blob: c53d0df2975caa9c0a37d5cc3675b93c54820d76 [file] [log] [blame]
// SwiftShader Software Renderer
//
// Copyright(c) 2005-2013 TransGaming Inc.
//
// All rights reserved. No part of this software may be copied, distributed, transmitted,
// transcribed, stored in a retrieval system, translated into any human or computer
// language by any means, or disclosed to third parties without the explicit written
// agreement of TransGaming Inc. Without such an agreement, no rights or licenses, express
// or implied, including but not limited to any patent rights, are granted to you.
//
// Context.cpp: Implements the es1::Context class, managing all GL state and performing
// rendering operations. It is the GLES2 specific implementation of EGLContext.
#include "Context.h"
#include "main.h"
#include "mathutil.h"
#include "utilities.h"
#include "ResourceManager.h"
#include "Buffer.h"
#include "Framebuffer.h"
#include "Renderbuffer.h"
#include "Texture.h"
#include "VertexDataManager.h"
#include "IndexDataManager.h"
#include "libEGL/Display.h"
#include "libEGL/Surface.h"
#include "Common/Half.hpp"
#include <EGL/eglext.h>
#undef near
#undef far
namespace es1
{
Context::Context(const egl::Config *config, const Context *shareContext)
: modelViewStack(MAX_MODELVIEW_STACK_DEPTH),
projectionStack(MAX_PROJECTION_STACK_DEPTH),
textureStack0(MAX_TEXTURE_STACK_DEPTH),
textureStack1(MAX_TEXTURE_STACK_DEPTH)
{
sw::Context *context = new sw::Context();
device = new es1::Device(context);
mVertexDataManager = new VertexDataManager(this);
mIndexDataManager = new IndexDataManager();
setClearColor(0.0f, 0.0f, 0.0f, 0.0f);
mState.depthClearValue = 1.0f;
mState.stencilClearValue = 0;
mState.cullFace = false;
mState.cullMode = GL_BACK;
mState.frontFace = GL_CCW;
mState.depthTest = false;
mState.depthFunc = GL_LESS;
mState.blend = false;
mState.sourceBlendRGB = GL_ONE;
mState.sourceBlendAlpha = GL_ONE;
mState.destBlendRGB = GL_ZERO;
mState.destBlendAlpha = GL_ZERO;
mState.blendEquationRGB = GL_FUNC_ADD_OES;
mState.blendEquationAlpha = GL_FUNC_ADD_OES;
mState.stencilTest = false;
mState.stencilFunc = GL_ALWAYS;
mState.stencilRef = 0;
mState.stencilMask = -1;
mState.stencilWritemask = -1;
mState.stencilFail = GL_KEEP;
mState.stencilPassDepthFail = GL_KEEP;
mState.stencilPassDepthPass = GL_KEEP;
mState.polygonOffsetFill = false;
mState.polygonOffsetFactor = 0.0f;
mState.polygonOffsetUnits = 0.0f;
mState.sampleAlphaToCoverage = false;
mState.sampleCoverage = false;
mState.sampleCoverageValue = 1.0f;
mState.sampleCoverageInvert = false;
mState.scissorTest = false;
mState.dither = true;
mState.shadeModel = GL_SMOOTH;
mState.generateMipmapHint = GL_DONT_CARE;
mState.perspectiveCorrectionHint = GL_DONT_CARE;
mState.lineWidth = 1.0f;
mState.viewportX = 0;
mState.viewportY = 0;
mState.viewportWidth = config->mDisplayMode.width;
mState.viewportHeight = config->mDisplayMode.height;
mState.zNear = 0.0f;
mState.zFar = 1.0f;
mState.scissorX = 0;
mState.scissorY = 0;
mState.scissorWidth = config->mDisplayMode.width;
mState.scissorHeight = config->mDisplayMode.height;
mState.colorMaskRed = true;
mState.colorMaskGreen = true;
mState.colorMaskBlue = true;
mState.colorMaskAlpha = true;
mState.depthMask = true;
for(int i = 0; i < MAX_TEXTURE_UNITS; i++)
{
mState.textureUnit[i].environmentMode = GL_MODULATE;
mState.textureUnit[i].combineRGB = GL_MODULATE;
mState.textureUnit[i].combineAlpha = GL_MODULATE;
mState.textureUnit[i].src0RGB = GL_TEXTURE;
mState.textureUnit[i].src1RGB = GL_PREVIOUS;
mState.textureUnit[i].src2RGB = GL_CONSTANT;
mState.textureUnit[i].src0Alpha = GL_TEXTURE;
mState.textureUnit[i].src1Alpha = GL_PREVIOUS;
mState.textureUnit[i].src2Alpha = GL_CONSTANT;
mState.textureUnit[i].operand0RGB = GL_SRC_COLOR;
mState.textureUnit[i].operand1RGB = GL_SRC_COLOR;
mState.textureUnit[i].operand2RGB = GL_SRC_ALPHA;
mState.textureUnit[i].operand0Alpha = GL_SRC_ALPHA;
mState.textureUnit[i].operand1Alpha = GL_SRC_ALPHA;
mState.textureUnit[i].operand2Alpha = GL_SRC_ALPHA;
}
if(shareContext != NULL)
{
mResourceManager = shareContext->mResourceManager;
mResourceManager->addRef();
}
else
{
mResourceManager = new ResourceManager();
}
// [OpenGL ES 2.0.24] section 3.7 page 83:
// In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional
// and cube map texture state vectors respectively associated with them.
// In order that access to these initial textures not be lost, they are treated as texture
// objects all of whose names are 0.
