blob: ec77c21d197bec533755c2b82f026db8acd6f565 [file] [log] [blame]
// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "DirectiveParser.h"
#include <cassert>
#include <cstdlib>
#include <sstream>
#include "Diagnostics.h"
#include "DirectiveHandler.h"
#include "ExpressionParser.h"
#include "MacroExpander.h"
#include "Token.h"
#include "Tokenizer.h"
namespace {
enum DirectiveType
{
DIRECTIVE_NONE,
DIRECTIVE_DEFINE,
DIRECTIVE_UNDEF,
DIRECTIVE_IF,
DIRECTIVE_IFDEF,
DIRECTIVE_IFNDEF,
DIRECTIVE_ELSE,
DIRECTIVE_ELIF,
DIRECTIVE_ENDIF,
DIRECTIVE_ERROR,
DIRECTIVE_PRAGMA,
DIRECTIVE_EXTENSION,
DIRECTIVE_VERSION,
DIRECTIVE_LINE
};
} // namespace
static DirectiveType getDirective(const pp::Token* token)
{
static const std::string kDirectiveDefine("define");
static const std::string kDirectiveUndef("undef");
static const std::string kDirectiveIf("if");
static const std::string kDirectiveIfdef("ifdef");
static const std::string kDirectiveIfndef("ifndef");
static const std::string kDirectiveElse("else");
static const std::string kDirectiveElif("elif");
static const std::string kDirectiveEndif("endif");
static const std::string kDirectiveError("error");
static const std::string kDirectivePragma("pragma");
static const std::string kDirectiveExtension("extension");
static const std::string kDirectiveVersion("version");
static const std::string kDirectiveLine("line");
if (token->type != pp::Token::IDENTIFIER)
return DIRECTIVE_NONE;
if (token->text == kDirectiveDefine)
return DIRECTIVE_DEFINE;
else if (token->text == kDirectiveUndef)
return DIRECTIVE_UNDEF;
else if (token->text == kDirectiveIf)
return DIRECTIVE_IF;
else if (token->text == kDirectiveIfdef)
return DIRECTIVE_IFDEF;
else if (token->text == kDirectiveIfndef)
return DIRECTIVE_IFNDEF;
else if (token->text == kDirectiveElse)
return DIRECTIVE_ELSE;
else if (token->text == kDirectiveElif)
return DIRECTIVE_ELIF;
else if (token->text == kDirectiveEndif)
return DIRECTIVE_ENDIF;
else if (token->text == kDirectiveError)
return DIRECTIVE_ERROR;
else if (token->text == kDirectivePragma)
return DIRECTIVE_PRAGMA;
else if (token->text == kDirectiveExtension)
return DIRECTIVE_EXTENSION;
else if (token->text == kDirectiveVersion)
return DIRECTIVE_VERSION;
else if (token->text == kDirectiveLine)
return DIRECTIVE_LINE;
return DIRECTIVE_NONE;
}
static bool isConditionalDirective(DirectiveType directive)
{
switch (directive)
{
case DIRECTIVE_IF:
case DIRECTIVE_IFDEF:
case DIRECTIVE_IFNDEF:
case DIRECTIVE_ELSE:
case DIRECTIVE_ELIF:
case DIRECTIVE_ENDIF:
return true;
default:
return false;
}
}
// Returns true if the token represents End Of Directive.
static bool isEOD(const pp::Token* token)
{
return (token->type == '\n') || (token->type == pp::Token::LAST);
}
static void skipUntilEOD(pp::Lexer* lexer, pp::Token* token)
{
while(!isEOD(token))
{
lexer->lex(token);
}
}
static bool isMacroNameReserved(const std::string& name)
{
// Names prefixed with "GL_" are reserved.
if (name.substr(0, 3) == "GL_")
return true;
// Names containing two consecutive underscores are reserved.
