| //===-- CBackend.cpp - Library for converting LLVM code to C --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This library converts LLVM code to C code, compilable by GCC and other C |
| // compilers. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CTargetMachine.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Module.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Pass.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Analysis/ConstantsScanner.h" |
| #include "llvm/Analysis/FindUsedTypes.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/IntrinsicLowering.h" |
| #include "llvm/Target/Mangler.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCInstrInfo.h" |
| #include "llvm/MC/MCObjectFileInfo.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Support/CallSite.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/FormattedStream.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/Host.h" |
| #include "llvm/Config/config.h" |
| #include <algorithm> |
| // Some ms header decided to define setjmp as _setjmp, undo this for this file. |
| #ifdef _MSC_VER |
| #undef setjmp |
| #endif |
| using namespace llvm; |
| |
| extern "C" void LLVMInitializeCBackendTarget() { |
| // Register the target. |
| RegisterTargetMachine<CTargetMachine> X(TheCBackendTarget); |
| } |
| |
| namespace { |
| class CBEMCAsmInfo : public MCAsmInfo { |
| public: |
| CBEMCAsmInfo() { |
| GlobalPrefix = ""; |
| PrivateGlobalPrefix = ""; |
| } |
| }; |
| |
| /// CWriter - This class is the main chunk of code that converts an LLVM |
| /// module to a C translation unit. |
| class CWriter : public FunctionPass, public InstVisitor<CWriter> { |
| formatted_raw_ostream &Out; |
| IntrinsicLowering *IL; |
| Mangler *Mang; |
| LoopInfo *LI; |
| const Module *TheModule; |
| const MCAsmInfo* TAsm; |
| const MCRegisterInfo *MRI; |
| const MCObjectFileInfo *MOFI; |
| MCContext *TCtx; |
| const TargetData* TD; |
| |
| std::map<const ConstantFP *, unsigned> FPConstantMap; |
| std::set<Function*> intrinsicPrototypesAlreadyGenerated; |
| std::set<const Argument*> ByValParams; |
| unsigned FPCounter; |
| unsigned OpaqueCounter; |
| DenseMap<const Value*, unsigned> AnonValueNumbers; |
| unsigned NextAnonValueNumber; |
| |
| /// UnnamedStructIDs - This contains a unique ID for each struct that is |
| /// either anonymous or has no name. |
| DenseMap<StructType*, unsigned> UnnamedStructIDs; |
| |
| public: |
| static char ID; |
| explicit CWriter(formatted_raw_ostream &o) |
| : FunctionPass(ID), Out(o), IL(0), Mang(0), LI(0), |
| TheModule(0), TAsm(0), MRI(0), MOFI(0), TCtx(0), TD(0), |
| OpaqueCounter(0), NextAnonValueNumber(0) { |
| initializeLoopInfoPass(*PassRegistry::getPassRegistry()); |
| FPCounter = 0; |
| } |
| |
| virtual const char *getPassName() const { return "C backend"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<LoopInfo>(); |
| AU.setPreservesAll(); |
| } |
| |
| virtual bool doInitialization(Module &M); |
| |
| bool runOnFunction(Function &F) { |
| // Do not codegen any 'available_externally' functions at all, they have |
| // definitions outside the translation unit. |
| if (F.hasAvailableExternallyLinkage()) |
| return false; |
| |
| LI = &getAnalysis<LoopInfo>(); |
| |
| // Get rid of intrinsics we can't handle. |
| lowerIntrinsics(F); |
| |
| // Output all floating point constants that cannot be printed accurately. |
| printFloatingPointConstants(F); |
| |
| printFunction(F); |
| return false; |
| } |
| |
| virtual bool doFinalization(Module &M) { |
| // Free memory... |
| delete IL; |
| delete TD; |
| delete Mang; |
| delete TCtx; |
| delete TAsm; |
| delete MRI; |
| delete MOFI; |
| FPConstantMap.clear(); |
| ByValParams.clear(); |
| intrinsicPrototypesAlreadyGenerated.clear(); |
| UnnamedStructIDs.clear(); |
| return false; |
| } |
| |
| raw_ostream &printType(raw_ostream &Out, Type *Ty, |
| bool isSigned = false, |
| const std::string &VariableName = "", |
| bool IgnoreName = false, |
| const AttrListPtr &PAL = AttrListPtr()); |
| raw_ostream &printSimpleType(raw_ostream &Out, Type *Ty, |
| bool isSigned, |
| const std::string &NameSoFar = ""); |
| |
| void printStructReturnPointerFunctionType(raw_ostream &Out, |
| const AttrListPtr &PAL, |
| PointerType *Ty); |
| |
| std::string getStructName(StructType *ST); |
| |
| /// writeOperandDeref - Print the result of dereferencing the specified |
| /// operand with '*'. This is equivalent to printing '*' then using |
| /// writeOperand, but avoids excess syntax in some cases. |
| void writeOperandDeref(Value *Operand) { |
| if (isAddressExposed(Operand)) { |
| // Already something with an address exposed. |
| writeOperandInternal(Operand); |
| } else { |
| Out << "*("; |
| writeOperand(Operand); |
| Out << ")"; |
| } |
| } |
| |
| void writeOperand(Value *Operand, bool Static = false); |
| void writeInstComputationInline(Instruction &I); |
| void writeOperandInternal(Value *Operand, bool Static = false); |
| void writeOperandWithCast(Value* Operand, unsigned Opcode); |
| void writeOperandWithCast(Value* Operand, const ICmpInst &I); |
| bool writeInstructionCast(const Instruction &I); |
| |
| void writeMemoryAccess(Value *Operand, Type *OperandType, |
| bool IsVolatile, unsigned Alignment); |
| |
| private : |
| std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c); |
| |
| void lowerIntrinsics(Function &F); |
| /// Prints the definition of the intrinsic function F. Supports the |
| /// intrinsics which need to be explicitly defined in the CBackend. |
| void printIntrinsicDefinition(const Function &F, raw_ostream &Out); |
| |
| void printModuleTypes(); |
| void printContainedStructs(Type *Ty, SmallPtrSet<Type *, 16> &); |
| void printFloatingPointConstants(Function &F); |
| void printFloatingPointConstants(const Constant *C); |
| void printFunctionSignature(const Function *F, bool Prototype); |
| |
| void printFunction(Function &); |
| void printBasicBlock(BasicBlock *BB); |
| void printLoop(Loop *L); |
| |
| void printCast(unsigned opcode, Type *SrcTy, Type *DstTy); |
| void printConstant(Constant *CPV, bool Static); |
| void printConstantWithCast(Constant *CPV, unsigned Opcode); |
| bool printConstExprCast(const ConstantExpr *CE, bool Static); |
| void printConstantArray(ConstantArray *CPA, bool Static); |
| void printConstantVector(ConstantVector *CV, bool Static); |
| |
| /// isAddressExposed - Return true if the specified value's name needs to |
| /// have its address taken in order to get a C value of the correct type. |
| /// This happens for global variables, byval parameters, and direct allocas. |
| bool isAddressExposed(const Value *V) const { |
| if (const Argument *A = dyn_cast<Argument>(V)) |
| return ByValParams.count(A); |
| return isa<GlobalVariable>(V) || isDirectAlloca(V); |
| } |
| |
| // isInlinableInst - Attempt to inline instructions into their uses to build |
| // trees as much as possible. To do this, we have to consistently decide |
| // what is acceptable to inline, so that variable declarations don't get |
| // printed and an extra copy of the expr is not emitted. |
| // |
| static bool isInlinableInst(const Instruction &I) { |
| // Always inline cmp instructions, even if they are shared by multiple |
| // expressions. GCC generates horrible code if we don't. |
| if (isa<CmpInst>(I)) |
| return true; |
| |
| // Must be an expression, must be used exactly once. If it is dead, we |
| // emit it inline where it would go. |
| if (I.getType() == Type::getVoidTy(I.getContext()) || !I.hasOneUse() || |
| isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) || |
| isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) || |
| isa<InsertValueInst>(I)) |
| // Don't inline a load across a store or other bad things! |
| return false; |
| |
| // Must not be used in inline asm, extractelement, or shufflevector. |
| if (I.hasOneUse()) { |
| const Instruction &User = cast<Instruction>(*I.use_back()); |
| if (isInlineAsm(User) || isa<ExtractElementInst>(User) || |
| isa<ShuffleVectorInst>(User)) |
| return false; |
| } |
| |
| // Only inline instruction it if it's use is in the same BB as the inst. |
| return I.getParent() == cast<Instruction>(I.use_back())->getParent(); |
| } |
| |
| // isDirectAlloca - Define fixed sized allocas in the entry block as direct |
| // variables which are accessed with the & operator. This causes GCC to |
| // generate significantly better code than to emit alloca calls directly. |
| // |
| static const AllocaInst *isDirectAlloca(const Value *V) { |
| const AllocaInst *AI = dyn_cast<AllocaInst>(V); |
| if (!AI) return 0; |
| if (AI->isArrayAllocation()) |
| return 0; // FIXME: we can also inline fixed size array allocas! |
| if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock()) |
| return 0; |
| return AI; |
| } |
| |
| // isInlineAsm - Check if the instruction is a call to an inline asm chunk. |
| static bool isInlineAsm(const Instruction& I) { |
| if (const CallInst *CI = dyn_cast<CallInst>(&I)) |
| return isa<InlineAsm>(CI->getCalledValue()); |
| return false; |
| } |
| |
| // Instruction visitation functions |
| friend class InstVisitor<CWriter>; |
| |
| void visitReturnInst(ReturnInst &I); |
| void visitBranchInst(BranchInst &I); |
| void visitSwitchInst(SwitchInst &I); |
| void visitIndirectBrInst(IndirectBrInst &I); |
| void visitInvokeInst(InvokeInst &I) { |
| llvm_unreachable("Lowerinvoke pass didn't work!"); |
| } |
| void visitUnwindInst(UnwindInst &I) { |
| llvm_unreachable("Lowerinvoke pass didn't work!"); |
| } |
| void visitResumeInst(ResumeInst &I) { |
| llvm_unreachable("DwarfEHPrepare pass didn't work!"); |
| } |
| void visitUnreachableInst(UnreachableInst &I); |
| |
| void visitPHINode(PHINode &I); |
| void visitBinaryOperator(Instruction &I); |
| void visitICmpInst(ICmpInst &I); |
| void visitFCmpInst(FCmpInst &I); |
| |
| void visitCastInst (CastInst &I); |
| void visitSelectInst(SelectInst &I); |
| void visitCallInst (CallInst &I); |
| void visitInlineAsm(CallInst &I); |
| bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee); |
| |
| void visitAllocaInst(AllocaInst &I); |
| void visitLoadInst (LoadInst &I); |
| void visitStoreInst (StoreInst &I); |
| void visitGetElementPtrInst(GetElementPtrInst &I); |
| void visitVAArgInst (VAArgInst &I); |
| |
| void visitInsertElementInst(InsertElementInst &I); |
| void visitExtractElementInst(ExtractElementInst &I); |
| void visitShuffleVectorInst(ShuffleVectorInst &SVI); |
| |
| void visitInsertValueInst(InsertValueInst &I); |
| void visitExtractValueInst(ExtractValueInst &I); |
| |
| void visitInstruction(Instruction &I) { |
| #ifndef NDEBUG |
| errs() << "C Writer does not know about " << I; |
| #endif |
| llvm_unreachable(0); |
| } |
| |
| void outputLValue(Instruction *I) { |
| Out << " " << GetValueName(I) << " = "; |
| } |
| |
| bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To); |
| void printPHICopiesForSuccessor(BasicBlock *CurBlock, |
| BasicBlock *Successor, unsigned Indent); |
| void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock, |
| unsigned Indent); |
| void printGEPExpression(Value *Ptr, gep_type_iterator I, |
| gep_type_iterator E, bool Static); |
| |
| std::string GetValueName(const Value *Operand); |
| }; |
| } |
| |
| char CWriter::ID = 0; |
| |
| |
| |
| static std::string CBEMangle(const std::string &S) { |
| std::string Result; |
| |
| for (unsigned i = 0, e = S.size(); i != e; ++i) |
| if (isalnum(S[i]) || S[i] == '_') { |
| Result += S[i]; |
| } else { |
| Result += '_'; |
| Result += 'A'+(S[i]&15); |
| Result += 'A'+((S[i]>>4)&15); |
| Result += '_'; |
| } |
| return Result; |
| } |
| |
| std::string CWriter::getStructName(StructType *ST) { |
| if (!ST->isLiteral() && !ST->getName().empty()) |
| return CBEMangle("l_"+ST->getName().str()); |
| |
| return "l_unnamed_" + utostr(UnnamedStructIDs[ST]); |
| } |
| |
| |
| /// printStructReturnPointerFunctionType - This is like printType for a struct |
| /// return type, except, instead of printing the type as void (*)(Struct*, ...) |
| /// print it as "Struct (*)(...)", for struct return functions. |
| void CWriter::printStructReturnPointerFunctionType(raw_ostream &Out, |
| const AttrListPtr &PAL, |
| PointerType *TheTy) { |
| FunctionType *FTy = cast<FunctionType>(TheTy->getElementType()); |
| std::string tstr; |
| raw_string_ostream FunctionInnards(tstr); |
| FunctionInnards << " (*) ("; |
| bool PrintedType = false; |
| |
| FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); |
| Type *RetTy = cast<PointerType>(*I)->getElementType(); |
| unsigned Idx = 1; |
| for (++I, ++Idx; I != E; ++I, ++Idx) { |
| if (PrintedType) |
| FunctionInnards << ", "; |
| Type *ArgTy = *I; |
| if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { |
| assert(ArgTy->isPointerTy()); |
| ArgTy = cast<PointerType>(ArgTy)->getElementType(); |
| } |
| printType(FunctionInnards, ArgTy, |
| /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), ""); |
| PrintedType = true; |
| } |
| if (FTy->isVarArg()) { |
| if (!PrintedType) |
| FunctionInnards << " int"; //dummy argument for empty vararg functs |
| FunctionInnards << ", ..."; |
| } else if (!PrintedType) { |
| FunctionInnards << "void"; |
| } |
| FunctionInnards << ')'; |
| printType(Out, RetTy, |
| /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str()); |
| } |
| |
| raw_ostream & |
| CWriter::printSimpleType(raw_ostream &Out, Type *Ty, bool isSigned, |
| const std::string &NameSoFar) { |
| assert((Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) && |
| "Invalid type for printSimpleType"); |
| switch (Ty->getTypeID()) { |
| case Type::VoidTyID: return Out << "void " << NameSoFar; |
| case Type::IntegerTyID: { |
| unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); |
| if (NumBits == 1) |
| return Out << "bool " << NameSoFar; |
| else if (NumBits <= 8) |
| return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar; |
| else if (NumBits <= 16) |
| return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar; |
| else if (NumBits <= 32) |
| return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar; |
| else if (NumBits <= 64) |
| return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar; |
| else { |
| assert(NumBits <= 128 && "Bit widths > 128 not implemented yet"); |
| return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar; |
| } |
| } |
| case Type::FloatTyID: return Out << "float " << NameSoFar; |
| case Type::DoubleTyID: return Out << "double " << NameSoFar; |
| // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is |
| // present matches host 'long double'. |
| case Type::X86_FP80TyID: |
| case Type::PPC_FP128TyID: |
| case Type::FP128TyID: return Out << "long double " << NameSoFar; |
| |