mTexture2DZero = new Texture2D(0);
mTextureExternalZero = new TextureExternal(0);
mState.activeSampler = 0;
bindArrayBuffer(0);
bindElementArrayBuffer(0);
bindTexture2D(0);
bindFramebuffer(0);
bindRenderbuffer(0);
mState.packAlignment = 4;
mState.unpackAlignment = 4;
mInvalidEnum = false;
mInvalidValue = false;
mInvalidOperation = false;
mOutOfMemory = false;
mInvalidFramebufferOperation = false;
lighting = false;
for(int i = 0; i < MAX_LIGHTS; i++)
{
light[i].enable = false;
light[i].ambient = {0.0f, 0.0f, 0.0f, 1.0f};
light[i].diffuse = {0.0f, 0.0f, 0.0f, 1.0f};
light[i].specular = {0.0f, 0.0f, 0.0f, 1.0f};
light[i].position = {0.0f, 0.0f, 1.0f, 0.0f};
light[i].direction = {0.0f, 0.0f, -1.0f};
light[i].attenuation = {1.0f, 0.0f, 0.0f};
}
light[0].diffuse = {1.0f, 1.0f, 1.0f, 1.0f};
light[0].specular = {1.0f, 1.0f, 1.0f, 1.0f};
globalAmbient = {0.2f, 0.2f, 0.2f, 1.0f};
materialAmbient = {0.2f, 0.2f, 0.2f, 1.0f};
materialDiffuse = {0.8f, 0.8f, 0.8f, 1.0f};
materialSpecular = {0.0f, 0.0f, 0.0f, 1.0f};
materialEmission = {0.0f, 0.0f, 0.0f, 1.0f};
matrixMode = GL_MODELVIEW;
for(int i = 0; i < MAX_TEXTURE_UNITS; i++)
{
texture2Denabled[i] = false;
textureExternalEnabled[i] = false;
}
clientTexture = GL_TEXTURE0;
setVertexAttrib(sw::Color0, 1.0f, 1.0f, 1.0f, 1.0f);
for(int i = 0; i < MAX_TEXTURE_UNITS; i++)
{
setVertexAttrib(sw::TexCoord0 + i, 0.0f, 0.0f, 0.0f, 1.0f);
}
setVertexAttrib(sw::Normal, 0.0f, 0.0f, 1.0f, 1.0f);
mHasBeenCurrent = false;
markAllStateDirty();
}
Context::~Context()
{
while(!mFramebufferMap.empty())
{
deleteFramebuffer(mFramebufferMap.begin()->first);
}
for(int type = 0; type < TEXTURE_TYPE_COUNT; type++)
{
for(int sampler = 0; sampler < MAX_TEXTURE_UNITS; sampler++)
{
mState.samplerTexture[type][sampler] = NULL;
}
}
for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mState.vertexAttribute[i].mBoundBuffer = NULL;
}
mState.arrayBuffer = NULL;
mState.elementArrayBuffer = NULL;
mState.renderbuffer = NULL;
mTexture2DZero = NULL;
mTextureExternalZero = NULL;
delete mVertexDataManager;
delete mIndexDataManager;
mResourceManager->release();
delete device;
}
void Context::makeCurrent(egl::Surface *surface)
{
if(!mHasBeenCurrent)
{
mState.viewportX = 0;
mState.viewportY = 0;
mState.viewportWidth = surface->getWidth();
mState.viewportHeight = surface->getHeight();
mState.scissorX = 0;
mState.scissorY = 0;
mState.scissorWidth = surface->getWidth();
mState.scissorHeight = surface->getHeight();
mHasBeenCurrent = true;
}
// Wrap the existing resources into GL objects and assign them to the '0' names
egl::Image *defaultRenderTarget = surface->getRenderTarget();
egl::Image *depthStencil = surface->getDepthStencil();
Colorbuffer *colorbufferZero = new Colorbuffer(defaultRenderTarget);
DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(depthStencil);
Framebuffer *framebufferZero = new DefaultFramebuffer(colorbufferZero, depthStencilbufferZero);
setFramebufferZero(framebufferZero);
if(defaultRenderTarget)
{
defaultRenderTarget->release();
}
if(depthStencil)
{
depthStencil->release();
}
markAllStateDirty();
}
int Context::getClientVersion() const
{
return 1;
}
// This function will set all of the state-related dirty flags, so that all state is set during next pre-draw.
void Context::markAllStateDirty()
{
mDepthStateDirty = true;
mMaskStateDirty = true;
mBlendStateDirty = true;
mStencilStateDirty = true;
mPolygonOffsetStateDirty = true;
mSampleStateDirty = true;
mDitherStateDirty = true;
mFrontFaceDirty = true;
}
void Context::setClearColor(float red, float green, float blue, float alpha)
{
mState.colorClearValue.red = red;
mState.colorClearValue.green = green;
mState.colorClearValue.blue = blue;
mState.colorClearValue.alpha = alpha;
}
void Context::setClearDepth(float depth)
{
mState.depthClearValue = depth;
}
void Context::setClearStencil(int stencil)
{
mState.stencilClearValue = stencil;
}
void Context::setCullFace(bool enabled)
{
mState.cullFace = enabled;
}
bool Context::isCullFaceEnabled() const
{
return mState.cullFace;
}
void Context::setCullMode(GLenum mode)
{
mState.cullMode = mode;
}
void Context::setFrontFace(GLenum front)
{
if(mState.frontFace != front)
{
mState.frontFace = front;
mFrontFaceDirty = true;
}
}
void Context::setDepthTest(bool enabled)
{
if(mState.depthTest != enabled)
{
mState.depthTest = enabled;
mDepthStateDirty = true;
}
}
bool Context::isDepthTestEnabled() const
{
return mState.depthTest;
}
void Context::setDepthFunc(GLenum depthFunc)
{
if(mState.depthFunc != depthFunc)
{
mState.depthFunc = depthFunc;
mDepthStateDirty = true;
}
}
void Context::setDepthRange(float zNear, float zFar)
{
mState.zNear = zNear;
mState.zFar = zFar;
}
void Context::setBlend(bool enabled)
{
if(mState.blend != enabled)
{
mState.blend = enabled;
mBlendStateDirty = true;
}
}
bool Context::isBlendEnabled() const
{
return mState.blend;
}
void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha)
{
if(mState.sourceBlendRGB != sourceRGB ||
mState.sourceBlendAlpha != sourceAlpha ||
mState.destBlendRGB != destRGB ||
mState.destBlendAlpha != destAlpha)
{
mState.sourceBlendRGB = sourceRGB;
mState.destBlendRGB = destRGB;
mState.sourceBlendAlpha = sourceAlpha;
mState.destBlendAlpha = destAlpha;
mBlendStateDirty = true;
}
}
void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation)
{
if(mState.blendEquationRGB != rgbEquation ||
mState.blendEquationAlpha != alphaEquation)
{
mState.blendEquationRGB = rgbEquation;
mState.blendEquationAlpha = alphaEquation;
mBlendStateDirty = true;
}
}
void Context::setStencilTest(bool enabled)
{
if(mState.stencilTest != enabled)
{
mState.stencilTest = enabled;
mStencilStateDirty = true;
}
}
bool Context::isStencilTestEnabled() const
{
return mState.stencilTest;
}
void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask)
{
if(mState.stencilFunc != stencilFunc ||
mState.stencilRef != stencilRef ||
mState.stencilMask != stencilMask)
{
mState.stencilFunc = stencilFunc;
mState.stencilRef = (stencilRef > 0) ? stencilRef : 0;
mState.stencilMask = stencilMask;
mStencilStateDirty = true;
}
}
void Context::setStencilWritemask(GLuint stencilWritemask)
{
if(mState.stencilWritemask != stencilWritemask)
{
mState.stencilWritemask = stencilWritemask;
mStencilStateDirty = true;
}
}
void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass)
{
if(mState.stencilFail != stencilFail ||
mState.stencilPassDepthFail != stencilPassDepthFail ||
mState.stencilPassDepthPass != stencilPassDepthPass)
{
mState.stencilFail = stencilFail;
mState.stencilPassDepthFail = stencilPassDepthFail;