if (name.find("__") != std::string::npos)
return true;
return false;
}
static bool isMacroPredefined(const std::string& name,
const pp::MacroSet& macroSet)
{
pp::MacroSet::const_iterator iter = macroSet.find(name);
return iter != macroSet.end() ? iter->second.predefined : false;
}
namespace pp
{
DirectiveParser::DirectiveParser(Tokenizer* tokenizer,
MacroSet* macroSet,
Diagnostics* diagnostics,
DirectiveHandler* directiveHandler) :
mPastFirstStatement(false),
mTokenizer(tokenizer),
mMacroSet(macroSet),
mDiagnostics(diagnostics),
mDirectiveHandler(directiveHandler)
{
}
void DirectiveParser::lex(Token* token)
{
do
{
mTokenizer->lex(token);
if (token->type == Token::PP_HASH)
{
parseDirective(token);
mPastFirstStatement = true;
}
if (token->type == Token::LAST)
{
if (!mConditionalStack.empty())
{
const ConditionalBlock& block = mConditionalStack.back();
mDiagnostics->report(Diagnostics::CONDITIONAL_UNTERMINATED,
block.location, block.type);
}
break;
}
} while (skipping() || (token->type == '\n'));
mPastFirstStatement = true;
}
void DirectiveParser::parseDirective(Token* token)
{
assert(token->type == Token::PP_HASH);
mTokenizer->lex(token);
if (isEOD(token))
{
// Empty Directive.
return;
}
DirectiveType directive = getDirective(token);
// While in an excluded conditional block/group,
// we only parse conditional directives.
if (skipping() && !isConditionalDirective(directive))
{
skipUntilEOD(mTokenizer, token);
return;
}
switch(directive)
{
case DIRECTIVE_NONE:
mDiagnostics->report(Diagnostics::DIRECTIVE_INVALID_NAME,
token->location, token->text);
skipUntilEOD(mTokenizer, token);
break;
case DIRECTIVE_DEFINE:
parseDefine(token);
break;
case DIRECTIVE_UNDEF:
parseUndef(token);
break;
case DIRECTIVE_IF:
parseIf(token);
break;
case DIRECTIVE_IFDEF:
parseIfdef(token);
break;
case DIRECTIVE_IFNDEF:
parseIfndef(token);
break;
case DIRECTIVE_ELSE:
parseElse(token);
break;
case DIRECTIVE_ELIF:
parseElif(token);
break;
case DIRECTIVE_ENDIF:
parseEndif(token);
break;
case DIRECTIVE_ERROR:
parseError(token);
break;
case DIRECTIVE_PRAGMA:
parsePragma(token);
break;
case DIRECTIVE_EXTENSION:
parseExtension(token);
break;
case DIRECTIVE_VERSION:
parseVersion(token);
break;
case DIRECTIVE_LINE:
parseLine(token);
break;
default:
assert(false);
break;
}
skipUntilEOD(mTokenizer, token);
if (token->type == Token::LAST)
{
mDiagnostics->report(Diagnostics::EOF_IN_DIRECTIVE,
token->location, token->text);
}
}
void DirectiveParser::parseDefine(Token* token)
{
assert(getDirective(token) == DIRECTIVE_DEFINE);
mTokenizer->lex(token);
if (token->type != Token::IDENTIFIER)
{
mDiagnostics->report(Diagnostics::UNEXPECTED_TOKEN,
token->location, token->text);
return;
}
if (isMacroPredefined(token->text, *mMacroSet))
{
mDiagnostics->report(Diagnostics::MACRO_PREDEFINED_REDEFINED,
token->location, token->text);
return;
}
if (isMacroNameReserved(token->text))
{
mDiagnostics->report(Diagnostics::MACRO_NAME_RESERVED,
token->location, token->text);
return;
}
Macro macro;
macro.type = Macro::kTypeObj;
macro.name = token->text;
mTokenizer->lex(token);
if (token->type == '(' && !token->hasLeadingSpace())
{
// Function-like macro. Collect arguments.
macro.type = Macro::kTypeFunc;
do {
mTokenizer->lex(token);
if (token->type != Token::IDENTIFIER)
break;
if (std::find(macro.parameters.begin(), macro.parameters.end(), token->text) != macro.parameters.end())
{
mDiagnostics->report(Diagnostics::MACRO_DUPLICATE_PARAMETER_NAMES,
token->location, token->text);
return;
}
macro.parameters.push_back(token->text);
mTokenizer->lex(token); // Get ','.