| case Type::X86_MMXTyID: |
| return printSimpleType(Out, Type::getInt32Ty(Ty->getContext()), isSigned, |
| " __attribute__((vector_size(64))) " + NameSoFar); |
| |
| case Type::VectorTyID: { |
| VectorType *VTy = cast<VectorType>(Ty); |
| return printSimpleType(Out, VTy->getElementType(), isSigned, |
| " __attribute__((vector_size(" + |
| utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar); |
| } |
| |
| default: |
| #ifndef NDEBUG |
| errs() << "Unknown primitive type: " << *Ty << "\n"; |
| #endif |
| llvm_unreachable(0); |
| } |
| } |
| |
| // Pass the Type* and the variable name and this prints out the variable |
| // declaration. |
| // |
| raw_ostream &CWriter::printType(raw_ostream &Out, Type *Ty, |
| bool isSigned, const std::string &NameSoFar, |
| bool IgnoreName, const AttrListPtr &PAL) { |
| if (Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) { |
| printSimpleType(Out, Ty, isSigned, NameSoFar); |
| return Out; |
| } |
| |
| switch (Ty->getTypeID()) { |
| case Type::FunctionTyID: { |
| FunctionType *FTy = cast<FunctionType>(Ty); |
| std::string tstr; |
| raw_string_ostream FunctionInnards(tstr); |
| FunctionInnards << " (" << NameSoFar << ") ("; |
| unsigned Idx = 1; |
| for (FunctionType::param_iterator I = FTy->param_begin(), |
| E = FTy->param_end(); I != E; ++I) { |
| Type *ArgTy = *I; |
| if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { |
| assert(ArgTy->isPointerTy()); |
| ArgTy = cast<PointerType>(ArgTy)->getElementType(); |
| } |
| if (I != FTy->param_begin()) |
| FunctionInnards << ", "; |
| printType(FunctionInnards, ArgTy, |
| /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), ""); |
| ++Idx; |
| } |
| if (FTy->isVarArg()) { |
| if (!FTy->getNumParams()) |
| FunctionInnards << " int"; //dummy argument for empty vaarg functs |
| FunctionInnards << ", ..."; |
| } else if (!FTy->getNumParams()) { |
| FunctionInnards << "void"; |
| } |
| FunctionInnards << ')'; |
| printType(Out, FTy->getReturnType(), |
| /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str()); |
| return Out; |
| } |
| case Type::StructTyID: { |
| StructType *STy = cast<StructType>(Ty); |
| |
| // Check to see if the type is named. |
| if (!IgnoreName) |
| return Out << getStructName(STy) << ' ' << NameSoFar; |
| |
| Out << NameSoFar + " {\n"; |
| unsigned Idx = 0; |
| for (StructType::element_iterator I = STy->element_begin(), |
| E = STy->element_end(); I != E; ++I) { |
| Out << " "; |
| printType(Out, *I, false, "field" + utostr(Idx++)); |
| Out << ";\n"; |
| } |
| Out << '}'; |
| if (STy->isPacked()) |
| Out << " __attribute__ ((packed))"; |
| return Out; |
| } |
| |
| case Type::PointerTyID: { |
| PointerType *PTy = cast<PointerType>(Ty); |
| std::string ptrName = "*" + NameSoFar; |
| |
| if (PTy->getElementType()->isArrayTy() || |
| PTy->getElementType()->isVectorTy()) |
| ptrName = "(" + ptrName + ")"; |
| |
| if (!PAL.isEmpty()) |
| // Must be a function ptr cast! |
| return printType(Out, PTy->getElementType(), false, ptrName, true, PAL); |
| return printType(Out, PTy->getElementType(), false, ptrName); |
| } |
| |
| case Type::ArrayTyID: { |
| ArrayType *ATy = cast<ArrayType>(Ty); |
| unsigned NumElements = ATy->getNumElements(); |
| if (NumElements == 0) NumElements = 1; |
| // Arrays are wrapped in structs to allow them to have normal |
| // value semantics (avoiding the array "decay"). |
| Out << NameSoFar << " { "; |
| printType(Out, ATy->getElementType(), false, |
| "array[" + utostr(NumElements) + "]"); |
| return Out << "; }"; |
| } |
| |
| default: |
| llvm_unreachable("Unhandled case in getTypeProps!"); |
| } |
| |
| return Out; |
| } |
| |
| void CWriter::printConstantArray(ConstantArray *CPA, bool Static) { |
| |
| // As a special case, print the array as a string if it is an array of |
| // ubytes or an array of sbytes with positive values. |
| // |
| Type *ETy = CPA->getType()->getElementType(); |
| bool isString = (ETy == Type::getInt8Ty(CPA->getContext()) || |
| ETy == Type::getInt8Ty(CPA->getContext())); |
| |
| // Make sure the last character is a null char, as automatically added by C |
| if (isString && (CPA->getNumOperands() == 0 || |
| !cast<Constant>(*(CPA->op_end()-1))->isNullValue())) |
| isString = false; |
| |
| if (isString) { |
| Out << '\"'; |
| // Keep track of whether the last number was a hexadecimal escape. |
| bool LastWasHex = false; |
| |
| // Do not include the last character, which we know is null |
| for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) { |
| unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue(); |
| |
| // Print it out literally if it is a printable character. The only thing |
| // to be careful about is when the last letter output was a hex escape |
| // code, in which case we have to be careful not to print out hex digits |
| // explicitly (the C compiler thinks it is a continuation of the previous |
| // character, sheesh...) |
| // |
| if (isprint(C) && (!LastWasHex || !isxdigit(C))) { |
| LastWasHex = false; |
| if (C == '"' || C == '\\') |
| Out << "\\" << (char)C; |
| else |
| Out << (char)C; |
| } else { |
| LastWasHex = false; |
| switch (C) { |
| case '\n': Out << "\\n"; break; |
| case '\t': Out << "\\t"; break; |
| case '\r': Out << "\\r"; break; |
| case '\v': Out << "\\v"; break; |
| case '\a': Out << "\\a"; break; |
| case '\"': Out << "\\\""; break; |
| case '\'': Out << "\\\'"; break; |
| default: |
| Out << "\\x"; |
| Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')); |
| Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); |
| LastWasHex = true; |
| break; |
| } |
| } |
| } |
| Out << '\"'; |
| } else { |
| Out << '{'; |
| if (CPA->getNumOperands()) { |
| Out << ' '; |
| printConstant(cast<Constant>(CPA->getOperand(0)), Static); |
| for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) { |
| Out << ", "; |
| printConstant(cast<Constant>(CPA->getOperand(i)), Static); |
| } |
| } |
| Out << " }"; |
| } |
| } |
| |
| void CWriter::printConstantVector(ConstantVector *CP, bool Static) { |
| Out << '{'; |
| if (CP->getNumOperands()) { |
| Out << ' '; |
| printConstant(cast<Constant>(CP->getOperand(0)), Static); |
| for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { |
| Out << ", "; |
| printConstant(cast<Constant>(CP->getOperand(i)), Static); |
| } |
| } |
| Out << " }"; |
| } |
| |
| // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out |
| // textually as a double (rather than as a reference to a stack-allocated |
| // variable). We decide this by converting CFP to a string and back into a |
| // double, and then checking whether the conversion results in a bit-equal |
| // double to the original value of CFP. This depends on us and the target C |
| // compiler agreeing on the conversion process (which is pretty likely since we |
| // only deal in IEEE FP). |
| // |
| static bool isFPCSafeToPrint(const ConstantFP *CFP) { |
| bool ignored; |
| // Do long doubles in hex for now. |
| if (CFP->getType() != Type::getFloatTy(CFP->getContext()) && |
| CFP->getType() != Type::getDoubleTy(CFP->getContext())) |
| return false; |
| APFloat APF = APFloat(CFP->getValueAPF()); // copy |
| if (CFP->getType() == Type::getFloatTy(CFP->getContext())) |
| APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored); |
| #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A |
| char Buffer[100]; |
| sprintf(Buffer, "%a", APF.convertToDouble()); |
| if (!strncmp(Buffer, "0x", 2) || |
| !strncmp(Buffer, "-0x", 3) || |
| !strncmp(Buffer, "+0x", 3)) |
| return APF.bitwiseIsEqual(APFloat(atof(Buffer))); |
| return false; |
| #else |
| std::string StrVal = ftostr(APF); |
| |
| while (StrVal[0] == ' ') |
| StrVal.erase(StrVal.begin()); |
| |
| // Check to make sure that the stringized number is not some string like "Inf" |
| // or NaN. Check that the string matches the "[-+]?[0-9]" regex. |
| if ((StrVal[0] >= '0' && StrVal[0] <= '9') || |
| ((StrVal[0] == '-' || StrVal[0] == '+') && |
| (StrVal[1] >= '0' && StrVal[1] <= '9'))) |
| // Reparse stringized version! |
| return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str()))); |
| return false; |
| #endif |
| } |
| |
| /// Print out the casting for a cast operation. This does the double casting |
| /// necessary for conversion to the destination type, if necessary. |
| /// @brief Print a cast |
| void CWriter::printCast(unsigned opc, Type *SrcTy, Type *DstTy) { |
| // Print the destination type cast |
| switch (opc) { |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::IntToPtr: |
| case Instruction::Trunc: |
| case Instruction::BitCast: |
| case Instruction::FPExt: |
| case Instruction::FPTrunc: // For these the DstTy sign doesn't matter |
| Out << '('; |
| printType(Out, DstTy); |
| Out << ')'; |
| break; |
| case Instruction::ZExt: |
| case Instruction::PtrToInt: |
| case Instruction::FPToUI: // For these, make sure we get an unsigned dest |
| Out << '('; |
| printSimpleType(Out, DstTy, false); |
| Out << ')'; |
| break; |
| case Instruction::SExt: |
| case Instruction::FPToSI: // For these, make sure we get a signed dest |
| Out << '('; |
| printSimpleType(Out, DstTy, true); |
| Out << ')'; |
| break; |
| default: |
| llvm_unreachable("Invalid cast opcode"); |
| } |
| |
| // Print the source type cast |
| switch (opc) { |
| case Instruction::UIToFP: |
| case Instruction::ZExt: |
| Out << '('; |
| printSimpleType(Out, SrcTy, false); |
| Out << ')'; |
| break; |
| case Instruction::SIToFP: |
| case Instruction::SExt: |
| Out << '('; |
| printSimpleType(Out, SrcTy, true); |
| Out << ')'; |
| break; |
| case Instruction::IntToPtr: |
| case Instruction::PtrToInt: |
| // Avoid "cast to pointer from integer of different size" warnings |
| Out << "(unsigned long)"; |
| break; |
| case Instruction::Trunc: |
| case Instruction::BitCast: |
| case Instruction::FPExt: |
| case Instruction::FPTrunc: |
| case Instruction::FPToSI: |
| case Instruction::FPToUI: |
| break; // These don't need a source cast. |
| default: |
| llvm_unreachable("Invalid cast opcode"); |
| break; |
| } |
| } |
| |
| // printConstant - The LLVM Constant to C Constant converter. |
| void CWriter::printConstant(Constant *CPV, bool Static) { |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { |
| switch (CE->getOpcode()) { |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::BitCast: |
| Out << "("; |
| printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType()); |
| if (CE->getOpcode() == Instruction::SExt && |
| CE->getOperand(0)->getType() == Type::getInt1Ty(CPV->getContext())) { |
| // Make sure we really sext from bool here by subtracting from 0 |
| Out << "0-"; |
| } |
| printConstant(CE->getOperand(0), Static); |
| if (CE->getType() == Type::getInt1Ty(CPV->getContext()) && |
| (CE->getOpcode() == Instruction::Trunc || |
| CE->getOpcode() == Instruction::FPToUI || |
| CE->getOpcode() == Instruction::FPToSI || |
| CE->getOpcode() == Instruction::PtrToInt)) { |
| // Make sure we really truncate to bool here by anding with 1 |
| Out << "&1u"; |
| } |
| Out << ')'; |
| return; |
| |
| case Instruction::GetElementPtr: |
| Out << "("; |
| printGEPExpression(CE->getOperand(0), gep_type_begin(CPV), |
| gep_type_end(CPV), Static); |
| Out << ")"; |
| return; |
| case Instruction::Select: |
| Out << '('; |
| printConstant(CE->getOperand(0), Static); |
| Out << '?'; |
| printConstant(CE->getOperand(1), Static); |
| Out << ':'; |
| printConstant(CE->getOperand(2), Static); |
| Out << ')'; |
| return; |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Sub: |
| case Instruction::FSub: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::SDiv: |
| case Instruction::UDiv: |
| case Instruction::FDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::FRem: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::ICmp: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| { |
| Out << '('; |
| bool NeedsClosingParens = printConstExprCast(CE, Static); |
| printConstantWithCast(CE->getOperand(0), CE->getOpcode()); |
| switch (CE->getOpcode()) { |
| case Instruction::Add: |
| case Instruction::FAdd: Out << " + "; break; |
| case Instruction::Sub: |
| case Instruction::FSub: Out << " - "; break; |
| case Instruction::Mul: |
| case Instruction::FMul: Out << " * "; break; |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::FRem: Out << " % "; break; |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::FDiv: Out << " / "; break; |
| case Instruction::And: Out << " & "; break; |
| case Instruction::Or: Out << " | "; break; |
| case Instruction::Xor: Out << " ^ "; break; |
| case Instruction::Shl: Out << " << "; break; |
| case Instruction::LShr: |
| case Instruction::AShr: Out << " >> "; break; |
| case Instruction::ICmp: |
| switch (CE->getPredicate()) { |
| case ICmpInst::ICMP_EQ: Out << " == "; break; |
| case ICmpInst::ICMP_NE: Out << " != "; break; |
| case ICmpInst::ICMP_SLT: |
| case ICmpInst::ICMP_ULT: Out << " < "; break; |
| case ICmpInst::ICMP_SLE: |
| case ICmpInst::ICMP_ULE: Out << " <= "; break; |
| case ICmpInst::ICMP_SGT: |
| case ICmpInst::ICMP_UGT: Out << " > "; break; |
| case ICmpInst::ICMP_SGE: |
| case ICmpInst::ICMP_UGE: Out << " >= "; break; |
| default: llvm_unreachable("Illegal ICmp predicate"); |
| } |
| break; |
| default: llvm_unreachable("Illegal opcode here!"); |
| } |
| printConstantWithCast(CE->getOperand(1), CE->getOpcode()); |
| if (NeedsClosingParens) |
| Out << "))"; |
| Out << ')'; |
| return; |
| } |
| case Instruction::FCmp: { |
| Out << '('; |
| bool NeedsClosingParens = printConstExprCast(CE, Static); |
| if (CE->getPredicate() == FCmpInst::FCMP_FALSE) |
| Out << "0"; |
| else if (CE->getPredicate() == FCmpInst::FCMP_TRUE) |
| Out << "1"; |
| else { |
| const char* op = 0; |
| switch (CE->getPredicate()) { |
| default: llvm_unreachable("Illegal FCmp predicate"); |
| case FCmpInst::FCMP_ORD: op = "ord"; break; |
| case FCmpInst::FCMP_UNO: op = "uno"; break; |
| case FCmpInst::FCMP_UEQ: op = "ueq"; break; |
| case FCmpInst::FCMP_UNE: op = "une"; break; |
| case FCmpInst::FCMP_ULT: op = "ult"; break; |
| case FCmpInst::FCMP_ULE: op = "ule"; break; |
| case FCmpInst::FCMP_UGT: op = "ugt"; break; |
| case FCmpInst::FCMP_UGE: op = "uge"; break; |
| case FCmpInst::FCMP_OEQ: op = "oeq"; break; |
| case FCmpInst::FCMP_ONE: op = "one"; break; |
| case FCmpInst::FCMP_OLT: op = "olt"; break; |
| case FCmpInst::FCMP_OLE: op = "ole"; break; |
| case FCmpInst::FCMP_OGT: op = "ogt"; break; |
| case FCmpInst::FCMP_OGE: op = "oge"; break; |
| } |
| Out << "llvm_fcmp_" << op << "("; |
| printConstantWithCast(CE->getOperand(0), CE->getOpcode()); |
| Out << ", "; |
| printConstantWithCast(CE->getOperand(1), CE->getOpcode()); |
| Out << ")"; |
| } |
| if (NeedsClosingParens) |
| Out << "))"; |
| Out << ')'; |