mState.stencilPassDepthPass = stencilPassDepthPass;
mStencilStateDirty = true;
}
}
void Context::setPolygonOffsetFill(bool enabled)
{
if(mState.polygonOffsetFill != enabled)
{
mState.polygonOffsetFill = enabled;
mPolygonOffsetStateDirty = true;
}
}
bool Context::isPolygonOffsetFillEnabled() const
{
return mState.polygonOffsetFill;
}
void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units)
{
if(mState.polygonOffsetFactor != factor ||
mState.polygonOffsetUnits != units)
{
mState.polygonOffsetFactor = factor;
mState.polygonOffsetUnits = units;
mPolygonOffsetStateDirty = true;
}
}
void Context::setSampleAlphaToCoverage(bool enabled)
{
if(mState.sampleAlphaToCoverage != enabled)
{
mState.sampleAlphaToCoverage = enabled;
mSampleStateDirty = true;
}
}
bool Context::isSampleAlphaToCoverageEnabled() const
{
return mState.sampleAlphaToCoverage;
}
void Context::setSampleCoverage(bool enabled)
{
if(mState.sampleCoverage != enabled)
{
mState.sampleCoverage = enabled;
mSampleStateDirty = true;
}
}
bool Context::isSampleCoverageEnabled() const
{
return mState.sampleCoverage;
}
void Context::setSampleCoverageParams(GLclampf value, bool invert)
{
if(mState.sampleCoverageValue != value ||
mState.sampleCoverageInvert != invert)
{
mState.sampleCoverageValue = value;
mState.sampleCoverageInvert = invert;
mSampleStateDirty = true;
}
}
void Context::setScissorTest(bool enabled)
{
mState.scissorTest = enabled;
}
bool Context::isScissorTestEnabled() const
{
return mState.scissorTest;
}
void Context::setShadeModel(GLenum mode)
{
mState.shadeModel = mode;
}
void Context::setDither(bool enabled)
{
if(mState.dither != enabled)
{
mState.dither = enabled;
mDitherStateDirty = true;
}
}
bool Context::isDitherEnabled() const
{
return mState.dither;
}
void Context::setLighting(bool enable)
{
lighting = enable;
}
void Context::setLight(int index, bool enable)
{
light[index].enable = enable;
}
void Context::setLightAmbient(int index, float r, float g, float b, float a)
{
light[index].ambient = {r, g, b, a};
}
void Context::setLightDiffuse(int index, float r, float g, float b, float a)
{
light[index].diffuse = {r, g, b, a};
}
void Context::setLightSpecular(int index, float r, float g, float b, float a)
{
light[index].specular = {r, g, b, a};
}
void Context::setLightPosition(int index, float x, float y, float z, float w)
{
light[index].position = {x, y, z, w};
}
void Context::setLightDirection(int index, float x, float y, float z)
{
light[index].direction = {x, y, z};
}
void Context::setLightAttenuationConstant(int index, float constant)
{
light[index].attenuation.constant = constant;
}
void Context::setLightAttenuationLinear(int index, float linear)
{
light[index].attenuation.linear = linear;
}
void Context::setLightAttenuationQuadratic(int index, float quadratic)
{
light[index].attenuation.quadratic = quadratic;
}
void Context::setFog(bool enable)
{
device->setFogEnable(enable);
}
void Context::setFogMode(GLenum mode)
{
switch(mode)
{
case GL_LINEAR:
device->setPixelFogMode(sw::FOG_LINEAR);
break;
case GL_EXP:
device->setPixelFogMode(sw::FOG_EXP);
break;
case GL_EXP2:
device->setPixelFogMode(sw::FOG_EXP2);
break;
default:
UNREACHABLE();
}
}
void Context::setFogDensity(float fogDensity)
{
device->setFogDensity(fogDensity);
}
void Context::setFogStart(float fogStart)
{
device->setFogStart(fogStart);
}
void Context::setFogEnd(float fogEnd)
{
device->setFogEnd(fogEnd);
}
void Context::setFogColor(float r, float g, float b, float a)
{
device->setFogColor(sw::Color<float>(r, g, b, a));
}
void Context::setPointSize(float size)
{
device->setPointSize(size);
}
void Context::setTexture2Denabled(bool enable)
{
texture2Denabled[mState.activeSampler] = enable;
}
void Context::setTextureExternalEnabled(bool enable)
{
textureExternalEnabled[mState.activeSampler] = enable;
}
void Context::setLineWidth(GLfloat width)
{
mState.lineWidth = width;
device->setLineWidth(clamp(width, ALIASED_LINE_WIDTH_RANGE_MIN, ALIASED_LINE_WIDTH_RANGE_MAX));
}
void Context::setGenerateMipmapHint(GLenum hint)
{
mState.generateMipmapHint = hint;
}
void Context::setPerspectiveCorrectionHint(GLenum hint)
{
mState.perspectiveCorrectionHint = hint;
}
void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
mState.viewportX = x;
mState.viewportY = y;
mState.viewportWidth = width;
mState.viewportHeight = height;
}
void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
mState.scissorX = x;
mState.scissorY = y;
mState.scissorWidth = width;
mState.scissorHeight = height;
}
void Context::setColorMask(bool red, bool green, bool blue, bool alpha)
{
if(mState.colorMaskRed != red || mState.colorMaskGreen != green ||
mState.colorMaskBlue != blue || mState.colorMaskAlpha != alpha)
{
mState.colorMaskRed = red;
mState.colorMaskGreen = green;
mState.colorMaskBlue = blue;
mState.colorMaskAlpha = alpha;
mMaskStateDirty = true;
}
}
void Context::setDepthMask(bool mask)
{
if(mState.depthMask != mask)
{
mState.depthMask = mask;
mMaskStateDirty = true;
}
}
void Context::setActiveSampler(unsigned int active)
{
mState.activeSampler = active;
}
GLuint Context::getFramebufferName() const
{
return mState.framebuffer;
}
GLuint Context::getRenderbufferName() const
{
return mState.renderbuffer.name();
}
GLuint Context::getArrayBufferName() const
{
return mState.arrayBuffer.name();
}
void Context::setEnableVertexAttribArray(unsigned int attribNum, bool enabled)
{
mState.vertexAttribute[attribNum].mArrayEnabled = enabled;
}
const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum)
{
return mState.vertexAttribute[attribNum];
}
void Context::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type, bool normalized,
GLsizei stride, const void *pointer)
{
mState.vertexAttribute[attribNum].mBoundBuffer = boundBuffer;
mState.vertexAttribute[attribNum].mSize = size;
mState.vertexAttribute[attribNum].mType = type;
mState.vertexAttribute[attribNum].mNormalized = normalized;
mState.vertexAttribute[attribNum].mStride = stride;
mState.vertexAttribute[attribNum].mPointer = pointer;
}
const void *Context::getVertexAttribPointer(unsigned int attribNum) const
{
return mState.vertexAttribute[attribNum].mPointer;
}
const VertexAttributeArray &Context::getVertexAttributes()
{
return mState.vertexAttribute;
}
void Context::setPackAlignment(GLint alignment)
{
mState.packAlignment = alignment;
}
GLint Context::getPackAlignment() const
{
return mState.packAlignment;
}
void Context::setUnpackAlignment(GLint alignment)
{
mState.unpackAlignment = alignment;
}
GLint Context::getUnpackAlignment() const