} while (token->type == ',');
if (token->type != ')')
{
mDiagnostics->report(Diagnostics::UNEXPECTED_TOKEN,
token->location,
token->text);
return;
}
mTokenizer->lex(token); // Get ')'.
}
while ((token->type != '\n') && (token->type != Token::LAST))
{
// Reset the token location because it is unnecessary in replacement
// list. Resetting it also allows us to reuse Token::equals() to
// compare macros.
token->location = SourceLocation();
macro.replacements.push_back(*token);
mTokenizer->lex(token);
}
if (!macro.replacements.empty())
{
// Whitespace preceding the replacement list is not considered part of
// the replacement list for either form of macro.
macro.replacements.front().setHasLeadingSpace(false);
}
// Check for macro redefinition.
MacroSet::const_iterator iter = mMacroSet->find(macro.name);
if (iter != mMacroSet->end() && !macro.equals(iter->second))
{
mDiagnostics->report(Diagnostics::MACRO_REDEFINED,
token->location,
macro.name);
return;
}
mMacroSet->insert(std::make_pair(macro.name, macro));
}
void DirectiveParser::parseUndef(Token* token)
{
assert(getDirective(token) == DIRECTIVE_UNDEF);
mTokenizer->lex(token);
if (token->type != Token::IDENTIFIER)
{
mDiagnostics->report(Diagnostics::UNEXPECTED_TOKEN,
token->location, token->text);
return;
}
MacroSet::iterator iter = mMacroSet->find(token->text);
if (iter != mMacroSet->end())
{
if (iter->second.predefined)
{
mDiagnostics->report(Diagnostics::MACRO_PREDEFINED_UNDEFINED,
token->location, token->text);
}
else
{
mMacroSet->erase(iter);
}
}
mTokenizer->lex(token);
}
void DirectiveParser::parseIf(Token* token)
{
assert(getDirective(token) == DIRECTIVE_IF);
parseConditionalIf(token);
}
void DirectiveParser::parseIfdef(Token* token)
{
assert(getDirective(token) == DIRECTIVE_IFDEF);
parseConditionalIf(token);
}
void DirectiveParser::parseIfndef(Token* token)
{
assert(getDirective(token) == DIRECTIVE_IFNDEF);
parseConditionalIf(token);
}
void DirectiveParser::parseElse(Token* token)
{
assert(getDirective(token) == DIRECTIVE_ELSE);
if (mConditionalStack.empty())
{
mDiagnostics->report(Diagnostics::CONDITIONAL_ELSE_WITHOUT_IF,
token->location, token->text);
skipUntilEOD(mTokenizer, token);
return;
}
ConditionalBlock& block = mConditionalStack.back();
if (block.skipBlock)
{
// No diagnostics. Just skip the whole line.
skipUntilEOD(mTokenizer, token);
return;
}
if (block.foundElseGroup)
{
mDiagnostics->report(Diagnostics::CONDITIONAL_ELSE_AFTER_ELSE,
token->location, token->text);
skipUntilEOD(mTokenizer, token);
return;
}
block.foundElseGroup = true;
block.skipGroup = block.foundValidGroup;
block.foundValidGroup = true;
// Check if there are extra tokens after #else.