| return; |
| } |
| default: |
| #ifndef NDEBUG |
| errs() << "CWriter Error: Unhandled constant expression: " |
| << *CE << "\n"; |
| #endif |
| llvm_unreachable(0); |
| } |
| } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) { |
| Out << "(("; |
| printType(Out, CPV->getType()); // sign doesn't matter |
| Out << ")/*UNDEF*/"; |
| if (!CPV->getType()->isVectorTy()) { |
| Out << "0)"; |
| } else { |
| Out << "{})"; |
| } |
| return; |
| } |
| |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) { |
| Type* Ty = CI->getType(); |
| if (Ty == Type::getInt1Ty(CPV->getContext())) |
| Out << (CI->getZExtValue() ? '1' : '0'); |
| else if (Ty == Type::getInt32Ty(CPV->getContext())) |
| Out << CI->getZExtValue() << 'u'; |
| else if (Ty->getPrimitiveSizeInBits() > 32) |
| Out << CI->getZExtValue() << "ull"; |
| else { |
| Out << "(("; |
| printSimpleType(Out, Ty, false) << ')'; |
| if (CI->isMinValue(true)) |
| Out << CI->getZExtValue() << 'u'; |
| else |
| Out << CI->getSExtValue(); |
| Out << ')'; |
| } |
| return; |
| } |
| |
| switch (CPV->getType()->getTypeID()) { |
| case Type::FloatTyID: |
| case Type::DoubleTyID: |
| case Type::X86_FP80TyID: |
| case Type::PPC_FP128TyID: |
| case Type::FP128TyID: { |
| ConstantFP *FPC = cast<ConstantFP>(CPV); |
| std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC); |
| if (I != FPConstantMap.end()) { |
| // Because of FP precision problems we must load from a stack allocated |
| // value that holds the value in hex. |
| Out << "(*(" << (FPC->getType() == Type::getFloatTy(CPV->getContext()) ? |
| "float" : |
| FPC->getType() == Type::getDoubleTy(CPV->getContext()) ? |
| "double" : |
| "long double") |
| << "*)&FPConstant" << I->second << ')'; |
| } else { |
| double V; |
| if (FPC->getType() == Type::getFloatTy(CPV->getContext())) |
| V = FPC->getValueAPF().convertToFloat(); |
| else if (FPC->getType() == Type::getDoubleTy(CPV->getContext())) |
| V = FPC->getValueAPF().convertToDouble(); |
| else { |
| // Long double. Convert the number to double, discarding precision. |
| // This is not awesome, but it at least makes the CBE output somewhat |
| // useful. |
| APFloat Tmp = FPC->getValueAPF(); |
| bool LosesInfo; |
| Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo); |
| V = Tmp.convertToDouble(); |
| } |
| |
| if (IsNAN(V)) { |
| // The value is NaN |
| |
| // FIXME the actual NaN bits should be emitted. |
| // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN, |
| // it's 0x7ff4. |
| const unsigned long QuietNaN = 0x7ff8UL; |
| //const unsigned long SignalNaN = 0x7ff4UL; |
| |
| // We need to grab the first part of the FP # |
| char Buffer[100]; |
| |
| uint64_t ll = DoubleToBits(V); |
| sprintf(Buffer, "0x%llx", static_cast<long long>(ll)); |
| |
| std::string Num(&Buffer[0], &Buffer[6]); |
| unsigned long Val = strtoul(Num.c_str(), 0, 16); |
| |
| if (FPC->getType() == Type::getFloatTy(FPC->getContext())) |
| Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\"" |
| << Buffer << "\") /*nan*/ "; |
| else |
| Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\"" |
| << Buffer << "\") /*nan*/ "; |
| } else if (IsInf(V)) { |
| // The value is Inf |
| if (V < 0) Out << '-'; |
| Out << "LLVM_INF" << |
| (FPC->getType() == Type::getFloatTy(FPC->getContext()) ? "F" : "") |
| << " /*inf*/ "; |
| } else { |
| std::string Num; |
| #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A |
| // Print out the constant as a floating point number. |
| char Buffer[100]; |
| sprintf(Buffer, "%a", V); |
| Num = Buffer; |
| #else |
| Num = ftostr(FPC->getValueAPF()); |
| #endif |
| Out << Num; |
| } |
| } |
| break; |
| } |
| |
| case Type::ArrayTyID: |
| // Use C99 compound expression literal initializer syntax. |
| if (!Static) { |
| Out << "("; |
| printType(Out, CPV->getType()); |
| Out << ")"; |
| } |
| Out << "{ "; // Arrays are wrapped in struct types. |
| if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) { |
| printConstantArray(CA, Static); |
| } else { |
| assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)); |
| ArrayType *AT = cast<ArrayType>(CPV->getType()); |
| Out << '{'; |
| if (AT->getNumElements()) { |
| Out << ' '; |
| Constant *CZ = Constant::getNullValue(AT->getElementType()); |
| printConstant(CZ, Static); |
| for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) { |
| Out << ", "; |
| printConstant(CZ, Static); |
| } |
| } |
| Out << " }"; |
| } |
| Out << " }"; // Arrays are wrapped in struct types. |
| break; |
| |
| case Type::VectorTyID: |
| // Use C99 compound expression literal initializer syntax. |
| if (!Static) { |
| Out << "("; |
| printType(Out, CPV->getType()); |
| Out << ")"; |
| } |
| if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) { |
| printConstantVector(CV, Static); |
| } else { |
| assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)); |
| VectorType *VT = cast<VectorType>(CPV->getType()); |
| Out << "{ "; |
| Constant *CZ = Constant::getNullValue(VT->getElementType()); |
| printConstant(CZ, Static); |
| for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) { |
| Out << ", "; |
| printConstant(CZ, Static); |
| } |
| Out << " }"; |
| } |
| break; |
| |
| case Type::StructTyID: |
| // Use C99 compound expression literal initializer syntax. |
| if (!Static) { |
| Out << "("; |
| printType(Out, CPV->getType()); |
| Out << ")"; |
| } |
| if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) { |
| StructType *ST = cast<StructType>(CPV->getType()); |
| Out << '{'; |
| if (ST->getNumElements()) { |
| Out << ' '; |
| printConstant(Constant::getNullValue(ST->getElementType(0)), Static); |
| for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) { |
| Out << ", "; |
| printConstant(Constant::getNullValue(ST->getElementType(i)), Static); |
| } |
| } |
| Out << " }"; |
| } else { |
| Out << '{'; |
| if (CPV->getNumOperands()) { |
| Out << ' '; |
| printConstant(cast<Constant>(CPV->getOperand(0)), Static); |
| for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) { |
| Out << ", "; |
| printConstant(cast<Constant>(CPV->getOperand(i)), Static); |
| } |
| } |
| Out << " }"; |
| } |
| break; |
| |
| case Type::PointerTyID: |
| if (isa<ConstantPointerNull>(CPV)) { |
| Out << "(("; |
| printType(Out, CPV->getType()); // sign doesn't matter |
| Out << ")/*NULL*/0)"; |
| break; |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) { |
| writeOperand(GV, Static); |
| break; |
| } |
| // FALL THROUGH |
| default: |
| #ifndef NDEBUG |
| errs() << "Unknown constant type: " << *CPV << "\n"; |
| #endif |
| llvm_unreachable(0); |
| } |
| } |
| |
| // Some constant expressions need to be casted back to the original types |
| // because their operands were casted to the expected type. This function takes |
| // care of detecting that case and printing the cast for the ConstantExpr. |
| bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) { |
| bool NeedsExplicitCast = false; |
| Type *Ty = CE->getOperand(0)->getType(); |
| bool TypeIsSigned = false; |
| switch (CE->getOpcode()) { |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| // We need to cast integer arithmetic so that it is always performed |
| // as unsigned, to avoid undefined behavior on overflow. |
| case Instruction::LShr: |
| case Instruction::URem: |
| case Instruction::UDiv: NeedsExplicitCast = true; break; |
| case Instruction::AShr: |
| case Instruction::SRem: |
| case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break; |
| case Instruction::SExt: |
| Ty = CE->getType(); |
| NeedsExplicitCast = true; |
| TypeIsSigned = true; |
| break; |
| case Instruction::ZExt: |
| case Instruction::Trunc: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::BitCast: |
| Ty = CE->getType(); |
| NeedsExplicitCast = true; |
| break; |
| default: break; |
| } |
| if (NeedsExplicitCast) { |
| Out << "(("; |
| if (Ty->isIntegerTy() && Ty != Type::getInt1Ty(Ty->getContext())) |
| printSimpleType(Out, Ty, TypeIsSigned); |
| else |
| printType(Out, Ty); // not integer, sign doesn't matter |
| Out << ")("; |
| } |
| return NeedsExplicitCast; |
| } |
| |
| // Print a constant assuming that it is the operand for a given Opcode. The |
| // opcodes that care about sign need to cast their operands to the expected |
| // type before the operation proceeds. This function does the casting. |
| void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) { |
| |
| // Extract the operand's type, we'll need it. |
| Type* OpTy = CPV->getType(); |
| |
| // Indicate whether to do the cast or not. |
| bool shouldCast = false; |
| bool typeIsSigned = false; |
| |
| // Based on the Opcode for which this Constant is being written, determine |
| // the new type to which the operand should be casted by setting the value |
| // of OpTy. If we change OpTy, also set shouldCast to true so it gets |
| // casted below. |
| switch (Opcode) { |
| default: |
| // for most instructions, it doesn't matter |
| break; |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| // We need to cast integer arithmetic so that it is always performed |
| // as unsigned, to avoid undefined behavior on overflow. |
| case Instruction::LShr: |
| case Instruction::UDiv: |
| case Instruction::URem: |
| shouldCast = true; |
| break; |
| case Instruction::AShr: |
| case Instruction::SDiv: |
| case Instruction::SRem: |
| shouldCast = true; |
| typeIsSigned = true; |
| break; |
| } |
| |
| // Write out the casted constant if we should, otherwise just write the |
| // operand. |
| if (shouldCast) { |
| Out << "(("; |
| printSimpleType(Out, OpTy, typeIsSigned); |
| Out << ")"; |
| printConstant(CPV, false); |
| Out << ")"; |
| } else |
| printConstant(CPV, false); |
| } |
| |
| std::string CWriter::GetValueName(const Value *Operand) { |
| |
| // Resolve potential alias. |
| if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Operand)) { |
| if (const Value *V = GA->resolveAliasedGlobal(false)) |
| Operand = V; |
| } |
| |
| // Mangle globals with the standard mangler interface for LLC compatibility. |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand)) { |
| SmallString<128> Str; |
| Mang->getNameWithPrefix(Str, GV, false); |
| return CBEMangle(Str.str().str()); |
| } |
| |
| std::string Name = Operand->getName(); |
| |
| if (Name.empty()) { // Assign unique names to local temporaries. |
| unsigned &No = AnonValueNumbers[Operand]; |
| if (No == 0) |
| No = ++NextAnonValueNumber; |
| Name = "tmp__" + utostr(No); |
| } |
| |
| std::string VarName; |
| VarName.reserve(Name.capacity()); |
| |
| for (std::string::iterator I = Name.begin(), E = Name.end(); |
| I != E; ++I) { |
| char ch = *I; |
| |
| if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') || |
| (ch >= '0' && ch <= '9') || ch == '_')) { |
| char buffer[5]; |
| sprintf(buffer, "_%x_", ch); |
| VarName += buffer; |
| } else |
| VarName += ch; |
| } |
| |
| return "llvm_cbe_" + VarName; |
| } |
| |
| /// writeInstComputationInline - Emit the computation for the specified |
| /// instruction inline, with no destination provided. |
| void CWriter::writeInstComputationInline(Instruction &I) { |
| // We can't currently support integer types other than 1, 8, 16, 32, 64. |
| // Validate this. |
| Type *Ty = I.getType(); |
| if (Ty->isIntegerTy() && (Ty!=Type::getInt1Ty(I.getContext()) && |
| Ty!=Type::getInt8Ty(I.getContext()) && |
| Ty!=Type::getInt16Ty(I.getContext()) && |
| Ty!=Type::getInt32Ty(I.getContext()) && |
| Ty!=Type::getInt64Ty(I.getContext()))) { |
| report_fatal_error("The C backend does not currently support integer " |
| "types of widths other than 1, 8, 16, 32, 64.\n" |
| "This is being tracked as PR 4158."); |
| } |
| |
| // If this is a non-trivial bool computation, make sure to truncate down to |
| // a 1 bit value. This is important because we want "add i1 x, y" to return |
| // "0" when x and y are true, not "2" for example. |
| bool NeedBoolTrunc = false; |
| if (I.getType() == Type::getInt1Ty(I.getContext()) && |
| !isa<ICmpInst>(I) && !isa<FCmpInst>(I)) |
| NeedBoolTrunc = true; |
| |
| if (NeedBoolTrunc) |
| Out << "(("; |
| |
| visit(I); |
| |
| if (NeedBoolTrunc) |
| Out << ")&1)"; |
| } |
| |
| |
| void CWriter::writeOperandInternal(Value *Operand, bool Static) { |
| if (Instruction *I = dyn_cast<Instruction>(Operand)) |
| // Should we inline this instruction to build a tree? |
| if (isInlinableInst(*I) && !isDirectAlloca(I)) { |
| Out << '('; |
| writeInstComputationInline(*I); |
| Out << ')'; |
| return; |
| } |
| |
| Constant* CPV = dyn_cast<Constant>(Operand); |
| |
| if (CPV && !isa<GlobalValue>(CPV)) |
| printConstant(CPV, Static); |
| else |
| Out << GetValueName(Operand); |
| } |
| |
| void CWriter::writeOperand(Value *Operand, bool Static) { |
| bool isAddressImplicit = isAddressExposed(Operand); |
| if (isAddressImplicit) |
| Out << "(&"; // Global variables are referenced as their addresses by llvm |
| |
| writeOperandInternal(Operand, Static); |
| |
| if (isAddressImplicit) |
| Out << ')'; |
| } |
| |
| // Some instructions need to have their result value casted back to the |
| // original types because their operands were casted to the expected type. |
| // This function takes care of detecting that case and printing the cast |
| // for the Instruction. |
| bool CWriter::writeInstructionCast(const Instruction &I) { |
| Type *Ty = I.getOperand(0)->getType(); |
| switch (I.getOpcode()) { |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| // We need to cast integer arithmetic so that it is always performed |
| // as unsigned, to avoid undefined behavior on overflow. |
| case Instruction::LShr: |
| case Instruction::URem: |
| case Instruction::UDiv: |
| Out << "(("; |
| printSimpleType(Out, Ty, false); |
| Out << ")("; |
| return true; |
| case Instruction::AShr: |
| case Instruction::SRem: |
| case Instruction::SDiv: |
| Out << "(("; |
| printSimpleType(Out, Ty, true); |
| Out << ")("; |
| return true; |
| default: break; |
| } |
| return false; |
| } |
| |
| // Write the operand with a cast to another type based on the Opcode being used. |
| // This will be used in cases where an instruction has specific type |
| // requirements (usually signedness) for its operands. |
| void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) { |
| |
| // Extract the operand's type, we'll need it. |
| Type* OpTy = Operand->getType(); |
| |
| // Indicate whether to do the cast or not. |
| bool shouldCast = false; |
| |
| // Indicate whether the cast should be to a signed type or not. |
| bool castIsSigned = false; |
| |
| // Based on the Opcode for which this Operand is being written, determine |
| // the new type to which the operand should be casted by setting the value |
| // of OpTy. If we change OpTy, also set shouldCast to true. |