{
return mState.unpackAlignment;
}
GLuint Context::createBuffer()
{
return mResourceManager->createBuffer();
}
GLuint Context::createTexture()
{
return mResourceManager->createTexture();
}
GLuint Context::createRenderbuffer()
{
return mResourceManager->createRenderbuffer();
}
// Returns an unused framebuffer name
GLuint Context::createFramebuffer()
{
GLuint handle = mFramebufferNameSpace.allocate();
mFramebufferMap[handle] = NULL;
return handle;
}
void Context::deleteBuffer(GLuint buffer)
{
if(mResourceManager->getBuffer(buffer))
{
detachBuffer(buffer);
}
mResourceManager->deleteBuffer(buffer);
}
void Context::deleteTexture(GLuint texture)
{
if(mResourceManager->getTexture(texture))
{
detachTexture(texture);
}
mResourceManager->deleteTexture(texture);
}
void Context::deleteRenderbuffer(GLuint renderbuffer)
{
if(mResourceManager->getRenderbuffer(renderbuffer))
{
detachRenderbuffer(renderbuffer);
}
mResourceManager->deleteRenderbuffer(renderbuffer);
}
void Context::deleteFramebuffer(GLuint framebuffer)
{
FramebufferMap::iterator framebufferObject = mFramebufferMap.find(framebuffer);
if(framebufferObject != mFramebufferMap.end())
{
detachFramebuffer(framebuffer);
mFramebufferNameSpace.release(framebufferObject->first);
delete framebufferObject->second;
mFramebufferMap.erase(framebufferObject);
}
}
Buffer *Context::getBuffer(GLuint handle)
{
return mResourceManager->getBuffer(handle);
}
Texture *Context::getTexture(GLuint handle)
{
return mResourceManager->getTexture(handle);
}
Renderbuffer *Context::getRenderbuffer(GLuint handle)
{
return mResourceManager->getRenderbuffer(handle);
}
Framebuffer *Context::getFramebuffer()
{
return getFramebuffer(mState.framebuffer);
}
void Context::bindArrayBuffer(unsigned int buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.arrayBuffer = getBuffer(buffer);
}
void Context::bindElementArrayBuffer(unsigned int buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.elementArrayBuffer = getBuffer(buffer);
}
void Context::bindTexture2D(GLuint texture)
{
mResourceManager->checkTextureAllocation(texture, TEXTURE_2D);
mState.samplerTexture[TEXTURE_2D][mState.activeSampler] = getTexture(texture);
}
void Context::bindTextureExternal(GLuint texture)
{
mResourceManager->checkTextureAllocation(texture, TEXTURE_EXTERNAL);
mState.samplerTexture[TEXTURE_EXTERNAL][mState.activeSampler] = getTexture(texture);
}
void Context::bindFramebuffer(GLuint framebuffer)
{
if(!getFramebuffer(framebuffer))
{
mFramebufferMap[framebuffer] = new Framebuffer();
}
mState.framebuffer = framebuffer;
}
void Context::bindRenderbuffer(GLuint renderbuffer)
{
mState.renderbuffer = getRenderbuffer(renderbuffer);
}
void Context::setFramebufferZero(Framebuffer *buffer)
{
delete mFramebufferMap[0];
mFramebufferMap[0] = buffer;
}
void Context::setRenderbufferStorage(RenderbufferStorage *renderbuffer)
{
Renderbuffer *renderbufferObject = mState.renderbuffer;
renderbufferObject->setStorage(renderbuffer);
}
Framebuffer *Context::getFramebuffer(unsigned int handle)
{
FramebufferMap::iterator framebuffer = mFramebufferMap.find(handle);
if(framebuffer == mFramebufferMap.end())
{
return NULL;
}
else
{
return framebuffer->second;
}
}
Buffer *Context::getArrayBuffer()
{
return mState.arrayBuffer;
}
Buffer *Context::getElementArrayBuffer()
{
return mState.elementArrayBuffer;
}
Texture2D *Context::getTexture2D()
{
return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D));
}
TextureExternal *Context::getTextureExternal()
{
return static_cast<TextureExternal*>(getSamplerTexture(mState.activeSampler, TEXTURE_EXTERNAL));
}
Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type)
{
GLuint texid = mState.samplerTexture[type][sampler].name();
if(texid == 0) // Special case: 0 refers to different initial textures based on the target
{
switch (type)
{
case TEXTURE_2D: return mTexture2DZero;
case TEXTURE_EXTERNAL: return mTextureExternalZero;
default: UNREACHABLE();
}
}
return mState.samplerTexture[type][sampler];
}
bool Context::getBooleanv(GLenum pname, GLboolean *params)
{
switch (pname)
{
case GL_SAMPLE_COVERAGE_INVERT: *params = mState.sampleCoverageInvert; break;
case GL_DEPTH_WRITEMASK: *params = mState.depthMask; break;
case GL_COLOR_WRITEMASK:
params[0] = mState.colorMaskRed;
params[1] = mState.colorMaskGreen;
params[2] = mState.colorMaskBlue;
params[3] = mState.colorMaskAlpha;
break;
case GL_CULL_FACE: *params = mState.cullFace; break;
case GL_POLYGON_OFFSET_FILL: *params = mState.polygonOffsetFill; break;
case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mState.sampleAlphaToCoverage; break;
case GL_SAMPLE_COVERAGE: *params = mState.sampleCoverage; break;
case GL_SCISSOR_TEST: *params = mState.scissorTest; break;
case GL_STENCIL_TEST: *params = mState.stencilTest; break;
case GL_DEPTH_TEST: *params = mState.depthTest; break;
case GL_BLEND: *params = mState.blend; break;
case GL_DITHER: *params = mState.dither; break;
default:
return false;
}
return true;
}
bool Context::getFloatv(GLenum pname, GLfloat *params)
{
// Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application.
switch (pname)
{
case GL_LINE_WIDTH: *params = mState.lineWidth; break;
case GL_SAMPLE_COVERAGE_VALUE: *params = mState.sampleCoverageValue; break;
case GL_DEPTH_CLEAR_VALUE: *params = mState.depthClearValue; break;
case GL_POLYGON_OFFSET_FACTOR: *params = mState.polygonOffsetFactor; break;
case GL_POLYGON_OFFSET_UNITS: *params = mState.polygonOffsetUnits; break;
case GL_ALIASED_LINE_WIDTH_RANGE:
params[0] = ALIASED_LINE_WIDTH_RANGE_MIN;
params[1] = ALIASED_LINE_WIDTH_RANGE_MAX;
break;
case GL_ALIASED_POINT_SIZE_RANGE:
params[0] = ALIASED_POINT_SIZE_RANGE_MIN;
params[1] = ALIASED_POINT_SIZE_RANGE_MAX;
break;
case GL_DEPTH_RANGE:
params[0] = mState.zNear;
params[1] = mState.zFar;
break;
case GL_COLOR_CLEAR_VALUE:
params[0] = mState.colorClearValue.red;
params[1] = mState.colorClearValue.green;
params[2] = mState.colorClearValue.blue;
params[3] = mState.colorClearValue.alpha;
break;
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
*params = MAX_TEXTURE_MAX_ANISOTROPY;
break;
case GL_MODELVIEW_MATRIX:
for(int i = 0; i < 16; i++)
{
params[i] = modelViewStack.current()[i % 4][i / 4];
}
break;
case GL_PROJECTION_MATRIX:
for(int i = 0; i < 16; i++)
{
params[i] = projectionStack.current()[i % 4][i / 4];
}
break;
default:
return false;
}
return true;
}
bool Context::getIntegerv(GLenum pname, GLint *params)
{
// Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application. You may find it in
// Context::getFloatv.
