an unconditional definition (instr1) of %0 |
| // followed by a conditional one. The output dependency was there before |
| // and it unavoidable, but if instr1 is predicable, we will no longer be |
| // able to predicate it here. |
| // To avoid this scenario, don't coalesce the destination register with |
| // a source register that is defined by a predicable instruction. |
| if (S1.isReg()) { |
| RegisterRef RS = S1; |
| MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true); |
| if (!RDef || !HII->isPredicable(*RDef)) { |
| Done = coalesceRegisters(RD, RegisterRef(S1)); |
| if (Done) { |
| UpdRegs.insert(RD.Reg); |
| UpdRegs.insert(S1.getReg()); |
| } |
| } |
| } |
| if (!Done && S2.isReg()) { |
| RegisterRef RS = S2; |
| MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false); |
| if (!RDef || !HII->isPredicable(*RDef)) { |
| Done = coalesceRegisters(RD, RegisterRef(S2)); |
| if (Done) { |
| UpdRegs.insert(RD.Reg); |
| UpdRegs.insert(S2.getReg()); |
| } |
| } |
| } |
| Changed |= Done; |
| } |
| return Changed; |
| } |
| |
| bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| |
| HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo()); |
| TRI = MF.getSubtarget().getRegisterInfo(); |
| MDT = &getAnalysis<MachineDominatorTree>(); |
| LIS = &getAnalysis<LiveIntervals>(); |
| MRI = &MF.getRegInfo(); |
| |
| LLVM_DEBUG(LIS->print(dbgs() << "Before expand-condsets\n", |
| MF.getFunction().getParent())); |
| |
| bool Changed = false; |
| std::set<unsigned> CoalUpd, PredUpd; |
| |
| SmallVector<MachineInstr*,16> Condsets; |
| for (auto &B : MF) |
| for (auto &I : B) |
| if (isCondset(I)) |
| Condsets.push_back(&I); |
| |
| // Try to coalesce the target of a mux with one of its sources. |
| // This could eliminate a register copy in some circumstances. |
| Changed |= coalesceSegments(Condsets, CoalUpd); |
| |
| // Update kill flags on all source operands. This is done here because |
| // at this moment (when expand-condsets runs), there are no kill flags |
| // in the IR (they have been removed by live range analysis). |
| // Updating them right before we split is the easiest, because splitting |
| // adds definitions which would interfere with updating kills afterwards. |
| std::set<unsigned> KillUpd; |
| for (MachineInstr *MI : Condsets) |
| for (MachineOperand &Op : MI->operands()) |
| if (Op.isReg() && Op.isUse()) |
| if (!CoalUpd.count(Op.getReg())) |
| KillUpd.insert(Op.getReg()); |
| updateLiveness(KillUpd, false, true, false); |
| LLVM_DEBUG( |
| LIS->print(dbgs() << "After coalescing\n", MF.getFunction().getParent())); |
| |
| // First, simply split all muxes into a pair of conditional transfers |
| // and update the live intervals to reflect the new arrangement. The |
| // goal is to update the kill flags, since predication will rely on |
| // them. |
| for (MachineInstr *MI : Condsets) |
| Changed |= split(*MI, PredUpd); |
| Condsets.clear(); // The contents of Condsets are invalid here anyway. |
| |
| // Do not update live ranges after splitting. Recalculation of live |
| // intervals removes kill flags, which were preserved by splitting on |
| // the source operands of condsets. These kill flags are needed by |
| // predication, and after splitting they are difficult to recalculate |
| // (because of predicated defs), so make sure they are left untouched. |
| // Predication does not use live intervals. |
| LLVM_DEBUG( |
| LIS->print(dbgs() << "After splitting\n", MF.getFunction().getParent())); |
| |
| // Traverse all blocks and collapse predicable instructions feeding |
| // conditional transfers into predicated instructions. |
| // Walk over all the instructions again, so we may catch pre-existing |
| // cases that were not created in the previous step. |
| for (auto &B : MF) |
| Changed |= predicateInBlock(B, PredUpd); |
| LLVM_DEBUG(LIS->print(dbgs() << "After predicating\n", |
| MF.getFunction().getParent())); |
| |
| PredUpd.insert(CoalUpd.begin(), CoalUpd.end()); |
| updateLiveness(PredUpd, true, true, true); |
| |
| LLVM_DEBUG({ |
| if (Changed) |
| LIS->print(dbgs() << "After expand-condsets\n", |
| MF.getFunction().getParent()); |
| }); |
| |
| return Changed; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Public Constructor Functions |
| //===----------------------------------------------------------------------===// |
| FunctionPass *llvm::createHexagonExpandCondsets() { |
| return new HexagonExpandCondsets(); |
| } |