| switch (Opcode) { |
| default: |
| // for most instructions, it doesn't matter |
| break; |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| // We need to cast integer arithmetic so that it is always performed |
| // as unsigned, to avoid undefined behavior on overflow. |
| case Instruction::LShr: |
| case Instruction::UDiv: |
| case Instruction::URem: // Cast to unsigned first |
| shouldCast = true; |
| castIsSigned = false; |
| break; |
| case Instruction::GetElementPtr: |
| case Instruction::AShr: |
| case Instruction::SDiv: |
| case Instruction::SRem: // Cast to signed first |
| shouldCast = true; |
| castIsSigned = true; |
| break; |
| } |
| |
| // Write out the casted operand if we should, otherwise just write the |
| // operand. |
| if (shouldCast) { |
| Out << "(("; |
| printSimpleType(Out, OpTy, castIsSigned); |
| Out << ")"; |
| writeOperand(Operand); |
| Out << ")"; |
| } else |
| writeOperand(Operand); |
| } |
| |
| // Write the operand with a cast to another type based on the icmp predicate |
| // being used. |
| void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) { |
| // This has to do a cast to ensure the operand has the right signedness. |
| // Also, if the operand is a pointer, we make sure to cast to an integer when |
| // doing the comparison both for signedness and so that the C compiler doesn't |
| // optimize things like "p < NULL" to false (p may contain an integer value |
| // f.e.). |
| bool shouldCast = Cmp.isRelational(); |
| |
| // Write out the casted operand if we should, otherwise just write the |
| // operand. |
| if (!shouldCast) { |
| writeOperand(Operand); |
| return; |
| } |
| |
| // Should this be a signed comparison? If so, convert to signed. |
| bool castIsSigned = Cmp.isSigned(); |
| |
| // If the operand was a pointer, convert to a large integer type. |
| Type* OpTy = Operand->getType(); |
| if (OpTy->isPointerTy()) |
| OpTy = TD->getIntPtrType(Operand->getContext()); |
| |
| Out << "(("; |
| printSimpleType(Out, OpTy, castIsSigned); |
| Out << ")"; |
| writeOperand(Operand); |
| Out << ")"; |
| } |
| |
| // generateCompilerSpecificCode - This is where we add conditional compilation |
| // directives to cater to specific compilers as need be. |
| // |
| static void generateCompilerSpecificCode(formatted_raw_ostream& Out, |
| const TargetData *TD) { |
| // Alloca is hard to get, and we don't want to include stdlib.h here. |
| Out << "/* get a declaration for alloca */\n" |
| << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n" |
| << "#define alloca(x) __builtin_alloca((x))\n" |
| << "#define _alloca(x) __builtin_alloca((x))\n" |
| << "#elif defined(__APPLE__)\n" |
| << "extern void *__builtin_alloca(unsigned long);\n" |
| << "#define alloca(x) __builtin_alloca(x)\n" |
| << "#define longjmp _longjmp\n" |
| << "#define setjmp _setjmp\n" |
| << "#elif defined(__sun__)\n" |
| << "#if defined(__sparcv9)\n" |
| << "extern void *__builtin_alloca(unsigned long);\n" |
| << "#else\n" |
| << "extern void *__builtin_alloca(unsigned int);\n" |
| << "#endif\n" |
| << "#define alloca(x) __builtin_alloca(x)\n" |
| << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__arm__)\n" |
| << "#define alloca(x) __builtin_alloca(x)\n" |
| << "#elif defined(_MSC_VER)\n" |
| << "#define inline _inline\n" |
| << "#define alloca(x) _alloca(x)\n" |
| << "#else\n" |
| << "#include <alloca.h>\n" |
| << "#endif\n\n"; |
| |
| // We output GCC specific attributes to preserve 'linkonce'ness on globals. |
| // If we aren't being compiled with GCC, just drop these attributes. |
| Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n" |
| << "#define __attribute__(X)\n" |
| << "#endif\n\n"; |
| |
| // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))". |
| Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" |
| << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n" |
| << "#elif defined(__GNUC__)\n" |
| << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n" |
| << "#else\n" |
| << "#define __EXTERNAL_WEAK__\n" |
| << "#endif\n\n"; |
| |
| // For now, turn off the weak linkage attribute on Mac OS X. (See above.) |
| Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" |
| << "#define __ATTRIBUTE_WEAK__\n" |
| << "#elif defined(__GNUC__)\n" |
| << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n" |
| << "#else\n" |
| << "#define __ATTRIBUTE_WEAK__\n" |
| << "#endif\n\n"; |
| |
| // Add hidden visibility support. FIXME: APPLE_CC? |
| Out << "#if defined(__GNUC__)\n" |
| << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n" |
| << "#endif\n\n"; |
| |
| // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise |
| // From the GCC documentation: |
| // |
| // double __builtin_nan (const char *str) |
| // |
| // This is an implementation of the ISO C99 function nan. |
| // |
| // Since ISO C99 defines this function in terms of strtod, which we do |
| // not implement, a description of the parsing is in order. The string is |
| // parsed as by strtol; that is, the base is recognized by leading 0 or |
| // 0x prefixes. The number parsed is placed in the significand such that |
| // the least significant bit of the number is at the least significant |
| // bit of the significand. The number is truncated to fit the significand |
| // field provided. The significand is forced to be a quiet NaN. |
| // |
| // This function, if given a string literal, is evaluated early enough |
| // that it is considered a compile-time constant. |
| // |
| // float __builtin_nanf (const char *str) |
| // |
| // Similar to __builtin_nan, except the return type is float. |
| // |
| // double __builtin_inf (void) |
| // |
| // Similar to __builtin_huge_val, except a warning is generated if the |
| // target floating-point format does not support infinities. This |
| // function is suitable for implementing the ISO C99 macro INFINITY. |
| // |
| // float __builtin_inff (void) |
| // |
| // Similar to __builtin_inf, except the return type is float. |
| Out << "#ifdef __GNUC__\n" |
| << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n" |
| << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n" |
| << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n" |
| << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n" |
| << "#define LLVM_INF __builtin_inf() /* Double */\n" |
| << "#define LLVM_INFF __builtin_inff() /* Float */\n" |
| << "#define LLVM_PREFETCH(addr,rw,locality) " |
| "__builtin_prefetch(addr,rw,locality)\n" |
| << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n" |
| << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n" |
| << "#define LLVM_ASM __asm__\n" |
| << "#else\n" |
| << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n" |
| << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n" |
| << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n" |
| << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n" |
| << "#define LLVM_INF ((double)0.0) /* Double */\n" |
| << "#define LLVM_INFF 0.0F /* Float */\n" |
| << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n" |
| << "#define __ATTRIBUTE_CTOR__\n" |
| << "#define __ATTRIBUTE_DTOR__\n" |
| << "#define LLVM_ASM(X)\n" |
| << "#endif\n\n"; |
| |
| Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n" |
| << "#define __builtin_stack_save() 0 /* not implemented */\n" |
| << "#define __builtin_stack_restore(X) /* noop */\n" |
| << "#endif\n\n"; |
| |
| // Output typedefs for 128-bit integers. If these are needed with a |
| // 32-bit target or with a C compiler that doesn't support mode(TI), |
| // more drastic measures will be needed. |
| Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n" |
| << "typedef int __attribute__((mode(TI))) llvmInt128;\n" |
| << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n" |
| << "#endif\n\n"; |
| |
| // Output target-specific code that should be inserted into main. |
| Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n"; |
| } |
| |
| /// FindStaticTors - Given a static ctor/dtor list, unpack its contents into |
| /// the StaticTors set. |
| static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){ |
| ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); |
| if (!InitList) return; |
| |
| for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) |
| if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ |
| if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. |
| |
| if (CS->getOperand(1)->isNullValue()) |
| return; // Found a null terminator, exit printing. |
| Constant *FP = CS->getOperand(1); |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) |
| if (CE->isCast()) |
| FP = CE->getOperand(0); |
| if (Function *F = dyn_cast<Function>(FP)) |
| StaticTors.insert(F); |
| } |
| } |
| |
| enum SpecialGlobalClass { |
| NotSpecial = 0, |
| GlobalCtors, GlobalDtors, |
| NotPrinted |
| }; |
| |
| /// getGlobalVariableClass - If this is a global that is specially recognized |
| /// by LLVM, return a code that indicates how we should handle it. |
| static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) { |
| // If this is a global ctors/dtors list, handle it now. |
| if (GV->hasAppendingLinkage() && GV->use_empty()) { |
| if (GV->getName() == "llvm.global_ctors") |
| return GlobalCtors; |
| else if (GV->getName() == "llvm.global_dtors") |
| return GlobalDtors; |
| } |
| |
| // Otherwise, if it is other metadata, don't print it. This catches things |
| // like debug information. |
| if (GV->getSection() == "llvm.metadata") |
| return NotPrinted; |
| |
| return NotSpecial; |
| } |
| |
| // PrintEscapedString - Print each character of the specified string, escaping |
| // it if it is not printable or if it is an escape char. |
| static void PrintEscapedString(const char *Str, unsigned Length, |
| raw_ostream &Out) { |
| for (unsigned i = 0; i != Length; ++i) { |
| unsigned char C = Str[i]; |
| if (isprint(C) && C != '\\' && C != '"') |
| Out << C; |
| else if (C == '\\') |
| Out << "\\\\"; |
| else if (C == '\"') |
| Out << "\\\""; |
| else if (C == '\t') |
| Out << "\\t"; |
| else |
| Out << "\\x" << hexdigit(C >> 4) << hexdigit(C & 0x0F); |
| } |
| } |
| |
| // PrintEscapedString - Print each character of the specified string, escaping |
| // it if it is not printable or if it is an escape char. |
| static void PrintEscapedString(const std::string &Str, raw_ostream &Out) { |
| PrintEscapedString(Str.c_str(), Str.size(), Out); |
| } |
| |
| bool CWriter::doInitialization(Module &M) { |
| FunctionPass::doInitialization(M); |
| |
| // Initialize |
| TheModule = &M; |
| |
| TD = new TargetData(&M); |
| IL = new IntrinsicLowering(*TD); |
| IL->AddPrototypes(M); |
| |
| #if 0 |
| std::string Triple = TheModule->getTargetTriple(); |
| if (Triple.empty()) |
| Triple = llvm::sys::getHostTriple(); |
| |
| std::string E; |
| if (const Target *Match = TargetRegistry::lookupTarget(Triple, E)) |
| TAsm = Match->createMCAsmInfo(Triple); |
| #endif |
| TAsm = new CBEMCAsmInfo(); |
| MRI = new MCRegisterInfo(); |
| TCtx = new MCContext(*TAsm, *MRI, NULL); |
| Mang = new Mangler(*TCtx, *TD); |
| |
| // Keep track of which functions are static ctors/dtors so they can have |
| // an attribute added to their prototypes. |
| std::set<Function*> StaticCtors, StaticDtors; |
| for (Module::global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) { |
| switch (getGlobalVariableClass(I)) { |
| default: break; |
| case GlobalCtors: |
| FindStaticTors(I, StaticCtors); |
| break; |
| case GlobalDtors: |
| FindStaticTors(I, StaticDtors); |
| break; |
| } |
| } |
| |
| // get declaration for alloca |
| Out << "/* Provide Declarations */\n"; |
| Out << "#include <stdarg.h>\n"; // Varargs support |
| Out << "#include <setjmp.h>\n"; // Unwind support |
| Out << "#include <limits.h>\n"; // With overflow intrinsics support. |
| generateCompilerSpecificCode(Out, TD); |
| |
| // Provide a definition for `bool' if not compiling with a C++ compiler. |
| Out << "\n" |
| << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n" |
| |
| << "\n\n/* Support for floating point constants */\n" |
| << "typedef unsigned long long ConstantDoubleTy;\n" |
| << "typedef unsigned int ConstantFloatTy;\n" |
| << "typedef struct { unsigned long long f1; unsigned short f2; " |
| "unsigned short pad[3]; } ConstantFP80Ty;\n" |
| // This is used for both kinds of 128-bit long double; meaning differs. |
| << "typedef struct { unsigned long long f1; unsigned long long f2; }" |
| " ConstantFP128Ty;\n" |
| << "\n\n/* Global Declarations */\n"; |
| |
| // First output all the declarations for the program, because C requires |
| // Functions & globals to be declared before they are used. |
| // |
| if (!M.getModuleInlineAsm().empty()) { |
| Out << "/* Module asm statements */\n" |
| << "asm("; |
| |
| // Split the string into lines, to make it easier to read the .ll file. |
| std::string Asm = M.getModuleInlineAsm(); |
| size_t CurPos = 0; |
| size_t NewLine = Asm.find_first_of('\n', CurPos); |
| while (NewLine != std::string::npos) { |
| // We found a newline, print the portion of the asm string from the |
| // last newline up to this newline. |
| Out << "\""; |
| PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine), |
| Out); |
| Out << "\\n\"\n"; |
| CurPos = NewLine+1; |
| NewLine = Asm.find_first_of('\n', CurPos); |
| } |
| Out << "\""; |
| PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out); |
| Out << "\");\n" |
| << "/* End Module asm statements */\n"; |
| } |
| |
| // Loop over the symbol table, emitting all named constants. |
| printModuleTypes(); |
| |
| // Global variable declarations... |
| if (!M.global_empty()) { |
| Out << "\n/* External Global Variable Declarations */\n"; |
| for (Module::global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) { |
| |
| if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() || |
| I->hasCommonLinkage()) |
| Out << "extern "; |
| else if (I->hasDLLImportLinkage()) |
| Out << "__declspec(dllimport) "; |
| else |
| continue; // Internal Global |
| |
| // Thread Local Storage |
| if (I->isThreadLocal()) |
| Out << "__thread "; |
| |
| printType(Out, I->getType()->getElementType(), false, GetValueName(I)); |
| |
| if (I->hasExternalWeakLinkage()) |
| Out << " __EXTERNAL_WEAK__"; |
| Out << ";\n"; |
| } |
| } |
| |
| // Function declarations |
| Out << "\n/* Function Declarations */\n"; |
| Out << "double fmod(double, double);\n"; // Support for FP rem |
| Out << "float fmodf(float, float);\n"; |
| Out << "long double fmodl(long double, long double);\n"; |
| |
| // Store the intrinsics which will be declared/defined below. |
| SmallVector<const Function*, 8> intrinsicsToDefine; |
| |
| for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { |
| // Don't print declarations for intrinsic functions. |