switch (pname)
{
case GL_ARRAY_BUFFER_BINDING: *params = mState.arrayBuffer.name(); break;
case GL_ELEMENT_ARRAY_BUFFER_BINDING: *params = mState.elementArrayBuffer.name(); break;
case GL_FRAMEBUFFER_BINDING_OES: *params = mState.framebuffer; break;
case GL_RENDERBUFFER_BINDING_OES: *params = mState.renderbuffer.name(); break;
case GL_PACK_ALIGNMENT: *params = mState.packAlignment; break;
case GL_UNPACK_ALIGNMENT: *params = mState.unpackAlignment; break;
case GL_GENERATE_MIPMAP_HINT: *params = mState.generateMipmapHint; break;
case GL_PERSPECTIVE_CORRECTION_HINT: *params = mState.perspectiveCorrectionHint; break;
case GL_ACTIVE_TEXTURE: *params = (mState.activeSampler + GL_TEXTURE0); break;
case GL_STENCIL_FUNC: *params = mState.stencilFunc; break;
case GL_STENCIL_REF: *params = mState.stencilRef; break;
case GL_STENCIL_VALUE_MASK: *params = mState.stencilMask; break;
case GL_STENCIL_FAIL: *params = mState.stencilFail; break;
case GL_STENCIL_PASS_DEPTH_FAIL: *params = mState.stencilPassDepthFail; break;
case GL_STENCIL_PASS_DEPTH_PASS: *params = mState.stencilPassDepthPass; break;
case GL_DEPTH_FUNC: *params = mState.depthFunc; break;
case GL_BLEND_SRC_RGB_OES: *params = mState.sourceBlendRGB; break;
case GL_BLEND_SRC_ALPHA_OES: *params = mState.sourceBlendAlpha; break;
case GL_BLEND_DST_RGB_OES: *params = mState.destBlendRGB; break;
case GL_BLEND_DST_ALPHA_OES: *params = mState.destBlendAlpha; break;
case GL_BLEND_EQUATION_RGB_OES: *params = mState.blendEquationRGB; break;
case GL_BLEND_EQUATION_ALPHA_OES: *params = mState.blendEquationAlpha; break;
case GL_STENCIL_WRITEMASK: *params = mState.stencilWritemask; break;
case GL_STENCIL_CLEAR_VALUE: *params = mState.stencilClearValue; break;
case GL_SUBPIXEL_BITS: *params = 4; break;
case GL_MAX_TEXTURE_SIZE: *params = IMPLEMENTATION_MAX_TEXTURE_SIZE; break;
case GL_NUM_COMPRESSED_TEXTURE_FORMATS: *params = NUM_COMPRESSED_TEXTURE_FORMATS; break;
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
{
Framebuffer *framebuffer = getFramebuffer();
int width, height, samples;
if(framebuffer->completeness(width, height, samples) == GL_FRAMEBUFFER_COMPLETE_OES)
{
switch(pname)
{
case GL_SAMPLE_BUFFERS:
if(samples > 1)
{
*params = 1;
}
else
{
*params = 0;
}
break;
case GL_SAMPLES:
*params = samples & ~1;
break;
}
}
else
{
*params = 0;
}
}
break;
case GL_IMPLEMENTATION_COLOR_READ_TYPE_OES:
{
Framebuffer *framebuffer = getFramebuffer();
*params = framebuffer->getImplementationColorReadType();
}
break;
case GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES:
{
Framebuffer *framebuffer = getFramebuffer();
*params = framebuffer->getImplementationColorReadFormat();
}
break;
case GL_MAX_VIEWPORT_DIMS:
{
int maxDimension = IMPLEMENTATION_MAX_RENDERBUFFER_SIZE;
params[0] = maxDimension;
params[1] = maxDimension;
}
break;
case GL_COMPRESSED_TEXTURE_FORMATS:
{
for(int i = 0; i < NUM_COMPRESSED_TEXTURE_FORMATS; i++)
{
params[i] = compressedTextureFormats[i];
}
}
break;
case GL_VIEWPORT:
params[0] = mState.viewportX;
params[1] = mState.viewportY;
params[2] = mState.viewportWidth;
params[3] = mState.viewportHeight;
break;
case GL_SCISSOR_BOX:
params[0] = mState.scissorX;
params[1] = mState.scissorY;
params[2] = mState.scissorWidth;
params[3] = mState.scissorHeight;
break;
case GL_CULL_FACE_MODE: *params = mState.cullMode; break;
case GL_FRONT_FACE: *params = mState.frontFace; break;
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
{
Framebuffer *framebuffer = getFramebuffer();
Renderbuffer *colorbuffer = framebuffer->getColorbuffer();
if(colorbuffer)
{
switch (pname)
{
case GL_RED_BITS: *params = colorbuffer->getRedSize(); break;
case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); break;
case GL_BLUE_BITS: *params = colorbuffer->getBlueSize(); break;
case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); break;
}
}
else
{
*params = 0;
}
}
break;
case GL_DEPTH_BITS:
{
Framebuffer *framebuffer = getFramebuffer();
Renderbuffer *depthbuffer = framebuffer->getDepthbuffer();
if(depthbuffer)
{
*params = depthbuffer->getDepthSize();
}
else
{
*params = 0;
}
}
break;
case GL_STENCIL_BITS:
{
Framebuffer *framebuffer = getFramebuffer();
Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer();
if(stencilbuffer)
{
*params = stencilbuffer->getStencilSize();
}
else
{
*params = 0;
}
}
break;
case GL_TEXTURE_BINDING_2D:
{
if(mState.activeSampler < 0 || mState.activeSampler > MAX_TEXTURE_UNITS - 1)
{
error(GL_INVALID_OPERATION);
return false;
}
*params = mState.samplerTexture[TEXTURE_2D][mState.activeSampler].name();
}
break;
case GL_TEXTURE_BINDING_CUBE_MAP_OES:
{
if(mState.activeSampler < 0 || mState.activeSampler > MAX_TEXTURE_UNITS - 1)
{
error(GL_INVALID_OPERATION);
return false;
}
*params = mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].name();
}
break;
case GL_TEXTURE_BINDING_EXTERNAL_OES:
{
if(mState.activeSampler < 0 || mState.activeSampler > MAX_TEXTURE_UNITS - 1)
{
error(GL_INVALID_OPERATION);
return false;
}
*params = mState.samplerTexture[TEXTURE_EXTERNAL][mState.activeSampler].name();
}
break;
case GL_MAX_LIGHTS: *params = MAX_LIGHTS; break;
case GL_MAX_MODELVIEW_STACK_DEPTH: *params = MAX_MODELVIEW_STACK_DEPTH; break;
case GL_MAX_PROJECTION_STACK_DEPTH: *params = MAX_PROJECTION_STACK_DEPTH; break;
case GL_MAX_TEXTURE_STACK_DEPTH: *params = MAX_TEXTURE_STACK_DEPTH; break;
case GL_MAX_TEXTURE_UNITS: *params = MAX_TEXTURE_UNITS; break;
default:
return false;
}
return true;
}
int Context::getQueryParameterNum(GLenum pname)
{
// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
// to the fact that it is stored internally as a float, and so would require conversion
// if returned from Context::getIntegerv. Since this conversion is already implemented
// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
// application.