mTokenizer->lex(token);
if (!isEOD(token))
{
mDiagnostics->report(Diagnostics::CONDITIONAL_UNEXPECTED_TOKEN,
token->location, token->text);
skipUntilEOD(mTokenizer, token);
}
}
void DirectiveParser::parseElif(Token* token)
{
assert(getDirective(token) == DIRECTIVE_ELIF);
if (mConditionalStack.empty())
{
mDiagnostics->report(Diagnostics::CONDITIONAL_ELIF_WITHOUT_IF,
token->location, token->text);
skipUntilEOD(mTokenizer, token);
return;
}
ConditionalBlock& block = mConditionalStack.back();
if (block.skipBlock)
{
// No diagnostics. Just skip the whole line.
skipUntilEOD(mTokenizer, token);
return;
}
if (block.foundElseGroup)
{
mDiagnostics->report(Diagnostics::CONDITIONAL_ELIF_AFTER_ELSE,
token->location, token->text);
skipUntilEOD(mTokenizer, token);
return;
}
if (block.foundValidGroup)
{
// Do not parse the expression.
// Also be careful not to emit a diagnostic.
block.skipGroup = true;
skipUntilEOD(mTokenizer, token);
return;
}
int expression = parseExpressionIf(token);
block.skipGroup = expression == 0;
block.foundValidGroup = expression != 0;
}
void DirectiveParser::parseEndif(Token* token)
{
assert(getDirective(token) == DIRECTIVE_ENDIF);
if (mConditionalStack.empty())
{
mDiagnostics->report(Diagnostics::CONDITIONAL_ENDIF_WITHOUT_IF,
token->location, token->text);
skipUntilEOD(mTokenizer, token);
return;
}
mConditionalStack.pop_back();
// Check if there are tokens after #endif.
mTokenizer->lex(token);
if (!isEOD(token))
{
mDiagnostics->report(Diagnostics::CONDITIONAL_UNEXPECTED_TOKEN,
token->location, token->text);
skipUntilEOD(mTokenizer, token);
}
}
void DirectiveParser::parseError(Token* token)
{
assert(getDirective(token) == DIRECTIVE_ERROR);
std::ostringstream stream;
mTokenizer->lex(token);
while ((token->type != '\n') && (token->type != Token::LAST))
{
stream << *token;
mTokenizer->lex(token);
}
mDirectiveHandler->handleError(token->location, stream.str());
}
// Parses pragma of form: #pragma name[(value)].
void DirectiveParser::parsePragma(Token* token)
{
assert(getDirective(token) == DIRECTIVE_PRAGMA);
enum State
{
PRAGMA_NAME,
LEFT_PAREN,
PRAGMA_VALUE,
RIGHT_PAREN
};
bool valid = true;
std::string name, value;
int state = PRAGMA_NAME;
mTokenizer->lex(token);
while ((token->type != '\n') && (token->type != Token::LAST))
{
switch(state++)
{
case PRAGMA_NAME:
name = token->text;
valid = valid && (token->type == Token::IDENTIFIER);
break;
case LEFT_PAREN:
valid = valid && (token->type == '(');
break;
case PRAGMA_VALUE:
value = token->text;
valid = valid && (token->type == Token::IDENTIFIER);
break;
case RIGHT_PAREN:
valid = valid && (token->type == ')');
break;
default:
valid = false;
break;
}
mTokenizer->lex(token);
}
valid = valid && ((state == PRAGMA_NAME) || // Empty pragma.
(state == LEFT_PAREN) || // Without value.
(state == RIGHT_PAREN + 1)); // With value.
if (!valid)
{
mDiagnostics->report(Diagnostics::UNRECOGNIZED_PRAGMA,
token->location, name);
}
else if (state > PRAGMA_NAME) // Do not notify for empty pragma.