| // Store the used intrinsics, which need to be explicitly defined. |
| if (I->isIntrinsic()) { |
| switch (I->getIntrinsicID()) { |
| default: |
| break; |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::sadd_with_overflow: |
| intrinsicsToDefine.push_back(I); |
| break; |
| } |
| continue; |
| } |
| |
| if (I->getName() == "setjmp" || |
| I->getName() == "longjmp" || I->getName() == "_setjmp") |
| continue; |
| |
| if (I->hasExternalWeakLinkage()) |
| Out << "extern "; |
| printFunctionSignature(I, true); |
| if (I->hasWeakLinkage() || I->hasLinkOnceLinkage()) |
| Out << " __ATTRIBUTE_WEAK__"; |
| if (I->hasExternalWeakLinkage()) |
| Out << " __EXTERNAL_WEAK__"; |
| if (StaticCtors.count(I)) |
| Out << " __ATTRIBUTE_CTOR__"; |
| if (StaticDtors.count(I)) |
| Out << " __ATTRIBUTE_DTOR__"; |
| if (I->hasHiddenVisibility()) |
| Out << " __HIDDEN__"; |
| |
| if (I->hasName() && I->getName()[0] == 1) |
| Out << " LLVM_ASM(\"" << I->getName().substr(1) << "\")"; |
| |
| Out << ";\n"; |
| } |
| |
| // Output the global variable declarations |
| if (!M.global_empty()) { |
| Out << "\n\n/* Global Variable Declarations */\n"; |
| for (Module::global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) |
| if (!I->isDeclaration()) { |
| // Ignore special globals, such as debug info. |
| if (getGlobalVariableClass(I)) |
| continue; |
| |
| if (I->hasLocalLinkage()) |
| Out << "static "; |
| else |
| Out << "extern "; |
| |
| // Thread Local Storage |
| if (I->isThreadLocal()) |
| Out << "__thread "; |
| |
| printType(Out, I->getType()->getElementType(), false, |
| GetValueName(I)); |
| |
| if (I->hasLinkOnceLinkage()) |
| Out << " __attribute__((common))"; |
| else if (I->hasCommonLinkage()) // FIXME is this right? |
| Out << " __ATTRIBUTE_WEAK__"; |
| else if (I->hasWeakLinkage()) |
| Out << " __ATTRIBUTE_WEAK__"; |
| else if (I->hasExternalWeakLinkage()) |
| Out << " __EXTERNAL_WEAK__"; |
| if (I->hasHiddenVisibility()) |
| Out << " __HIDDEN__"; |
| Out << ";\n"; |
| } |
| } |
| |
| // Output the global variable definitions and contents... |
| if (!M.global_empty()) { |
| Out << "\n\n/* Global Variable Definitions and Initialization */\n"; |
| for (Module::global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) |
| if (!I->isDeclaration()) { |
| // Ignore special globals, such as debug info. |
| if (getGlobalVariableClass(I)) |
| continue; |
| |
| if (I->hasLocalLinkage()) |
| Out << "static "; |
| else if (I->hasDLLImportLinkage()) |
| Out << "__declspec(dllimport) "; |
| else if (I->hasDLLExportLinkage()) |
| Out << "__declspec(dllexport) "; |
| |
| // Thread Local Storage |
| if (I->isThreadLocal()) |
| Out << "__thread "; |
| |
| printType(Out, I->getType()->getElementType(), false, |
| GetValueName(I)); |
| if (I->hasLinkOnceLinkage()) |
| Out << " __attribute__((common))"; |
| else if (I->hasWeakLinkage()) |
| Out << " __ATTRIBUTE_WEAK__"; |
| else if (I->hasCommonLinkage()) |
| Out << " __ATTRIBUTE_WEAK__"; |
| |
| if (I->hasHiddenVisibility()) |
| Out << " __HIDDEN__"; |
| |
| // If the initializer is not null, emit the initializer. If it is null, |
| // we try to avoid emitting large amounts of zeros. The problem with |
| // this, however, occurs when the variable has weak linkage. In this |
| // case, the assembler will complain about the variable being both weak |
| // and common, so we disable this optimization. |
| // FIXME common linkage should avoid this problem. |
| if (!I->getInitializer()->isNullValue()) { |
| Out << " = " ; |
| writeOperand(I->getInitializer(), true); |
| } else if (I->hasWeakLinkage()) { |
| // We have to specify an initializer, but it doesn't have to be |
| // complete. If the value is an aggregate, print out { 0 }, and let |
| // the compiler figure out the rest of the zeros. |
| Out << " = " ; |
| if (I->getInitializer()->getType()->isStructTy() || |
| I->getInitializer()->getType()->isVectorTy()) { |
| Out << "{ 0 }"; |
| } else if (I->getInitializer()->getType()->isArrayTy()) { |
| // As with structs and vectors, but with an extra set of braces |
| // because arrays are wrapped in structs. |
| Out << "{ { 0 } }"; |
| } else { |
| // Just print it out normally. |
| writeOperand(I->getInitializer(), true); |
| } |
| } |
| Out << ";\n"; |
| } |
| } |
| |
| if (!M.empty()) |
| Out << "\n\n/* Function Bodies */\n"; |
| |
| // Emit some helper functions for dealing with FCMP instruction's |
| // predicates |
| Out << "static inline int llvm_fcmp_ord(double X, double Y) { "; |
| Out << "return X == X && Y == Y; }\n"; |
| Out << "static inline int llvm_fcmp_uno(double X, double Y) { "; |
| Out << "return X != X || Y != Y; }\n"; |
| Out << "static inline int llvm_fcmp_ueq(double X, double Y) { "; |
| Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n"; |
| Out << "static inline int llvm_fcmp_une(double X, double Y) { "; |
| Out << "return X != Y; }\n"; |
| Out << "static inline int llvm_fcmp_ult(double X, double Y) { "; |
| Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n"; |
| Out << "static inline int llvm_fcmp_ugt(double X, double Y) { "; |
| Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n"; |
| Out << "static inline int llvm_fcmp_ule(double X, double Y) { "; |
| Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n"; |
| Out << "static inline int llvm_fcmp_uge(double X, double Y) { "; |
| Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n"; |
| Out << "static inline int llvm_fcmp_oeq(double X, double Y) { "; |
| Out << "return X == Y ; }\n"; |
| Out << "static inline int llvm_fcmp_one(double X, double Y) { "; |
| Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n"; |
| Out << "static inline int llvm_fcmp_olt(double X, double Y) { "; |
| Out << "return X < Y ; }\n"; |
| Out << "static inline int llvm_fcmp_ogt(double X, double Y) { "; |
| Out << "return X > Y ; }\n"; |
| Out << "static inline int llvm_fcmp_ole(double X, double Y) { "; |
| Out << "return X <= Y ; }\n"; |
| Out << "static inline int llvm_fcmp_oge(double X, double Y) { "; |
| Out << "return X >= Y ; }\n"; |
| |
| // Emit definitions of the intrinsics. |
| for (SmallVector<const Function*, 8>::const_iterator |
| I = intrinsicsToDefine.begin(), |
| E = intrinsicsToDefine.end(); I != E; ++I) { |
| printIntrinsicDefinition(**I, Out); |
| } |
| |
| return false; |
| } |
| |
| |
| /// Output all floating point constants that cannot be printed accurately... |
| void CWriter::printFloatingPointConstants(Function &F) { |
| // Scan the module for floating point constants. If any FP constant is used |
| // in the function, we want to redirect it here so that we do not depend on |
| // the precision of the printed form, unless the printed form preserves |
| // precision. |
| // |
| for (constant_iterator I = constant_begin(&F), E = constant_end(&F); |
| I != E; ++I) |
| printFloatingPointConstants(*I); |
| |
| Out << '\n'; |
| } |
| |
| void CWriter::printFloatingPointConstants(const Constant *C) { |
| // If this is a constant expression, recursively check for constant fp values. |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) |
| printFloatingPointConstants(CE->getOperand(i)); |
| return; |
| } |
| |
| // Otherwise, check for a FP constant that we need to print. |
| const ConstantFP *FPC = dyn_cast<ConstantFP>(C); |
| if (FPC == 0 || |
| // Do not put in FPConstantMap if safe. |
| isFPCSafeToPrint(FPC) || |
| // Already printed this constant? |
| FPConstantMap.count(FPC)) |
| return; |
| |
| FPConstantMap[FPC] = FPCounter; // Number the FP constants |
| |
| if (FPC->getType() == Type::getDoubleTy(FPC->getContext())) { |
| double Val = FPC->getValueAPF().convertToDouble(); |
| uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue(); |
| Out << "static const ConstantDoubleTy FPConstant" << FPCounter++ |
| << " = 0x" << utohexstr(i) |
| << "ULL; /* " << Val << " */\n"; |
| } else if (FPC->getType() == Type::getFloatTy(FPC->getContext())) { |
| float Val = FPC->getValueAPF().convertToFloat(); |
| uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt(). |
| getZExtValue(); |
| Out << "static const ConstantFloatTy FPConstant" << FPCounter++ |
| << " = 0x" << utohexstr(i) |
| << "U; /* " << Val << " */\n"; |
| } else if (FPC->getType() == Type::getX86_FP80Ty(FPC->getContext())) { |
| // api needed to prevent premature destruction |
| APInt api = FPC->getValueAPF().bitcastToAPInt(); |
| const uint64_t *p = api.getRawData(); |
| Out << "static const ConstantFP80Ty FPConstant" << FPCounter++ |
| << " = { 0x" << utohexstr(p[0]) |
| << "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}" |
| << "}; /* Long double constant */\n"; |
| } else if (FPC->getType() == Type::getPPC_FP128Ty(FPC->getContext()) || |
| FPC->getType() == Type::getFP128Ty(FPC->getContext())) { |
| APInt api = FPC->getValueAPF().bitcastToAPInt(); |
| const uint64_t *p = api.getRawData(); |
| Out << "static const ConstantFP128Ty FPConstant" << FPCounter++ |
| << " = { 0x" |
| << utohexstr(p[0]) << ", 0x" << utohexstr(p[1]) |
| << "}; /* Long double constant */\n"; |
| |
| } else { |
| llvm_unreachable("Unknown float type!"); |
| } |
| } |
| |
| |
| /// printSymbolTable - Run through symbol table looking for type names. If a |
| /// type name is found, emit its declaration... |
| /// |
| void CWriter::printModuleTypes() { |
| Out << "/* Helper union for bitcasts */\n"; |
| Out << "typedef union {\n"; |
| Out << " unsigned int Int32;\n"; |
| Out << " unsigned long long Int64;\n"; |
| Out << " float Float;\n"; |
| Out << " double Double;\n"; |
| Out << "} llvmBitCastUnion;\n"; |
| |
| // Get all of the struct types used in the module. |
| std::vector<StructType*> StructTypes; |
| TheModule->findUsedStructTypes(StructTypes); |
| |
| if (StructTypes.empty()) return; |
| |
| Out << "/* Structure forward decls */\n"; |
| |
| unsigned NextTypeID = 0; |
| |
| // If any of them are missing names, add a unique ID to UnnamedStructIDs. |
| // Print out forward declarations for structure types. |
| for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) { |
| StructType *ST = StructTypes[i]; |
| |
| if (ST->isLiteral() || ST->getName().empty()) |
| UnnamedStructIDs[ST] = NextTypeID++; |
| |
| std::string Name = getStructName(ST); |
| |
| Out << "typedef struct " << Name << ' ' << Name << ";\n"; |
| } |
| |
| Out << '\n'; |
| |
| // Keep track of which structures have been printed so far. |
| SmallPtrSet<Type *, 16> StructPrinted; |
| |
| // Loop over all structures then push them into the stack so they are |
| // printed in the correct order. |
| // |
| Out << "/* Structure contents */\n"; |
| for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) |
| if (StructTypes[i]->isStructTy()) |
| // Only print out used types! |
| printContainedStructs(StructTypes[i], StructPrinted); |
| } |
| |
| // Push the struct onto the stack and recursively push all structs |
| // this one depends on. |
| // |
| // TODO: Make this work properly with vector types |
| // |
| void CWriter::printContainedStructs(Type *Ty, |
| SmallPtrSet<Type *, 16> &StructPrinted) { |
| // Don't walk through pointers. |
| if (Ty->isPointerTy() || Ty->isPrimitiveType() || Ty->isIntegerTy()) |
| return; |
| |
| // Print all contained types first. |
| for (Type::subtype_iterator I = Ty->subtype_begin(), |
| E = Ty->subtype_end(); I != E; ++I) |
| printContainedStructs(*I, StructPrinted); |
| |
| if (StructType *ST = dyn_cast<StructType>(Ty)) { |
| // Check to see if we have already printed this struct. |
| if (!StructPrinted.insert(Ty)) return; |
| |
| // Print structure type out. |
| printType(Out, ST, false, getStructName(ST), true); |
| Out << ";\n\n"; |
| } |
| } |
| |
| void CWriter::printFunctionSignature(const Function *F, bool Prototype) { |
| /// isStructReturn - Should this function actually return a struct by-value? |
| bool isStructReturn = F->hasStructRetAttr(); |
| |
| if (F->hasLocalLinkage()) Out << "static "; |
| if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) "; |
| if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) "; |
| switch (F->getCallingConv()) { |
| case CallingConv::X86_StdCall: |
| Out << "__attribute__((stdcall)) "; |
| break; |
| case CallingConv::X86_FastCall: |
| Out << "__attribute__((fastcall)) "; |
| break; |
| case CallingConv::X86_ThisCall: |
| Out << "__attribute__((thiscall)) "; |
| break; |
| default: |
| break; |
| } |
| |
| // Loop over the arguments, printing them... |
| FunctionType *FT = cast<FunctionType>(F->getFunctionType()); |
| const AttrListPtr &PAL = F->getAttributes(); |
| |
| std::string tstr; |
| raw_string_ostream FunctionInnards(tstr); |
| |
| // Print out the name... |
| FunctionInnards << GetValueName(F) << '('; |
| |
| bool PrintedArg = false; |
| if (!F->isDeclaration()) { |
| if (!F->arg_empty()) { |
| Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); |
| unsigned Idx = 1; |
| |
| // If this is a struct-return function, don't print the hidden |
| // struct-return argument. |
| if (isStructReturn) { |
| assert(I != E && "Invalid struct return function!"); |
| ++I; |
| ++Idx; |
| } |
| |
| std::string ArgName; |
| for (; I != E; ++I) { |
| if (PrintedArg) FunctionInnards << ", "; |
| if (I->hasName() || !Prototype) |
| ArgName = GetValueName(I); |
| else |
| ArgName = ""; |
| Type *ArgTy = I->getType(); |
| if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { |
| ArgTy = cast<PointerType>(ArgTy)->getElementType(); |
| ByValParams.insert(I); |
| } |
| printType(FunctionInnards, ArgTy, |
| /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), |
| ArgName); |
| PrintedArg = true; |
| ++Idx; |
| } |
| } |
| } else { |
| // Loop over the arguments, printing them. |
| FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end(); |
| unsigned Idx = 1; |
| |
| // If this is a struct-return function, don't print the hidden |
| // struct-return argument. |
| if (isStructReturn) { |
| assert(I != E && "Invalid struct return function!"); |
| ++I; |
| ++Idx; |
| } |
| |
| for (; I != E; ++I) { |
| if (PrintedArg) FunctionInnards << ", "; |
| Type *ArgTy = *I; |
| if (PAL.paramHasAttr(Idx, Attribute::ByVal)) { |
| assert(ArgTy->isPointerTy()); |
| ArgTy = cast<PointerType>(ArgTy)->getElementType(); |
| } |
| printType(FunctionInnards, ArgTy, |
| /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt)); |
| PrintedArg = true; |
| ++Idx; |
| } |
| } |
| |
| if (!PrintedArg && FT->isVarArg()) { |
| FunctionInnards << "int vararg_dummy_arg"; |
| PrintedArg = true; |
| } |
| |
| // Finish printing arguments... if this is a vararg function, print the ..., |
| // unless there are no known types, in which case, we just emit (). |
| // |
| if (FT->isVarArg() && PrintedArg) { |
| FunctionInnards << ",..."; // Output varargs portion of signature! |
