| //=== X86CallingConv.cpp - X86 Custom Calling Convention Impl -*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the implementation of custom routines for the X86 |
| // Calling Convention that aren't done by tablegen. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MCTargetDesc/X86MCTargetDesc.h" |
| #include "X86Subtarget.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/IR/CallingConv.h" |
| |
| namespace llvm { |
| |
| bool CC_X86_32_RegCall_Assign2Regs(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
| // List of GPR registers that are available to store values in regcall |
| // calling convention. |
| static const MCPhysReg RegList[] = {X86::EAX, X86::ECX, X86::EDX, X86::EDI, |
| X86::ESI}; |
| |
| // The vector will save all the available registers for allocation. |
| SmallVector<unsigned, 5> AvailableRegs; |
| |
| // searching for the available registers. |
| for (auto Reg : RegList) { |
| if (!State.isAllocated(Reg)) |
| AvailableRegs.push_back(Reg); |
| } |
| |
| const size_t RequiredGprsUponSplit = 2; |
| if (AvailableRegs.size() < RequiredGprsUponSplit) |
| return false; // Not enough free registers - continue the search. |
| |
| // Allocating the available registers. |
| for (unsigned I = 0; I < RequiredGprsUponSplit; I++) { |
| |
| // Marking the register as located. |
| unsigned Reg = State.AllocateReg(AvailableRegs[I]); |
| |
| // Since we previously made sure that 2 registers are available |
| // we expect that a real register number will be returned. |
| assert(Reg && "Expecting a register will be available"); |
| |
| // Assign the value to the allocated register |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| } |
| |
| // Successful in allocating regsiters - stop scanning next rules. |
| return true; |
| } |
| |
| static ArrayRef<MCPhysReg> CC_X86_VectorCallGetSSEs(const MVT &ValVT) { |
| if (ValVT.is512BitVector()) { |
| static const MCPhysReg RegListZMM[] = {X86::ZMM0, X86::ZMM1, X86::ZMM2, |
| X86::ZMM3, X86::ZMM4, X86::ZMM5}; |
| return makeArrayRef(std::begin(RegListZMM), std::end(RegListZMM)); |
| } |
| |
| if (ValVT.is256BitVector()) { |
| static const MCPhysReg RegListYMM[] = {X86::YMM0, X86::YMM1, X86::YMM2, |
| X86::YMM3, X86::YMM4, X86::YMM5}; |
| return makeArrayRef(std::begin(RegListYMM), std::end(RegListYMM)); |
| } |
| |
| static const MCPhysReg RegListXMM[] = {X86::XMM0, X86::XMM1, X86::XMM2, |
| X86::XMM3, X86::XMM4, X86::XMM5}; |
| return makeArrayRef(std::begin(RegListXMM), std::end(RegListXMM)); |
| } |
| |
| static ArrayRef<MCPhysReg> CC_X86_64_VectorCallGetGPRs() { |
| static const MCPhysReg RegListGPR[] = {X86::RCX, X86::RDX, X86::R8, X86::R9}; |
| return makeArrayRef(std::begin(RegListGPR), std::end(RegListGPR)); |
| } |
| |
| static bool CC_X86_VectorCallAssignRegister(unsigned &ValNo, MVT &ValVT, |
| MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State) { |
| |
| ArrayRef<MCPhysReg> RegList = CC_X86_VectorCallGetSSEs(ValVT); |
| bool Is64bit = static_cast<const X86Subtarget &>( |
| State.getMachineFunction().getSubtarget()) |
| .is64Bit(); |
| |
| for (auto Reg : RegList) { |
| // If the register is not marked as allocated - assign to it. |
| if (!State.isAllocated(Reg)) { |
| unsigned AssigedReg = State.AllocateReg(Reg); |
| assert(AssigedReg == Reg && "Expecting a valid register allocation"); |
| State.addLoc( |
| CCValAssign::getReg(ValNo, ValVT, AssigedReg, LocVT, LocInfo)); |
| return true; |
| } |
| // If the register is marked as shadow allocated - assign to it. |
| if (Is64bit && State.IsShadowAllocatedReg(Reg)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return true; |
| } |
| } |
| |
| llvm_unreachable("Clang should ensure that hva marked vectors will have " |
| "an available register."); |
| return false; |
| } |
| |
| bool CC_X86_64_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
| // On the second pass, go through the HVAs only. |
| if (ArgFlags.isSecArgPass()) { |
| if (ArgFlags.isHva()) |
| return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo, |
| ArgFlags, State); |
| return true; |
| } |
| |
| // Process only vector types as defined by vectorcall spec: |
| // "A vector type is either a floating-point type, for example, |
| // a float or double, or an SIMD vector type, for example, __m128 or __m256". |
| if (!(ValVT.isFloatingPoint() || |
| (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) { |
| // If R9 was already assigned it means that we are after the fourth element |
| // and because this is not an HVA / Vector type, we need to allocate |
| // shadow XMM register. |
| if (State.isAllocated(X86::R9)) { |
| // Assign shadow XMM register. |
| (void)State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT)); |
| } |
| |
| return false; |
| } |
| |
| if (!ArgFlags.isHva() || ArgFlags.isHvaStart()) { |
| // Assign shadow GPR register. |
| (void)State.AllocateReg(CC_X86_64_VectorCallGetGPRs()); |
| |
| // Assign XMM register - (shadow for HVA and non-shadow for non HVA). |
| if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) { |
| // In Vectorcall Calling convention, additional shadow stack can be |
| // created on top of the basic 32 bytes of win64. |
| // It can happen if the fifth or sixth argument is vector type or HVA. |
| // At that case for each argument a shadow stack of 8 bytes is allocated. |
| if (Reg == X86::XMM4 || Reg == X86::XMM5) |
| State.AllocateStack(8, 8); |
| |
| if (!ArgFlags.isHva()) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return true; // Allocated a register - Stop the search. |
| } |
| } |
| } |
| |
| // If this is an HVA - Stop the search, |
| // otherwise continue the search. |
| return ArgFlags.isHva(); |
| } |
| |
| bool CC_X86_32_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
| // On the second pass, go through the HVAs only. |
| if (ArgFlags.isSecArgPass()) { |
| if (ArgFlags.isHva()) |
| return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo, |
| ArgFlags, State); |
| return true; |
| } |
| |
| // Process only vector types as defined by vectorcall spec: |
| // "A vector type is either a floating point type, for example, |
| // a float or double, or an SIMD vector type, for example, __m128 or __m256". |
| if (!(ValVT.isFloatingPoint() || |
| (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) { |
| return false; |
| } |
| |
| if (ArgFlags.isHva()) |
| return true; // If this is an HVA - Stop the search. |
| |
| // Assign XMM register. |
| if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return true; |
| } |
| |
| // In case we did not find an available XMM register for a vector - |
| // pass it indirectly. |
| // It is similar to CCPassIndirect, with the addition of inreg. |
| if (!ValVT.isFloatingPoint()) { |
| LocVT = MVT::i32; |
| LocInfo = CCValAssign::Indirect; |
| ArgFlags.setInReg(); |
| } |
| |
| return false; // No register was assigned - Continue the search. |
| } |
| |
| } // End llvm namespace |