switch (pname)
{
case GL_COMPRESSED_TEXTURE_FORMATS:
return NUM_COMPRESSED_TEXTURE_FORMATS;
case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
case GL_ARRAY_BUFFER_BINDING:
case GL_FRAMEBUFFER_BINDING_OES:
case GL_RENDERBUFFER_BINDING_OES:
case GL_PACK_ALIGNMENT:
case GL_UNPACK_ALIGNMENT:
case GL_GENERATE_MIPMAP_HINT:
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
case GL_DEPTH_BITS:
case GL_STENCIL_BITS:
case GL_ELEMENT_ARRAY_BUFFER_BINDING:
case GL_CULL_FACE_MODE:
case GL_FRONT_FACE:
case GL_ACTIVE_TEXTURE:
case GL_STENCIL_FUNC:
case GL_STENCIL_VALUE_MASK:
case GL_STENCIL_REF:
case GL_STENCIL_FAIL:
case GL_STENCIL_PASS_DEPTH_FAIL:
case GL_STENCIL_PASS_DEPTH_PASS:
case GL_DEPTH_FUNC:
case GL_BLEND_SRC_RGB_OES:
case GL_BLEND_SRC_ALPHA_OES:
case GL_BLEND_DST_RGB_OES:
case GL_BLEND_DST_ALPHA_OES:
case GL_BLEND_EQUATION_RGB_OES:
case GL_BLEND_EQUATION_ALPHA_OES:
case GL_STENCIL_WRITEMASK:
case GL_STENCIL_CLEAR_VALUE:
case GL_SUBPIXEL_BITS:
case GL_MAX_TEXTURE_SIZE:
case GL_MAX_CUBE_MAP_TEXTURE_SIZE_OES:
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
case GL_IMPLEMENTATION_COLOR_READ_TYPE_OES:
case GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES:
case GL_TEXTURE_BINDING_2D:
case GL_TEXTURE_BINDING_CUBE_MAP_OES:
case GL_TEXTURE_BINDING_EXTERNAL_OES:
return 1;
case GL_MAX_VIEWPORT_DIMS:
return 2;
case GL_VIEWPORT:
case GL_SCISSOR_BOX:
return 4;
case GL_SAMPLE_COVERAGE_INVERT:
case GL_DEPTH_WRITEMASK:
case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled,
case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries.
case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural
case GL_SAMPLE_COVERAGE:
case GL_SCISSOR_TEST:
case GL_STENCIL_TEST:
case GL_DEPTH_TEST:
case GL_BLEND:
case GL_DITHER:
return 1;
case GL_COLOR_WRITEMASK:
return 4;
case GL_POLYGON_OFFSET_FACTOR:
case GL_POLYGON_OFFSET_UNITS:
case GL_SAMPLE_COVERAGE_VALUE:
case GL_DEPTH_CLEAR_VALUE:
case GL_LINE_WIDTH:
return 1;
case GL_ALIASED_LINE_WIDTH_RANGE:
case GL_ALIASED_POINT_SIZE_RANGE:
case GL_DEPTH_RANGE:
return 2;
case GL_COLOR_CLEAR_VALUE:
return 4;
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
case GL_MAX_LIGHTS:
case GL_MAX_MODELVIEW_STACK_DEPTH:
case GL_MAX_PROJECTION_STACK_DEPTH:
case GL_MAX_TEXTURE_STACK_DEPTH:
case GL_MAX_TEXTURE_UNITS:
return 1;
default:
UNREACHABLE();
}
return -1;
}
bool Context::isQueryParameterInt(GLenum pname)
{
// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
// to the fact that it is stored internally as a float, and so would require conversion
// if returned from Context::getIntegerv. Since this conversion is already implemented
// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
// application.
switch(pname)
{
case GL_COMPRESSED_TEXTURE_FORMATS:
case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
case GL_ARRAY_BUFFER_BINDING:
case GL_FRAMEBUFFER_BINDING_OES:
case GL_RENDERBUFFER_BINDING_OES:
case GL_PACK_ALIGNMENT:
case GL_UNPACK_ALIGNMENT:
case GL_GENERATE_MIPMAP_HINT:
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
case GL_DEPTH_BITS:
case GL_STENCIL_BITS:
case GL_ELEMENT_ARRAY_BUFFER_BINDING:
case GL_CULL_FACE_MODE:
case GL_FRONT_FACE:
case GL_ACTIVE_TEXTURE:
case GL_STENCIL_FUNC:
case GL_STENCIL_VALUE_MASK:
case GL_STENCIL_REF:
case GL_STENCIL_FAIL:
case GL_STENCIL_PASS_DEPTH_FAIL:
case GL_STENCIL_PASS_DEPTH_PASS:
case GL_DEPTH_FUNC:
case GL_BLEND_SRC_RGB_OES:
case GL_BLEND_SRC_ALPHA_OES:
case GL_BLEND_DST_RGB_OES:
case GL_BLEND_DST_ALPHA_OES:
case GL_BLEND_EQUATION_RGB_OES:
case GL_BLEND_EQUATION_ALPHA_OES:
case GL_STENCIL_WRITEMASK:
case GL_STENCIL_CLEAR_VALUE:
case GL_SUBPIXEL_BITS:
case GL_MAX_TEXTURE_SIZE:
case GL_MAX_CUBE_MAP_TEXTURE_SIZE_OES:
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
case GL_IMPLEMENTATION_COLOR_READ_TYPE_OES:
case GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES:
case GL_TEXTURE_BINDING_2D:
case GL_TEXTURE_BINDING_CUBE_MAP_OES:
case GL_TEXTURE_BINDING_EXTERNAL_OES:
case GL_MAX_VIEWPORT_DIMS:
case GL_VIEWPORT:
case GL_SCISSOR_BOX:
case GL_MAX_LIGHTS:
case GL_MAX_MODELVIEW_STACK_DEPTH:
case GL_MAX_PROJECTION_STACK_DEPTH:
case GL_MAX_TEXTURE_STACK_DEPTH:
case GL_MAX_TEXTURE_UNITS:
return true;
default:
ASSERT(isQueryParameterFloat(pname) || isQueryParameterBool(pname));
}
return false;
}
bool Context::isQueryParameterFloat(GLenum pname)
{
// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
// to the fact that it is stored internally as a float, and so would require conversion
// if returned from Context::getIntegerv. Since this conversion is already implemented
// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
// application.
switch(pname)
{
case GL_POLYGON_OFFSET_FACTOR:
case GL_POLYGON_OFFSET_UNITS:
case GL_SAMPLE_COVERAGE_VALUE:
case GL_DEPTH_CLEAR_VALUE:
case GL_LINE_WIDTH:
case GL_ALIASED_LINE_WIDTH_RANGE:
case GL_ALIASED_POINT_SIZE_RANGE:
case GL_DEPTH_RANGE:
case GL_COLOR_CLEAR_VALUE:
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
return true;
default:
ASSERT(isQueryParameterInt(pname) || isQueryParameterBool(pname));
}
return false;
}
bool Context::isQueryParameterBool(GLenum pname)
{
switch(pname)
{
case GL_SAMPLE_COVERAGE_INVERT:
case GL_DEPTH_WRITEMASK:
case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled,
case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries.