| } else if (!FT->isVarArg() && !PrintedArg) { |
| FunctionInnards << "void"; // ret() -> ret(void) in C. |
| } |
| FunctionInnards << ')'; |
| |
| // Get the return tpe for the function. |
| Type *RetTy; |
| if (!isStructReturn) |
| RetTy = F->getReturnType(); |
| else { |
| // If this is a struct-return function, print the struct-return type. |
| RetTy = cast<PointerType>(FT->getParamType(0))->getElementType(); |
| } |
| |
| // Print out the return type and the signature built above. |
| printType(Out, RetTy, |
| /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), |
| FunctionInnards.str()); |
| } |
| |
| static inline bool isFPIntBitCast(const Instruction &I) { |
| if (!isa<BitCastInst>(I)) |
| return false; |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DstTy = I.getType(); |
| return (SrcTy->isFloatingPointTy() && DstTy->isIntegerTy()) || |
| (DstTy->isFloatingPointTy() && SrcTy->isIntegerTy()); |
| } |
| |
| void CWriter::printFunction(Function &F) { |
| /// isStructReturn - Should this function actually return a struct by-value? |
| bool isStructReturn = F.hasStructRetAttr(); |
| |
| printFunctionSignature(&F, false); |
| Out << " {\n"; |
| |
| // If this is a struct return function, handle the result with magic. |
| if (isStructReturn) { |
| Type *StructTy = |
| cast<PointerType>(F.arg_begin()->getType())->getElementType(); |
| Out << " "; |
| printType(Out, StructTy, false, "StructReturn"); |
| Out << "; /* Struct return temporary */\n"; |
| |
| Out << " "; |
| printType(Out, F.arg_begin()->getType(), false, |
| GetValueName(F.arg_begin())); |
| Out << " = &StructReturn;\n"; |
| } |
| |
| bool PrintedVar = false; |
| |
| // print local variable information for the function |
| for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) { |
| if (const AllocaInst *AI = isDirectAlloca(&*I)) { |
| Out << " "; |
| printType(Out, AI->getAllocatedType(), false, GetValueName(AI)); |
| Out << "; /* Address-exposed local */\n"; |
| PrintedVar = true; |
| } else if (I->getType() != Type::getVoidTy(F.getContext()) && |
| !isInlinableInst(*I)) { |
| Out << " "; |
| printType(Out, I->getType(), false, GetValueName(&*I)); |
| Out << ";\n"; |
| |
| if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well... |
| Out << " "; |
| printType(Out, I->getType(), false, |
| GetValueName(&*I)+"__PHI_TEMPORARY"); |
| Out << ";\n"; |
| } |
| PrintedVar = true; |
| } |
| // We need a temporary for the BitCast to use so it can pluck a value out |
| // of a union to do the BitCast. This is separate from the need for a |
| // variable to hold the result of the BitCast. |
| if (isFPIntBitCast(*I)) { |
| Out << " llvmBitCastUnion " << GetValueName(&*I) |
| << "__BITCAST_TEMPORARY;\n"; |
| PrintedVar = true; |
| } |
| } |
| |
| if (PrintedVar) |
| Out << '\n'; |
| |
| if (F.hasExternalLinkage() && F.getName() == "main") |
| Out << " CODE_FOR_MAIN();\n"; |
| |
| // print the basic blocks |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { |
| if (Loop *L = LI->getLoopFor(BB)) { |
| if (L->getHeader() == BB && L->getParentLoop() == 0) |
| printLoop(L); |
| } else { |
| printBasicBlock(BB); |
| } |
| } |
| |
| Out << "}\n\n"; |
| } |
| |
| void CWriter::printLoop(Loop *L) { |
| Out << " do { /* Syntactic loop '" << L->getHeader()->getName() |
| << "' to make GCC happy */\n"; |
| for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) { |
| BasicBlock *BB = L->getBlocks()[i]; |
| Loop *BBLoop = LI->getLoopFor(BB); |
| if (BBLoop == L) |
| printBasicBlock(BB); |
| else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L) |
| printLoop(BBLoop); |
| } |
| Out << " } while (1); /* end of syntactic loop '" |
| << L->getHeader()->getName() << "' */\n"; |
| } |
| |
| void CWriter::printBasicBlock(BasicBlock *BB) { |
| |
| // Don't print the label for the basic block if there are no uses, or if |
| // the only terminator use is the predecessor basic block's terminator. |
| // We have to scan the use list because PHI nodes use basic blocks too but |
| // do not require a label to be generated. |
| // |
| bool NeedsLabel = false; |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) |
| if (isGotoCodeNecessary(*PI, BB)) { |
| NeedsLabel = true; |
| break; |
| } |
| |
| if (NeedsLabel) Out << GetValueName(BB) << ":\n"; |
| |
| // Output all of the instructions in the basic block... |
| for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; |
| ++II) { |
| if (!isInlinableInst(*II) && !isDirectAlloca(II)) { |
| if (II->getType() != Type::getVoidTy(BB->getContext()) && |
| !isInlineAsm(*II)) |
| outputLValue(II); |
| else |
| Out << " "; |
| writeInstComputationInline(*II); |
| Out << ";\n"; |
| } |
| } |
| |
| // Don't emit prefix or suffix for the terminator. |
| visit(*BB->getTerminator()); |
| } |
| |
| |
| // Specific Instruction type classes... note that all of the casts are |
| // necessary because we use the instruction classes as opaque types... |
| // |
| void CWriter::visitReturnInst(ReturnInst &I) { |
| // If this is a struct return function, return the temporary struct. |
| bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr(); |
| |
| if (isStructReturn) { |
| Out << " return StructReturn;\n"; |
| return; |
| } |
| |
| // Don't output a void return if this is the last basic block in the function |
| if (I.getNumOperands() == 0 && |
| &*--I.getParent()->getParent()->end() == I.getParent() && |
| !I.getParent()->size() == 1) { |
| return; |
| } |
| |
| Out << " return"; |
| if (I.getNumOperands()) { |
| Out << ' '; |
| writeOperand(I.getOperand(0)); |
| } |
| Out << ";\n"; |
| } |
| |
| void CWriter::visitSwitchInst(SwitchInst &SI) { |
| |
| Value* Cond = SI.getCondition(); |
| |
| Out << " switch ("; |
| writeOperand(Cond); |
| Out << ") {\n default:\n"; |
| printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2); |
| printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2); |
| Out << ";\n"; |
| |
| unsigned NumCases = SI.getNumCases(); |
| // Skip the first item since that's the default case. |
| for (unsigned i = 1; i < NumCases; ++i) { |
| ConstantInt* CaseVal = SI.getCaseValue(i); |
| BasicBlock* Succ = SI.getSuccessor(i); |
| Out << " case "; |
| writeOperand(CaseVal); |
| Out << ":\n"; |
| printPHICopiesForSuccessor (SI.getParent(), Succ, 2); |
| printBranchToBlock(SI.getParent(), Succ, 2); |
| if (Function::iterator(Succ) == llvm::next(Function::iterator(SI.getParent()))) |
| Out << " break;\n"; |
| } |
| |
| Out << " }\n"; |
| } |
| |
| void CWriter::visitIndirectBrInst(IndirectBrInst &IBI) { |
| Out << " goto *(void*)("; |
| writeOperand(IBI.getOperand(0)); |
| Out << ");\n"; |
| } |
| |
| void CWriter::visitUnreachableInst(UnreachableInst &I) { |
| Out << " /*UNREACHABLE*/;\n"; |
| } |
| |
| bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) { |
| /// FIXME: This should be reenabled, but loop reordering safe!! |
| return true; |
| |
| if (llvm::next(Function::iterator(From)) != Function::iterator(To)) |
| return true; // Not the direct successor, we need a goto. |
| |
| //isa<SwitchInst>(From->getTerminator()) |
| |
| if (LI->getLoopFor(From) != LI->getLoopFor(To)) |
| return true; |
| return false; |
| } |
| |
| void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock, |
| BasicBlock *Successor, |
| unsigned Indent) { |
| for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| // Now we have to do the printing. |
| Value *IV = PN->getIncomingValueForBlock(CurBlock); |
| if (!isa<UndefValue>(IV)) { |
| Out << std::string(Indent, ' '); |
| Out << " " << GetValueName(I) << "__PHI_TEMPORARY = "; |
| writeOperand(IV); |
| Out << "; /* for PHI node */\n"; |
| } |
| } |
| } |
| |
| void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ, |
| unsigned Indent) { |
| if (isGotoCodeNecessary(CurBB, Succ)) { |
| Out << std::string(Indent, ' ') << " goto "; |
| writeOperand(Succ); |
| Out << ";\n"; |
| } |
| } |
| |
| // Branch instruction printing - Avoid printing out a branch to a basic block |
| // that immediately succeeds the current one. |
| // |
| void CWriter::visitBranchInst(BranchInst &I) { |
| |
| if (I.isConditional()) { |
| if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) { |
| Out << " if ("; |
| writeOperand(I.getCondition()); |
| Out << ") {\n"; |
| |
| printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2); |
| printBranchToBlock(I.getParent(), I.getSuccessor(0), 2); |
| |
| if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) { |
| Out << " } else {\n"; |
| printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); |
| printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); |
| } |
| } else { |
| // First goto not necessary, assume second one is... |
| Out << " if (!"; |
| writeOperand(I.getCondition()); |
| Out << ") {\n"; |
| |
| printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); |
| printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); |
| } |
| |
| Out << " }\n"; |
| } else { |
| printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0); |
| printBranchToBlock(I.getParent(), I.getSuccessor(0), 0); |
| } |
| Out << "\n"; |
| } |
| |
| // PHI nodes get copied into temporary values at the end of predecessor basic |
| // blocks. We now need to copy these temporary values into the REAL value for |
| // the PHI. |
| void CWriter::visitPHINode(PHINode &I) { |
| writeOperand(&I); |
| Out << "__PHI_TEMPORARY"; |
| } |
| |
| |
| void CWriter::visitBinaryOperator(Instruction &I) { |
| // binary instructions, shift instructions, setCond instructions. |
| assert(!I.getType()->isPointerTy()); |
| |
| // We must cast the results of binary operations which might be promoted. |
| bool needsCast = false; |
| if ((I.getType() == Type::getInt8Ty(I.getContext())) || |
| (I.getType() == Type::getInt16Ty(I.getContext())) |
| || (I.getType() == Type::getFloatTy(I.getContext()))) { |
| needsCast = true; |
| Out << "(("; |
| printType(Out, I.getType(), false); |
| Out << ")("; |
| } |
| |
| // If this is a negation operation, print it out as such. For FP, we don't |
| // want to print "-0.0 - X". |
| if (BinaryOperator::isNeg(&I)) { |
| Out << "-("; |
| writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I))); |
| Out << ")"; |
| } else if (BinaryOperator::isFNeg(&I)) { |
| Out << "-("; |
| writeOperand(BinaryOperator::getFNegArgument(cast<BinaryOperator>(&I))); |
| Out << ")"; |
| } else if (I.getOpcode() == Instruction::FRem) { |
| // Output a call to fmod/fmodf instead of emitting a%b |
| if (I.getType() == Type::getFloatTy(I.getContext())) |
| Out << "fmodf("; |
| else if (I.getType() == Type::getDoubleTy(I.getContext())) |
| Out << "fmod("; |
| else // all 3 flavors of long double |
| Out << "fmodl("; |
| writeOperand(I.getOperand(0)); |
| Out << ", "; |
| writeOperand(I.getOperand(1)); |
| Out << ")"; |
| } else { |
| |
| // Write out the cast of the instruction's value back to the proper type |
| // if necessary. |
| bool NeedsClosingParens = writeInstructionCast(I); |
| |
| // Certain instructions require the operand to be forced to a specific type |
| // so we use writeOperandWithCast here instead of writeOperand. Similarly |
| // below for operand 1 |
| writeOperandWithCast(I.getOperand(0), I.getOpcode()); |
| |
| switch (I.getOpcode()) { |
| case Instruction::Add: |
| case Instruction::FAdd: Out << " + "; break; |
| case Instruction::Sub: |
| case Instruction::FSub: Out << " - "; break; |
| case Instruction::Mul: |
| case Instruction::FMul: Out << " * "; break; |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::FRem: Out << " % "; break; |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::FDiv: Out << " / "; break; |
| case Instruction::And: Out << " & "; break; |
| case Instruction::Or: Out << " | "; break; |
| case Instruction::Xor: Out << " ^ "; break; |
| case Instruction::Shl : Out << " << "; break; |
| case Instruction::LShr: |
| case Instruction::AShr: Out << " >> "; break; |
| default: |
| #ifndef NDEBUG |
| errs() << "Invalid operator type!" << I; |
| #endif |
| llvm_unreachable(0); |
| } |
| |
| writeOperandWithCast(I.getOperand(1), I.getOpcode()); |
| if (NeedsClosingParens) |
| Out << "))"; |
| } |
| |
| if (needsCast) { |
| Out << "))"; |
| } |
| } |
| |
| void CWriter::visitICmpInst(ICmpInst &I) { |
| // We must cast the results of icmp which might be promoted. |
| bool needsCast = false; |
| |
| // Write out the cast of the instruction's value back to the proper type |
| // if necessary. |
| bool NeedsClosingParens = writeInstructionCast(I); |
| |
| // Certain icmp predicate require the operand to be forced to a specific type |
| // so we use writeOperandWithCast here instead of writeOperand. Similarly |
| // below for operand 1 |
| writeOperandWithCast(I.getOperand(0), I); |
| |
| switch (I.getPredicate()) { |
| case ICmpInst::ICMP_EQ: Out << " == "; break; |
| case ICmpInst::ICMP_NE: Out << " != "; break; |
| case ICmpInst::ICMP_ULE: |
| case ICmpInst::ICMP_SLE: Out << " <= "; break; |
| case ICmpInst::ICMP_UGE: |
| case ICmpInst::ICMP_SGE: Out << " >= "; break; |
| case ICmpInst::ICMP_ULT: |
| case ICmpInst::ICMP_SLT: Out << " < "; break; |
| case ICmpInst::ICMP_UGT: |
| case ICmpInst::ICMP_SGT: Out << " > "; break; |
| default: |
| #ifndef NDEBUG |
| errs() << "Invalid icmp predicate!" << I; |
| #endif |
| llvm_unreachable(0); |
| } |
| |
| writeOperandWithCast(I.getOperand(1), I); |
| if (NeedsClosingParens) |
| Out << "))"; |
| |
| if (needsCast) { |
| Out << "))"; |
| } |
| } |
| |
| void CWriter::visitFCmpInst(FCmpInst &I) { |
| if (I.getPredicate() == FCmpInst::FCMP_FALSE) { |
| Out << "0"; |
| return; |
| } |
| if (I.getPredicate() == FCmpInst::FCMP_TRUE) { |
| Out << "1"; |
| return; |
| } |
| |
| const char* op = 0; |
| switch (I.getPredicate()) { |
| default: llvm_unreachable("Illegal FCmp predicate"); |
| case FCmpInst::FCMP_ORD: op = "ord"; break; |
| case FCmpInst::FCMP_UNO: op = "uno"; break; |
| case FCmpInst::FCMP_UEQ: op = "ueq"; break; |
| case FCmpInst::FCMP_UNE: op = "une"; break; |
| case FCmpInst::FCMP_ULT: op = "ult"; break; |
| case FCmpInst::FCMP_ULE: op = "ule"; break; |
| case FCmpInst::FCMP_UGT: op = "ugt"; break; |
| case FCmpInst::FCMP_UGE: op = "uge"; break; |
| case FCmpInst::FCMP_OEQ: op = "oeq"; break; |
| case FCmpInst::FCMP_ONE: op = "one"; break; |
| case FCmpInst::FCMP_OLT: op = "olt"; break; |
| case FCmpInst::FCMP_OLE: op = "ole"; break; |
| case FCmpInst::FCMP_OGT: op = "ogt"; break; |
| case FCmpInst::FCMP_OGE: op = "oge"; break; |
| } |
| |
| Out << "llvm_fcmp_" << op << "("; |
| // Write the first operand |
| writeOperand(I.getOperand(0)); |
| Out << ", "; |
| // Write the second operand |
| writeOperand(I.getOperand(1)); |
| Out << ")"; |
| } |
| |