{
mDirectiveHandler->handlePragma(token->location, name, value);
}
}
void DirectiveParser::parseExtension(Token* token)
{
assert(getDirective(token) == DIRECTIVE_EXTENSION);
enum State
{
EXT_NAME,
COLON,
EXT_BEHAVIOR
};
bool valid = true;
std::string name, behavior;
int state = EXT_NAME;
mTokenizer->lex(token);
while ((token->type != '\n') && (token->type != Token::LAST))
{
switch (state++)
{
case EXT_NAME:
if (valid && (token->type != Token::IDENTIFIER))
{
mDiagnostics->report(Diagnostics::INVALID_EXTENSION_NAME,
token->location, token->text);
valid = false;
}
if (valid) name = token->text;
break;
case COLON:
if (valid && (token->type != ':'))
{
mDiagnostics->report(Diagnostics::UNEXPECTED_TOKEN,
token->location, token->text);
valid = false;
}
break;
case EXT_BEHAVIOR:
if (valid && (token->type != Token::IDENTIFIER))
{
mDiagnostics->report(Diagnostics::INVALID_EXTENSION_BEHAVIOR,
token->location, token->text);
valid = false;
}
if (valid) behavior = token->text;
break;
default:
if (valid)
{
mDiagnostics->report(Diagnostics::UNEXPECTED_TOKEN,
token->location, token->text);
valid = false;
}
break;
}
mTokenizer->lex(token);
}
if (valid && (state != EXT_BEHAVIOR + 1))
{
mDiagnostics->report(Diagnostics::INVALID_EXTENSION_DIRECTIVE,
token->location, token->text);
valid = false;
}
if (valid)
mDirectiveHandler->handleExtension(token->location, name, behavior);
}
void DirectiveParser::parseVersion(Token* token)
{
assert(getDirective(token) == DIRECTIVE_VERSION);
if (mPastFirstStatement)
{
mDiagnostics->report(Diagnostics::VERSION_NOT_FIRST_STATEMENT,
token->location, token->text);
skipUntilEOD(mTokenizer, token);
return;
}
enum State
{
VERSION_NUMBER,
VERSION_PROFILE,
VERSION_ENDLINE
};
bool valid = true;
int version = 0;
int state = VERSION_NUMBER;
mTokenizer->lex(token);
while (valid && (token->type != '\n') && (token->type != Token::LAST))
{
switch (state)
{
case VERSION_NUMBER:
if (token->type != Token::CONST_INT)
{
mDiagnostics->report(Diagnostics::INVALID_VERSION_NUMBER,
token->location, token->text);
valid = false;
}
if (valid && !token->iValue(&version))
{
mDiagnostics->report(Diagnostics::INTEGER_OVERFLOW,
token->location, token->text);
valid = false;
}
if (valid)
{
state = (version < 300) ? VERSION_ENDLINE : VERSION_PROFILE;
}
break;
case VERSION_PROFILE:
if (token->type != Token::IDENTIFIER || token->text != "es")
{
mDiagnostics->report(Diagnostics::INVALID_VERSION_DIRECTIVE,
token->location, token->text);
valid = false;
}
state = VERSION_ENDLINE;
break;
default:
mDiagnostics->report(Diagnostics::UNEXPECTED_TOKEN,
token->location, token->text);
valid = false;
break;
}
mTokenizer->lex(token);
}
if (valid && (state != VERSION_ENDLINE))
{
mDiagnostics->report(Diagnostics::INVALID_VERSION_DIRECTIVE,
token->location, token->text);
valid = false;
}
if (valid)
{
mDirectiveHandler->handleVersion(token->location, version);
}
}
void DirectiveParser::parseLine(Token* token)
{
assert(getDirective(token) == DIRECTIVE_LINE);
enum State
{
LINE_NUMBER,
FILE_NUMBER
};
bool valid = true;
int line = 0, file = 0;
int state = LINE_NUMBER;
MacroExpander macroExpander(mTokenizer, mMacroSet, mDiagnostics, false);
macroExpander.lex(token);
while ((token->type != '\n') && (token->type != Token::LAST))
{
switch (state++)
{
case LINE_NUMBER:
if (valid && (token->type != Token::CONST_INT))
{
mDiagnostics->report(Diagnostics::INVALID_LINE_NUMBER,