case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural
case GL_SAMPLE_COVERAGE:
case GL_SCISSOR_TEST:
case GL_STENCIL_TEST:
case GL_DEPTH_TEST:
case GL_BLEND:
case GL_DITHER:
case GL_COLOR_WRITEMASK:
return true;
default:
ASSERT(isQueryParameterInt(pname) || isQueryParameterFloat(pname));
}
return false;
}
// Applies the render target surface, depth stencil surface, viewport rectangle and scissor rectangle
bool Context::applyRenderTarget()
{
Framebuffer *framebuffer = getFramebuffer();
int width, height, samples;
if(!framebuffer || framebuffer->completeness(width, height, samples) != GL_FRAMEBUFFER_COMPLETE_OES)
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION_OES, false);
}
egl::Image *renderTarget = framebuffer->getRenderTarget();
device->setRenderTarget(renderTarget);
if(renderTarget) renderTarget->release();
egl::Image *depthStencil = framebuffer->getDepthStencil();
device->setDepthStencilSurface(depthStencil);
if(depthStencil) depthStencil->release();
Viewport viewport;
float zNear = clamp01(mState.zNear);
float zFar = clamp01(mState.zFar);
viewport.x0 = mState.viewportX;
viewport.y0 = mState.viewportY;
viewport.width = mState.viewportWidth;
viewport.height = mState.viewportHeight;
viewport.minZ = zNear;
viewport.maxZ = zFar;
device->setViewport(viewport);
if(mState.scissorTest)
{
sw::Rect scissor = {mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight};
scissor.clip(0, 0, width, height);
device->setScissorRect(scissor);
device->setScissorEnable(true);
}
else
{
device->setScissorEnable(false);
}
return true;
}
// Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc)
void Context::applyState(GLenum drawMode)
{
Framebuffer *framebuffer = getFramebuffer();
if(mState.cullFace)
{
device->setCullMode(es2sw::ConvertCullMode(mState.cullMode, mState.frontFace));
}
else
{
device->setCullMode(sw::CULL_NONE);
}
if(mDepthStateDirty)
{
if(mState.depthTest)
{
device->setDepthBufferEnable(true);
device->setDepthCompare(es2sw::ConvertDepthComparison(mState.depthFunc));
}
else
{
device->setDepthBufferEnable(false);
}
mDepthStateDirty = false;
}
if(mBlendStateDirty)
{
if(mState.blend)
{
device->setAlphaBlendEnable(true);
device->setSeparateAlphaBlendEnable(true);
device->setSourceBlendFactor(es2sw::ConvertBlendFunc(mState.sourceBlendRGB));
device->setDestBlendFactor(es2sw::ConvertBlendFunc(mState.destBlendRGB));
device->setBlendOperation(es2sw::ConvertBlendOp(mState.blendEquationRGB));
device->setSourceBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.sourceBlendAlpha));
device->setDestBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.destBlendAlpha));
device->setBlendOperationAlpha(es2sw::ConvertBlendOp(mState.blendEquationAlpha));
}
else
{
device->setAlphaBlendEnable(false);
}
mBlendStateDirty = false;
}
if(mStencilStateDirty || mFrontFaceDirty)
{
if(mState.stencilTest && framebuffer->hasStencil())
{
device->setStencilEnable(true);
device->setTwoSidedStencil(true);
// get the maximum size of the stencil ref
Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer();
GLuint maxStencil = (1 << stencilbuffer->getStencilSize()) - 1;
device->setStencilWriteMask(mState.stencilWritemask);
device->setStencilCompare(es2sw::ConvertStencilComparison(mState.stencilFunc));
device->setStencilReference((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil);
device->setStencilMask(mState.stencilMask);
device->setStencilFailOperation(es2sw::ConvertStencilOp(mState.stencilFail));
device->setStencilZFailOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthFail));
device->setStencilPassOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthPass));
device->setStencilWriteMaskCCW(mState.stencilWritemask);
device->setStencilCompareCCW(es2sw::ConvertStencilComparison(mState.stencilFunc));
device->setStencilReferenceCCW((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil);
device->setStencilMaskCCW(mState.stencilMask);
device->setStencilFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilFail));
device->setStencilZFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthFail));
device->setStencilPassOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthPass));
}
else
{
device->setStencilEnable(false);
}
mStencilStateDirty = false;
mFrontFaceDirty = false;
}
if(mMaskStateDirty)
{
device->setColorWriteMask(0, es2sw::ConvertColorMask(mState.colorMaskRed, mState.colorMaskGreen, mState.colorMaskBlue, mState.colorMaskAlpha));
device->setDepthWriteEnable(mState.depthMask);
mMaskStateDirty = false;
}
if(mPolygonOffsetStateDirty)
{
if(mState.polygonOffsetFill)
{
Renderbuffer *depthbuffer = framebuffer->getDepthbuffer();
if(depthbuffer)
{
device->setSlopeDepthBias(mState.polygonOffsetFactor);
float depthBias = ldexp(mState.polygonOffsetUnits, -(int)(depthbuffer->getDepthSize()));
device->setDepthBias(depthBias);
}
}
else
{
device->setSlopeDepthBias(0);
device->setDepthBias(0);
}
mPolygonOffsetStateDirty = false;
}
if(mSampleStateDirty)
{
if(mState.sampleAlphaToCoverage)
{
device->setTransparencyAntialiasing(sw::TRANSPARENCY_ALPHA_TO_COVERAGE);
}
else
{
device->setTransparencyAntialiasing(sw::TRANSPARENCY_NONE);
}
if(mState.sampleCoverage)
{
unsigned int mask = 0;
if(mState.sampleCoverageValue != 0)
{
int width, height, samples;
framebuffer->completeness(width, height, samples);
float threshold = 0.5f;
for(int i = 0; i < samples; i++)
{
mask <<= 1;
if((i + 1) * mState.sampleCoverageValue >= threshold)
{
threshold += 1.0f;
mask |= 1;
}
}
}
if(mState.sampleCoverageInvert)
{
mask = ~mask;
}
device->setMultiSampleMask(mask);
}
else
{
device->setMultiSampleMask(0xFFFFFFFF);
}
mSampleStateDirty = false;
}
if(mDitherStateDirty)
{
// UNIMPLEMENTED(); // FIXME
mDitherStateDirty = false;
}
switch(mState.shadeModel)
{
default: UNREACHABLE();
case GL_SMOOTH: device->setShadingMode(sw::SHADING_GOURAUD); break;
case GL_FLAT: device->setShadingMode(sw::SHADING_FLAT); break;
}
device->setLightingEnable(lighting);
device->setGlobalAmbient(sw::Color<float>(globalAmbient.red, globalAmbient.green, globalAmbient.blue, globalAmbient.alpha));
for(int i = 0; i < MAX_LIGHTS; i++)
{
device->setLightEnable(i, light[i].enable);
device->setLightAmbient(i, sw::Color<float>(light[i].ambient.red, light[i].ambient.green, light[i].ambient.blue, light[i].ambient.alpha));
device->setLightDiffuse(i, sw::Color<float>(light[i].diffuse.red, light[i].diffuse.green, light[i].diffuse.blue, light[i].diffuse.alpha));
device->setLightSpecular(i, sw::Color<float>(light[i].specular.red, light[i].specular.green, light[i].specular.blue, light[i].specular.alpha));
device->setLightAttenuation(i, light[i].attenuation.constant, light[i].attenuation.linear, light[i].attenuation.quadratic);
if(light[i].position.w != 0.0f)
{
device->setLightPosition(i, sw::Point(light[i].position.x / light[i].position.w, light[i].position.y / light[i].position.w, light[i].position.z / light[i].position.w));
}
else // Hack: set the position far way
{
device->setLightPosition(i, sw::Point(1e10f * light[i].position.x, 1e10f * light[i].position.y, 1e10f * light[i].position.z));
}
}
device->setMaterialAmbient(sw::Color<float>(materialAmbient.red, materialAmbient.green, materialAmbient.blue, materialAmbient.alpha));