| static const char * getFloatBitCastField(Type *Ty) { |
| switch (Ty->getTypeID()) { |
| default: llvm_unreachable("Invalid Type"); |
| case Type::FloatTyID: return "Float"; |
| case Type::DoubleTyID: return "Double"; |
| case Type::IntegerTyID: { |
| unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); |
| if (NumBits <= 32) |
| return "Int32"; |
| else |
| return "Int64"; |
| } |
| } |
| } |
| |
| void CWriter::visitCastInst(CastInst &I) { |
| Type *DstTy = I.getType(); |
| Type *SrcTy = I.getOperand(0)->getType(); |
| if (isFPIntBitCast(I)) { |
| Out << '('; |
| // These int<->float and long<->double casts need to be handled specially |
| Out << GetValueName(&I) << "__BITCAST_TEMPORARY." |
| << getFloatBitCastField(I.getOperand(0)->getType()) << " = "; |
| writeOperand(I.getOperand(0)); |
| Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY." |
| << getFloatBitCastField(I.getType()); |
| Out << ')'; |
| return; |
| } |
| |
| Out << '('; |
| printCast(I.getOpcode(), SrcTy, DstTy); |
| |
| // Make a sext from i1 work by subtracting the i1 from 0 (an int). |
| if (SrcTy == Type::getInt1Ty(I.getContext()) && |
| I.getOpcode() == Instruction::SExt) |
| Out << "0-"; |
| |
| writeOperand(I.getOperand(0)); |
| |
| if (DstTy == Type::getInt1Ty(I.getContext()) && |
| (I.getOpcode() == Instruction::Trunc || |
| I.getOpcode() == Instruction::FPToUI || |
| I.getOpcode() == Instruction::FPToSI || |
| I.getOpcode() == Instruction::PtrToInt)) { |
| // Make sure we really get a trunc to bool by anding the operand with 1 |
| Out << "&1u"; |
| } |
| Out << ')'; |
| } |
| |
| void CWriter::visitSelectInst(SelectInst &I) { |
| Out << "(("; |
| writeOperand(I.getCondition()); |
| Out << ") ? ("; |
| writeOperand(I.getTrueValue()); |
| Out << ") : ("; |
| writeOperand(I.getFalseValue()); |
| Out << "))"; |
| } |
| |
| // Returns the macro name or value of the max or min of an integer type |
| // (as defined in limits.h). |
| static void printLimitValue(IntegerType &Ty, bool isSigned, bool isMax, |
| raw_ostream &Out) { |
| const char* type; |
| const char* sprefix = ""; |
| |
| unsigned NumBits = Ty.getBitWidth(); |
| if (NumBits <= 8) { |
| type = "CHAR"; |
| sprefix = "S"; |
| } else if (NumBits <= 16) { |
| type = "SHRT"; |
| } else if (NumBits <= 32) { |
| type = "INT"; |
| } else if (NumBits <= 64) { |
| type = "LLONG"; |
| } else { |
| llvm_unreachable("Bit widths > 64 not implemented yet"); |
| } |
| |
| if (isSigned) |
| Out << sprefix << type << (isMax ? "_MAX" : "_MIN"); |
| else |
| Out << "U" << type << (isMax ? "_MAX" : "0"); |
| } |
| |
| #ifndef NDEBUG |
| static bool isSupportedIntegerSize(IntegerType &T) { |
| return T.getBitWidth() == 8 || T.getBitWidth() == 16 || |
| T.getBitWidth() == 32 || T.getBitWidth() == 64; |
| } |
| #endif |
| |
| void CWriter::printIntrinsicDefinition(const Function &F, raw_ostream &Out) { |
| FunctionType *funT = F.getFunctionType(); |
| Type *retT = F.getReturnType(); |
| IntegerType *elemT = cast<IntegerType>(funT->getParamType(1)); |
| |
| assert(isSupportedIntegerSize(*elemT) && |
| "CBackend does not support arbitrary size integers."); |
| assert(cast<StructType>(retT)->getElementType(0) == elemT && |
| elemT == funT->getParamType(0) && funT->getNumParams() == 2); |
| |
| switch (F.getIntrinsicID()) { |
| default: |
| llvm_unreachable("Unsupported Intrinsic."); |
| case Intrinsic::uadd_with_overflow: |
| // static inline Rty uadd_ixx(unsigned ixx a, unsigned ixx b) { |
| // Rty r; |
| // r.field0 = a + b; |
| // r.field1 = (r.field0 < a); |
| // return r; |
| // } |
| Out << "static inline "; |
| printType(Out, retT); |
| Out << GetValueName(&F); |
| Out << "("; |
| printSimpleType(Out, elemT, false); |
| Out << "a,"; |
| printSimpleType(Out, elemT, false); |
| Out << "b) {\n "; |
| printType(Out, retT); |
| Out << "r;\n"; |
| Out << " r.field0 = a + b;\n"; |
| Out << " r.field1 = (r.field0 < a);\n"; |
| Out << " return r;\n}\n"; |
| break; |
| |
| case Intrinsic::sadd_with_overflow: |
| // static inline Rty sadd_ixx(ixx a, ixx b) { |
| // Rty r; |
| // r.field1 = (b > 0 && a > XX_MAX - b) || |
| // (b < 0 && a < XX_MIN - b); |
| // r.field0 = r.field1 ? 0 : a + b; |
| // return r; |
| // } |
| Out << "static "; |
| printType(Out, retT); |
| Out << GetValueName(&F); |
| Out << "("; |
| printSimpleType(Out, elemT, true); |
| Out << "a,"; |
| printSimpleType(Out, elemT, true); |
| Out << "b) {\n "; |
| printType(Out, retT); |
| Out << "r;\n"; |
| Out << " r.field1 = (b > 0 && a > "; |
| printLimitValue(*elemT, true, true, Out); |
| Out << " - b) || (b < 0 && a < "; |
| printLimitValue(*elemT, true, false, Out); |
| Out << " - b);\n"; |
| Out << " r.field0 = r.field1 ? 0 : a + b;\n"; |
| Out << " return r;\n}\n"; |
| break; |
| } |
| } |
| |
| void CWriter::lowerIntrinsics(Function &F) { |
| // This is used to keep track of intrinsics that get generated to a lowered |
| // function. We must generate the prototypes before the function body which |
| // will only be expanded on first use (by the loop below). |
| std::vector<Function*> prototypesToGen; |
| |
| // Examine all the instructions in this function to find the intrinsics that |
| // need to be lowered. |
| for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB) |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) |
| if (CallInst *CI = dyn_cast<CallInst>(I++)) |
| if (Function *F = CI->getCalledFunction()) |
| switch (F->getIntrinsicID()) { |
| case Intrinsic::not_intrinsic: |
| case Intrinsic::vastart: |
| case Intrinsic::vacopy: |
| case Intrinsic::vaend: |
| case Intrinsic::returnaddress: |
| case Intrinsic::frameaddress: |
| case Intrinsic::setjmp: |
| case Intrinsic::longjmp: |
| case Intrinsic::prefetch: |
| case Intrinsic::powi: |
| case Intrinsic::x86_sse_cmp_ss: |
| case Intrinsic::x86_sse_cmp_ps: |
| case Intrinsic::x86_sse2_cmp_sd: |
| case Intrinsic::x86_sse2_cmp_pd: |
| case Intrinsic::ppc_altivec_lvsl: |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::sadd_with_overflow: |
| // We directly implement these intrinsics |
| break; |
| default: |
| // If this is an intrinsic that directly corresponds to a GCC |
| // builtin, we handle it. |
| const char *BuiltinName = ""; |
| #define GET_GCC_BUILTIN_NAME |
| #include "llvm/Intrinsics.gen" |
| #undef GET_GCC_BUILTIN_NAME |
| // If we handle it, don't lower it. |
| if (BuiltinName[0]) break; |
| |
| // All other intrinsic calls we must lower. |
| Instruction *Before = 0; |
| if (CI != &BB->front()) |
| Before = prior(BasicBlock::iterator(CI)); |
| |
| IL->LowerIntrinsicCall(CI); |
| if (Before) { // Move iterator to instruction after call |
| I = Before; ++I; |
| } else { |
| I = BB->begin(); |
| } |
| // If the intrinsic got lowered to another call, and that call has |
| // a definition then we need to make sure its prototype is emitted |
| // before any calls to it. |
| if (CallInst *Call = dyn_cast<CallInst>(I)) |
| if (Function *NewF = Call->getCalledFunction()) |
| if (!NewF->isDeclaration()) |
| prototypesToGen.push_back(NewF); |
| |
| break; |
| } |
| |
| // We may have collected some prototypes to emit in the loop above. |
| // Emit them now, before the function that uses them is emitted. But, |
| // be careful not to emit them twice. |
| std::vector<Function*>::iterator I = prototypesToGen.begin(); |
| std::vector<Function*>::iterator E = prototypesToGen.end(); |
| for ( ; I != E; ++I) { |
| if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) { |
| Out << '\n'; |
| printFunctionSignature(*I, true); |
| Out << ";\n"; |
| } |
| } |
| } |
| |
| void CWriter::visitCallInst(CallInst &I) { |
| if (isa<InlineAsm>(I.getCalledValue())) |
| return visitInlineAsm(I); |
| |
| bool WroteCallee = false; |
| |
| // Handle intrinsic function calls first... |
| if (Function *F = I.getCalledFunction()) |
| if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) |
| if (visitBuiltinCall(I, ID, WroteCallee)) |
| return; |
| |
| Value *Callee = I.getCalledValue(); |
| |
| PointerType *PTy = cast<PointerType>(Callee->getType()); |
| FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| |
| // If this is a call to a struct-return function, assign to the first |
| // parameter instead of passing it to the call. |
| const AttrListPtr &PAL = I.getAttributes(); |
| bool hasByVal = I.hasByValArgument(); |
| bool isStructRet = I.hasStructRetAttr(); |
| if (isStructRet) { |
| writeOperandDeref(I.getArgOperand(0)); |
| Out << " = "; |
| } |
| |
| if (I.isTailCall()) Out << " /*tail*/ "; |
| |
| if (!WroteCallee) { |
| // If this is an indirect call to a struct return function, we need to cast |
| // the pointer. Ditto for indirect calls with byval arguments. |
| bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee); |
| |
| // GCC is a real PITA. It does not permit codegening casts of functions to |
| // function pointers if they are in a call (it generates a trap instruction |
| // instead!). We work around this by inserting a cast to void* in between |
| // the function and the function pointer cast. Unfortunately, we can't just |
| // form the constant expression here, because the folder will immediately |
| // nuke it. |
| // |
| // Note finally, that this is completely unsafe. ANSI C does not guarantee |
| // that void* and function pointers have the same size. :( To deal with this |
| // in the common case, we handle casts where the number of arguments passed |
| // match exactly. |
| // |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee)) |
| if (CE->isCast()) |
| if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) { |
| NeedsCast = true; |
| Callee = RF; |
| } |
| |
| if (NeedsCast) { |
| // Ok, just cast the pointer type. |
| Out << "(("; |
| if (isStructRet) |
| printStructReturnPointerFunctionType(Out, PAL, |
| cast<PointerType>(I.getCalledValue()->getType())); |
| else if (hasByVal) |
| printType(Out, I.getCalledValue()->getType(), false, "", true, PAL); |
| else |
| printType(Out, I.getCalledValue()->getType()); |
| Out << ")(void*)"; |
| } |
| writeOperand(Callee); |
| if (NeedsCast) Out << ')'; |
| } |
| |
| Out << '('; |
| |
| bool PrintedArg = false; |
| if(FTy->isVarArg() && !FTy->getNumParams()) { |
| Out << "0 /*dummy arg*/"; |
| PrintedArg = true; |
| } |
| |
| unsigned NumDeclaredParams = FTy->getNumParams(); |
| CallSite CS(&I); |
| CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); |
| unsigned ArgNo = 0; |
| if (isStructRet) { // Skip struct return argument. |
| ++AI; |
| ++ArgNo; |
| } |
| |
| |
| for (; AI != AE; ++AI, ++ArgNo) { |
| if (PrintedArg) Out << ", "; |
| if (ArgNo < NumDeclaredParams && |
| (*AI)->getType() != FTy->getParamType(ArgNo)) { |
| Out << '('; |
| printType(Out, FTy->getParamType(ArgNo), |
| /*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt)); |
| Out << ')'; |
| } |
| // Check if the argument is expected to be passed by value. |
| if (I.paramHasAttr(ArgNo+1, Attribute::ByVal)) |
| writeOperandDeref(*AI); |
| else |
| writeOperand(*AI); |
| PrintedArg = true; |
| } |
| Out << ')'; |
| } |
| |
| /// visitBuiltinCall - Handle the call to the specified builtin. Returns true |
| /// if the entire call is handled, return false if it wasn't handled, and |
| /// optionally set 'WroteCallee' if the callee has already been printed out. |
| bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID, |
| bool &WroteCallee) { |
| switch (ID) { |
| default: { |
| // If this is an intrinsic that directly corresponds to a GCC |
| // builtin, we emit it here. |
| const char *BuiltinName = ""; |
| Function *F = I.getCalledFunction(); |
| #define GET_GCC_BUILTIN_NAME |
| #include "llvm/Intrinsics.gen" |
| #undef GET_GCC_BUILTIN_NAME |
| assert(BuiltinName[0] && "Unknown LLVM intrinsic!"); |
| |
| Out << BuiltinName; |
| WroteCallee = true; |
| return false; |
| } |
| case Intrinsic::vastart: |
| Out << "0; "; |
| |
| Out << "va_start(*(va_list*)"; |
| writeOperand(I.getArgOperand(0)); |
| Out << ", "; |
| // Output the last argument to the enclosing function. |
| if (I.getParent()->getParent()->arg_empty()) |
| Out << "vararg_dummy_arg"; |
| else |
| writeOperand(--I.getParent()->getParent()->arg_end()); |
| Out << ')'; |
| return true; |
| case Intrinsic::vaend: |
| if (!isa<ConstantPointerNull>(I.getArgOperand(0))) { |
| Out << "0; va_end(*(va_list*)"; |
| writeOperand(I.getArgOperand(0)); |
| Out << ')'; |
| } else { |
| Out << "va_end(*(va_list*)0)"; |
| } |
| return true; |
| case Intrinsic::vacopy: |
| Out << "0; "; |
| Out << "va_copy(*(va_list*)"; |
| writeOperand(I.getArgOperand(0)); |
| Out << ", *(va_list*)"; |
| writeOperand(I.getArgOperand(1)); |
| Out << ')'; |
| return true; |
| case Intrinsic::returnaddress: |
| Out << "__builtin_return_address("; |
| writeOperand(I.getArgOperand(0)); |
| Out << ')'; |
| return true; |
| case Intrinsic::frameaddress: |
| Out << "__builtin_frame_address("; |
| writeOperand(I.getArgOperand(0)); |
| Out << ')'; |
| return true; |
| case Intrinsic::powi: |
| Out << "__builtin_powi("; |
| writeOperand(I.getArgOperand(0)); |
| Out << ", "; |
| writeOperand(I.getArgOperand(1)); |
| Out << ')'; |
| return true; |
| case Intrinsic::setjmp: |
| Out << "setjmp(*(jmp_buf*)"; |
| writeOperand(I.getArgOperand(0)); |
| Out << ')'; |
| return true; |
| case Intrinsic::longjmp: |
| Out << "longjmp(*(jmp_buf*)"; |
| writeOperand(I.getArgOperand(0)); |
| Out << ", "; |
| writeOperand(I.getArgOperand(1)); |
| Out << ')'; |
| return true; |
| case Intrinsic::prefetch: |
| Out << "LLVM_PREFETCH((const void *)"; |
| writeOperand(I.getArgOperand(0)); |
| Out << ", "; |
| writeOperand(I.getArgOperand(1)); |
| Out << ", "; |
| writeOperand(I.getArgOperand(2)); |
| Out << ")"; |
| return true; |
| case Intrinsic::stacksave: |
| // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save() |
| // to work around GCC bugs (see PR1809). |
| Out << "0; *((void**)&" << GetValueName(&I) |
| << ") = __builtin_stack_save()"; |
| return true; |
| case Intrinsic::x86_sse_cmp_ss: |
| case Intrinsic::x86_sse_cmp_ps: |
| case Intrinsic::x86_sse2_cmp_sd: |
| case Intrinsic::x86_sse2_cmp_pd: |
| Out << '('; |
| printType(Out, I.getType()); |
| Out << ')'; |
| // Multiple GCC builtins multiplex onto this intrinsic. |
| switch (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()) { |
| default: llvm_unreachable("Invalid llvm.x86.sse.cmp!"); |
| case 0: Out << "__builtin_ia32_cmpeq"; break; |
| case 1: Out << "__builtin_ia32_cmplt"; break; |
| case 2: Out << "__builtin_ia32_cmple"; break; |
| case 3: Out << "__builtin_ia32_cmpunord"; break; |
| case 4: Out << "__builtin_ia32_cmpneq"; break; |
| case 5: Out << "__builtin_ia32_cmpnlt"; break; |
| case 6: Out << "__builtin_ia32_cmpnle"; break; |
| case 7: Out << "__builtin_ia32_cmpord"; break; |
| } |