token->location, token->text);
valid = false;
}
if (valid && !token->iValue(&line))
{
mDiagnostics->report(Diagnostics::INTEGER_OVERFLOW,
token->location, token->text);
valid = false;
}
break;
case FILE_NUMBER:
if (valid && (token->type != Token::CONST_INT))
{
mDiagnostics->report(Diagnostics::INVALID_FILE_NUMBER,
token->location, token->text);
valid = false;
}
if (valid && !token->iValue(&file))
{
mDiagnostics->report(Diagnostics::INTEGER_OVERFLOW,
token->location, token->text);
valid = false;
}
break;
default:
if (valid)
{
mDiagnostics->report(Diagnostics::UNEXPECTED_TOKEN,
token->location, token->text);
valid = false;
}
break;
}
macroExpander.lex(token);
}
if (valid && (state != FILE_NUMBER) && (state != FILE_NUMBER + 1))
{
mDiagnostics->report(Diagnostics::INVALID_LINE_DIRECTIVE,
token->location, token->text);
valid = false;
}
if (valid)
{
mTokenizer->setLineNumber(line);
if (state == FILE_NUMBER + 1) mTokenizer->setFileNumber(file);
}
}
bool DirectiveParser::skipping() const
{
if (mConditionalStack.empty()) return false;
const ConditionalBlock& block = mConditionalStack.back();
return block.skipBlock || block.skipGroup;
}
void DirectiveParser::parseConditionalIf(Token* token)
{
ConditionalBlock block;
block.type = token->text;
block.location = token->location;
if (skipping())
{
// This conditional block is inside another conditional group
// which is skipped. As a consequence this whole block is skipped.
// Be careful not to parse the conditional expression that might
// emit a diagnostic.
skipUntilEOD(mTokenizer, token);
block.skipBlock = true;
}
else
{
DirectiveType directive = getDirective(token);
int expression = 0;
switch (directive)
{
case DIRECTIVE_IF:
expression = parseExpressionIf(token);
break;
case DIRECTIVE_IFDEF:
expression = parseExpressionIfdef(token);
break;
case DIRECTIVE_IFNDEF:
expression = parseExpressionIfdef(token) == 0 ? 1 : 0;
break;
default:
assert(false);
break;
}
block.skipGroup = expression == 0;
block.foundValidGroup = expression != 0;
}
mConditionalStack.push_back(block);
}
int DirectiveParser::parseExpressionIf(Token* token)
{
assert((getDirective(token) == DIRECTIVE_IF) ||
(getDirective(token) == DIRECTIVE_ELIF));
MacroExpander macroExpander(mTokenizer, mMacroSet, mDiagnostics, true);
ExpressionParser expressionParser(&macroExpander, mDiagnostics);
int expression = 0;
macroExpander.lex(token);
expressionParser.parse(token, &expression);
// Check if there are tokens after #if expression.
if (!isEOD(token))
{
mDiagnostics->report(Diagnostics::CONDITIONAL_UNEXPECTED_TOKEN,
token->location, token->text);
skipUntilEOD(mTokenizer, token);
}
return expression;
}
int DirectiveParser::parseExpressionIfdef(Token* token)
{
assert((getDirective(token) == DIRECTIVE_IFDEF) ||
(getDirective(token) == DIRECTIVE_IFNDEF));
mTokenizer->lex(token);
if (token->type != Token::IDENTIFIER)
{
mDiagnostics->report(Diagnostics::UNEXPECTED_TOKEN,
token->location, token->text);
skipUntilEOD(mTokenizer, token);
return 0;
}
MacroSet::const_iterator iter = mMacroSet->find(token->text);
int expression = iter != mMacroSet->end() ? 1 : 0;
// Check if there are tokens after #ifdef expression.
mTokenizer->lex(token);
if (!isEOD(token))
{
mDiagnostics->report(Diagnostics::CONDITIONAL_UNEXPECTED_TOKEN,
token->location, token->text);
skipUntilEOD(mTokenizer, token);
}
return expression;
}
} // namespace pp