| if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd) |
| Out << 'p'; |
| else |
| Out << 's'; |
| if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps) |
| Out << 's'; |
| else |
| Out << 'd'; |
| |
| Out << "("; |
| writeOperand(I.getArgOperand(0)); |
| Out << ", "; |
| writeOperand(I.getArgOperand(1)); |
| Out << ")"; |
| return true; |
| case Intrinsic::ppc_altivec_lvsl: |
| Out << '('; |
| printType(Out, I.getType()); |
| Out << ')'; |
| Out << "__builtin_altivec_lvsl(0, (void*)"; |
| writeOperand(I.getArgOperand(0)); |
| Out << ")"; |
| return true; |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::sadd_with_overflow: |
| Out << GetValueName(I.getCalledFunction()) << "("; |
| writeOperand(I.getArgOperand(0)); |
| Out << ", "; |
| writeOperand(I.getArgOperand(1)); |
| Out << ")"; |
| return true; |
| } |
| } |
| |
| //This converts the llvm constraint string to something gcc is expecting. |
| //TODO: work out platform independent constraints and factor those out |
| // of the per target tables |
| // handle multiple constraint codes |
| std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) { |
| assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle"); |
| |
| // Grab the translation table from MCAsmInfo if it exists. |
| const MCAsmInfo *TargetAsm; |
| std::string Triple = TheModule->getTargetTriple(); |
| if (Triple.empty()) |
| Triple = llvm::sys::getHostTriple(); |
| |
| std::string E; |
| if (const Target *Match = TargetRegistry::lookupTarget(Triple, E)) |
| TargetAsm = Match->createMCAsmInfo(Triple); |
| else |
| return c.Codes[0]; |
| |
| const char *const *table = TargetAsm->getAsmCBE(); |
| |
| // Search the translation table if it exists. |
| for (int i = 0; table && table[i]; i += 2) |
| if (c.Codes[0] == table[i]) { |
| delete TargetAsm; |
| return table[i+1]; |
| } |
| |
| // Default is identity. |
| delete TargetAsm; |
| return c.Codes[0]; |
| } |
| |
| //TODO: import logic from AsmPrinter.cpp |
| static std::string gccifyAsm(std::string asmstr) { |
| for (std::string::size_type i = 0; i != asmstr.size(); ++i) |
| if (asmstr[i] == '\n') |
| asmstr.replace(i, 1, "\\n"); |
| else if (asmstr[i] == '\t') |
| asmstr.replace(i, 1, "\\t"); |
| else if (asmstr[i] == '$') { |
| if (asmstr[i + 1] == '{') { |
| std::string::size_type a = asmstr.find_first_of(':', i + 1); |
| std::string::size_type b = asmstr.find_first_of('}', i + 1); |
| std::string n = "%" + |
| asmstr.substr(a + 1, b - a - 1) + |
| asmstr.substr(i + 2, a - i - 2); |
| asmstr.replace(i, b - i + 1, n); |
| i += n.size() - 1; |
| } else |
| asmstr.replace(i, 1, "%"); |
| } |
| else if (asmstr[i] == '%')//grr |
| { asmstr.replace(i, 1, "%%"); ++i;} |
| |
| return asmstr; |
| } |
| |
| //TODO: assumptions about what consume arguments from the call are likely wrong |
| // handle communitivity |
| void CWriter::visitInlineAsm(CallInst &CI) { |
| InlineAsm* as = cast<InlineAsm>(CI.getCalledValue()); |
| InlineAsm::ConstraintInfoVector Constraints = as->ParseConstraints(); |
| |
| std::vector<std::pair<Value*, int> > ResultVals; |
| if (CI.getType() == Type::getVoidTy(CI.getContext())) |
| ; |
| else if (StructType *ST = dyn_cast<StructType>(CI.getType())) { |
| for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) |
| ResultVals.push_back(std::make_pair(&CI, (int)i)); |
| } else { |
| ResultVals.push_back(std::make_pair(&CI, -1)); |
| } |
| |
| // Fix up the asm string for gcc and emit it. |
| Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n"; |
| Out << " :"; |
| |
| unsigned ValueCount = 0; |
| bool IsFirst = true; |
| |
| // Convert over all the output constraints. |
| for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(), |
| E = Constraints.end(); I != E; ++I) { |
| |
| if (I->Type != InlineAsm::isOutput) { |
| ++ValueCount; |
| continue; // Ignore non-output constraints. |
| } |
| |
| assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle"); |
| std::string C = InterpretASMConstraint(*I); |
| if (C.empty()) continue; |
| |
| if (!IsFirst) { |
| Out << ", "; |
| IsFirst = false; |
| } |
| |
| // Unpack the dest. |
| Value *DestVal; |
| int DestValNo = -1; |
| |
| if (ValueCount < ResultVals.size()) { |
| DestVal = ResultVals[ValueCount].first; |
| DestValNo = ResultVals[ValueCount].second; |
| } else |
| DestVal = CI.getArgOperand(ValueCount-ResultVals.size()); |
| |
| if (I->isEarlyClobber) |
| C = "&"+C; |
| |
| Out << "\"=" << C << "\"(" << GetValueName(DestVal); |
| if (DestValNo != -1) |
| Out << ".field" << DestValNo; // Multiple retvals. |
| Out << ")"; |
| ++ValueCount; |
| } |
| |
| |
| // Convert over all the input constraints. |
| Out << "\n :"; |
| IsFirst = true; |
| ValueCount = 0; |
| for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(), |
| E = Constraints.end(); I != E; ++I) { |
| if (I->Type != InlineAsm::isInput) { |
| ++ValueCount; |
| continue; // Ignore non-input constraints. |
| } |
| |
| assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle"); |
| std::string C = InterpretASMConstraint(*I); |
| if (C.empty()) continue; |
| |
| if (!IsFirst) { |
| Out << ", "; |
| IsFirst = false; |
| } |
| |
| assert(ValueCount >= ResultVals.size() && "Input can't refer to result"); |
| Value *SrcVal = CI.getArgOperand(ValueCount-ResultVals.size()); |
| |
| Out << "\"" << C << "\"("; |
| if (!I->isIndirect) |
| writeOperand(SrcVal); |
| else |
| writeOperandDeref(SrcVal); |
| Out << ")"; |
| } |
| |
| // Convert over the clobber constraints. |
| IsFirst = true; |
| for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(), |
| E = Constraints.end(); I != E; ++I) { |
| if (I->Type != InlineAsm::isClobber) |
| continue; // Ignore non-input constraints. |
| |
| assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle"); |
| std::string C = InterpretASMConstraint(*I); |
| if (C.empty()) continue; |
| |
| if (!IsFirst) { |
| Out << ", "; |
| IsFirst = false; |
| } |
| |
| Out << '\"' << C << '"'; |
| } |
| |
| Out << ")"; |
| } |
| |
| void CWriter::visitAllocaInst(AllocaInst &I) { |
| Out << '('; |
| printType(Out, I.getType()); |
| Out << ") alloca(sizeof("; |
| printType(Out, I.getType()->getElementType()); |
| Out << ')'; |
| if (I.isArrayAllocation()) { |
| Out << " * " ; |
| writeOperand(I.getOperand(0)); |
| } |
| Out << ')'; |
| } |
| |
| void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I, |
| gep_type_iterator E, bool Static) { |
| |
| // If there are no indices, just print out the pointer. |
| if (I == E) { |
| writeOperand(Ptr); |
| return; |
| } |
| |
| // Find out if the last index is into a vector. If so, we have to print this |
| // specially. Since vectors can't have elements of indexable type, only the |
| // last index could possibly be of a vector element. |
| VectorType *LastIndexIsVector = 0; |
| { |
| for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI) |
| LastIndexIsVector = dyn_cast<VectorType>(*TmpI); |
| } |
| |
| Out << "("; |
| |
| // If the last index is into a vector, we can't print it as &a[i][j] because |
| // we can't index into a vector with j in GCC. Instead, emit this as |
| // (((float*)&a[i])+j) |
| if (LastIndexIsVector) { |
| Out << "(("; |
| printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType())); |
| Out << ")("; |
| } |
| |
| Out << '&'; |
| |
| // If the first index is 0 (very typical) we can do a number of |
| // simplifications to clean up the code. |
| Value *FirstOp = I.getOperand(); |
| if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) { |
| // First index isn't simple, print it the hard way. |
| writeOperand(Ptr); |
| } else { |
| ++I; // Skip the zero index. |
| |
| // Okay, emit the first operand. If Ptr is something that is already address |
| // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead. |
| if (isAddressExposed(Ptr)) { |
| writeOperandInternal(Ptr, Static); |
| } else if (I != E && (*I)->isStructTy()) { |
| // If we didn't already emit the first operand, see if we can print it as |
| // P->f instead of "P[0].f" |
| writeOperand(Ptr); |
| Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue(); |
| ++I; // eat the struct index as well. |
| } else { |
| // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic. |
| Out << "(*"; |
| writeOperand(Ptr); |
| Out << ")"; |
| } |
| } |
| |
| for (; I != E; ++I) { |
| if ((*I)->isStructTy()) { |
| Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue(); |
| } else if ((*I)->isArrayTy()) { |
| Out << ".array["; |
| writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr); |
| Out << ']'; |
| } else if (!(*I)->isVectorTy()) { |
| Out << '['; |
| writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr); |
| Out << ']'; |
| } else { |
| // If the last index is into a vector, then print it out as "+j)". This |
| // works with the 'LastIndexIsVector' code above. |
| if (isa<Constant>(I.getOperand()) && |
| cast<Constant>(I.getOperand())->isNullValue()) { |
| Out << "))"; // avoid "+0". |
| } else { |
| Out << ")+("; |
| writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr); |
| Out << "))"; |
| } |
| } |
| } |
| Out << ")"; |
| } |
| |
| void CWriter::writeMemoryAccess(Value *Operand, Type *OperandType, |
| bool IsVolatile, unsigned Alignment) { |
| |
| bool IsUnaligned = Alignment && |
| Alignment < TD->getABITypeAlignment(OperandType); |
| |
| if (!IsUnaligned) |
| Out << '*'; |
| if (IsVolatile || IsUnaligned) { |
| Out << "(("; |
| if (IsUnaligned) |
| Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {"; |
| printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*"); |
| if (IsUnaligned) { |
| Out << "; } "; |
| if (IsVolatile) Out << "volatile "; |
| Out << "*"; |
| } |
| Out << ")"; |
| } |
| |
| writeOperand(Operand); |
| |
| if (IsVolatile || IsUnaligned) { |
| Out << ')'; |
| if (IsUnaligned) |
| Out << "->data"; |
| } |
| } |
| |
| void CWriter::visitLoadInst(LoadInst &I) { |
| writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(), |
| I.getAlignment()); |
| |
| } |
| |
| void CWriter::visitStoreInst(StoreInst &I) { |
| writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(), |
| I.isVolatile(), I.getAlignment()); |
| Out << " = "; |
| Value *Operand = I.getOperand(0); |
| Constant *BitMask = 0; |
| if (IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType())) |
| if (!ITy->isPowerOf2ByteWidth()) |
| // We have a bit width that doesn't match an even power-of-2 byte |
| // size. Consequently we must & the value with the type's bit mask |
| BitMask = ConstantInt::get(ITy, ITy->getBitMask()); |
| if (BitMask) |
| Out << "(("; |
| writeOperand(Operand); |
| if (BitMask) { |
| Out << ") & "; |
| printConstant(BitMask, false); |
| Out << ")"; |
| } |
| } |
| |
| void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) { |
| printGEPExpression(I.getPointerOperand(), gep_type_begin(I), |
| gep_type_end(I), false); |
| } |
| |
| void CWriter::visitVAArgInst(VAArgInst &I) { |
| Out << "va_arg(*(va_list*)"; |
| writeOperand(I.getOperand(0)); |
| Out << ", "; |
| printType(Out, I.getType()); |
| Out << ");\n "; |
| } |
| |
| void CWriter::visitInsertElementInst(InsertElementInst &I) { |
| Type *EltTy = I.getType()->getElementType(); |
| writeOperand(I.getOperand(0)); |
| Out << ";\n "; |
| Out << "(("; |
| printType(Out, PointerType::getUnqual(EltTy)); |
| Out << ")(&" << GetValueName(&I) << "))["; |
| writeOperand(I.getOperand(2)); |
| Out << "] = ("; |
| writeOperand(I.getOperand(1)); |
| Out << ")"; |
| } |
| |
| void CWriter::visitExtractElementInst(ExtractElementInst &I) { |
| // We know that our operand is not inlined. |
| Out << "(("; |
| Type *EltTy = |
| cast<VectorType>(I.getOperand(0)->getType())->getElementType(); |
| printType(Out, PointerType::getUnqual(EltTy)); |
| Out << ")(&" << GetValueName(I.getOperand(0)) << "))["; |
| writeOperand(I.getOperand(1)); |
| Out << "]"; |
| } |
| |
| void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) { |
| Out << "("; |
| printType(Out, SVI.getType()); |
| Out << "){ "; |
| VectorType *VT = SVI.getType(); |
| unsigned NumElts = VT->getNumElements(); |
| Type *EltTy = VT->getElementType(); |
| |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (i) Out << ", "; |
| int SrcVal = SVI.getMaskValue(i); |
| if ((unsigned)SrcVal >= NumElts*2) { |
| Out << " 0/*undef*/ "; |
| } else { |
| Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts); |
| if (isa<Instruction>(Op)) { |
| // Do an extractelement of this value from the appropriate input. |
| Out << "(("; |
| printType(Out, PointerType::getUnqual(EltTy)); |
| Out << ")(&" << GetValueName(Op) |
| << "))[" << (SrcVal & (NumElts-1)) << "]"; |
| } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) { |
| Out << "0"; |
| } else { |
| printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal & |
| (NumElts-1)), |
| false); |
| } |
| } |
| } |
| Out << "}"; |
| } |
| |
| void CWriter::visitInsertValueInst(InsertValueInst &IVI) { |
| // Start by copying the entire aggregate value into the result variable. |
| writeOperand(IVI.getOperand(0)); |
| Out << ";\n "; |
| |
| // Then do the insert to update the field. |
| Out << GetValueName(&IVI); |
| for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end(); |
| i != e; ++i) { |
| Type *IndexedTy = |
| ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(), |
| makeArrayRef(b, i+1)); |
| if (IndexedTy->isArrayTy()) |
| Out << ".array[" << *i << "]"; |
| else |
| Out << ".field" << *i; |
| } |
| Out << " = "; |
| writeOperand(IVI.getOperand(1)); |
| } |
| |
| void CWriter::visitExtractValueInst(ExtractValueInst &EVI) { |
| Out << "("; |
| if (isa<UndefValue>(EVI.getOperand(0))) { |
| Out << "("; |
| printType(Out, EVI.getType()); |
| Out << ") 0/*UNDEF*/"; |
| } else { |
| Out << GetValueName(EVI.getOperand(0)); |
| for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end(); |
| i != e; ++i) { |
| Type *IndexedTy = |
| ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(), |
| makeArrayRef(b, i+1)); |
| if (IndexedTy->isArrayTy()) |
| Out << ".array[" << *i << "]"; |
| else |
| Out << ".field" << *i; |
| } |
| } |
| Out << ")"; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // External Interface declaration |
| //===----------------------------------------------------------------------===// |
| |
| bool CTargetMachine::addPassesToEmitFile(PassManagerBase &PM, |
| formatted_raw_ostream &o, |
| CodeGenFileType FileType, |
| CodeGenOpt::Level OptLevel, |
| bool DisableVerify) { |
| if (FileType != TargetMachine::CGFT_AssemblyFile) return true; |
| |
| PM.add(createGCLoweringPass()); |
| PM.add(createLowerInvokePass()); |
| PM.add(createCFGSimplificationPass()); // clean up after lower invoke. |
| PM.add(new CWriter(o)); |
| PM.add(createGCInfoDeleter()); |
| return false; |
| } |