device->setMaterialDiffuse(sw::Color<float>(materialDiffuse.red, materialDiffuse.green, materialDiffuse.blue, materialDiffuse.alpha));
device->setMaterialSpecular(sw::Color<float>(materialSpecular.red, materialSpecular.green, materialSpecular.blue, materialSpecular.alpha));
device->setMaterialEmission(sw::Color<float>(materialEmission.red, materialEmission.green, materialEmission.blue, materialEmission.alpha));
device->setDiffuseMaterialSource(sw::MATERIAL_MATERIAL);
device->setSpecularMaterialSource(sw::MATERIAL_MATERIAL);
device->setAmbientMaterialSource(sw::MATERIAL_MATERIAL);
device->setEmissiveMaterialSource(sw::MATERIAL_MATERIAL);
device->setProjectionMatrix(projectionStack.current());
device->setModelMatrix(modelViewStack.current());
device->setTextureMatrix(0, textureStack0.current());
device->setTextureMatrix(1, textureStack1.current());
device->setTextureTransform(0, textureStack0.isIdentity() ? 0 : 4, false);
device->setTextureTransform(1, textureStack1.isIdentity() ? 0 : 4, false);
device->setTexGen(0, sw::TEXGEN_NONE);
device->setTexGen(1, sw::TEXGEN_NONE);
}
GLenum Context::applyVertexBuffer(GLint base, GLint first, GLsizei count)
{
TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS];
GLenum err = mVertexDataManager->prepareVertexData(first, count, attributes);
if(err != GL_NO_ERROR)
{
return err;
}
device->resetInputStreams(false);
for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
sw::Resource *resource = attributes[i].vertexBuffer;
const void *buffer = (char*)resource->data() + attributes[i].offset;
int stride = attributes[i].stride;
buffer = (char*)buffer + stride * base;
sw::Stream attribute(resource, buffer, stride);
attribute.type = attributes[i].type;
attribute.count = attributes[i].count;
attribute.normalized = attributes[i].normalized;
device->setInputStream(i, attribute);
}
return GL_NO_ERROR;
}
// Applies the indices and element array bindings
GLenum Context::applyIndexBuffer(const void *indices, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo)
{
GLenum err = mIndexDataManager->prepareIndexData(type, count, mState.elementArrayBuffer, indices, indexInfo);
if(err == GL_NO_ERROR)
{
device->setIndexBuffer(indexInfo->indexBuffer);
}
return err;
}
void Context::applyTextures()
{
for(int unit = 0; unit < MAX_TEXTURE_UNITS; unit++)
{
Texture *texture = nullptr;
if(textureExternalEnabled[unit])
{
texture = getSamplerTexture(unit, TEXTURE_EXTERNAL);
}
else if(texture2Denabled[unit])
{
texture = getSamplerTexture(unit, TEXTURE_2D);
}
if(texture && texture->isSamplerComplete())
{
texture->autoGenerateMipmaps();
GLenum wrapS = texture->getWrapS();
GLenum wrapT = texture->getWrapT();
GLenum texFilter = texture->getMinFilter();
GLenum magFilter = texture->getMagFilter();
GLfloat maxAnisotropy = texture->getMaxAnisotropy();
device->setAddressingModeU(sw::SAMPLER_PIXEL, unit, es2sw::ConvertTextureWrap(wrapS));
device->setAddressingModeV(sw::SAMPLER_PIXEL, unit, es2sw::ConvertTextureWrap(wrapT));
sw::FilterType minFilter;
sw::MipmapType mipFilter;
es2sw::ConvertMinFilter(texFilter, &minFilter, &mipFilter, maxAnisotropy);
// ASSERT(minFilter == es2sw::ConvertMagFilter(magFilter));
device->setTextureFilter(sw::SAMPLER_PIXEL, unit, minFilter);
// device->setTextureFilter(sw::SAMPLER_PIXEL, unit, es2sw::ConvertMagFilter(magFilter));
device->setMipmapFilter(sw::SAMPLER_PIXEL, unit, mipFilter);
device->setMaxAnisotropy(sw::SAMPLER_PIXEL, unit, maxAnisotropy);
applyTexture(unit, texture);
if(mState.textureUnit[unit].environmentMode != GL_COMBINE)
{
GLenum texFormat = texture->getFormat(GL_TEXTURE_2D, 0);
device->setFirstArgument(unit, sw::TextureStage::SOURCE_TEXTURE); // Cs
device->setFirstModifier(unit, sw::TextureStage::MODIFIER_COLOR);
device->setSecondArgument(unit, sw::TextureStage::SOURCE_CURRENT); // Cp
device->setSecondModifier(unit, sw::TextureStage::MODIFIER_COLOR);
device->setThirdArgument(unit, sw::TextureStage::SOURCE_CONSTANT); // Cc
device->setThirdModifier(unit, sw::TextureStage::MODIFIER_COLOR);
device->setFirstArgumentAlpha(unit, sw::TextureStage::SOURCE_TEXTURE); // As
device->setFirstModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA);
device->setSecondArgumentAlpha(unit, sw::TextureStage::SOURCE_CURRENT); // Ap
device->setSecondModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA);
device->setThirdArgumentAlpha(unit, sw::TextureStage::SOURCE_CONSTANT); // Ac
device->setThirdModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA);
switch(mState.textureUnit[unit].environmentMode)
{
case GL_REPLACE:
switch(texFormat)
{
case GL_ALPHA:
// Cv = Cp, Av = As
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2);
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG1);
break;
case GL_LUMINANCE:
case GL_RGB:
// Cv = Cs, Av = Ap
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1);
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
case GL_LUMINANCE_ALPHA:
case GL_RGBA:
// Cv = Cs, Av = As
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1);
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG1);
break;
default: UNREACHABLE();
}
break;
case GL_MODULATE:
switch(texFormat)
{
case GL_ALPHA:
// Cv = Cp, Av = ApAs
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2);
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
break;
case GL_LUMINANCE:
case GL_RGB:
// Cv = CpCs, Av = Ap
device->setStageOperation(unit, sw::TextureStage::STAGE_MODULATE);
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
case GL_LUMINANCE_ALPHA:
case GL_RGBA:
// Cv = CpCs, Av = ApAs
device->setStageOperation(unit, sw::TextureStage::STAGE_MODULATE);
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
break;
default: UNREACHABLE();
}
break;
case GL_DECAL:
switch(texFormat)
{
case GL_ALPHA:
case GL_LUMINANCE:
case GL_LUMINANCE_ALPHA:
// undefined
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2);
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
break;
case GL_RGB:
// Cv = Cs, Av = Ap
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1);
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
case GL_RGBA:
// Cv = Cp(1 ? As) + CsAs, Av = Ap
device->setStageOperation(unit, sw::TextureStage::STAGE_BLENDTEXTUREALPHA); // Alpha * (Arg1 - Arg2) + Arg2
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
break;
default: UNREACHABLE();
}
break;
case GL_BLEND:
switch(texFormat)
{
case GL_ALPHA:
// Cv = Cp, Av = ApAs
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2);
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
break;
case GL_LUMINANCE:
case GL_RGB:
// Cv = Cp(1 ? Cs) + CcCs, Av = Ap
device->setStageOperation(unit, sw::TextureStage::STAGE_LERP); // Arg3 * (Arg1 - Arg2) + Arg2
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
case GL_LUMINANCE_ALPHA:
case GL_RGBA:
// Cv = Cp(1 ? Cs) + CcCs, Av = ApAs
device->setStageOperation(unit, sw::TextureStage::STAGE_LERP); // Arg3 * (Arg1 - Arg2) + Arg2
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
break;
default: UNREACHABLE();
}
break;
case GL_ADD:
switch(texFormat)
{
case GL_ALPHA:
// Cv = Cp, Av = ApAs
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2);
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
break;
case GL_LUMINANCE:
case GL_RGB:
// Cv = Cp + Cs, Av = Ap
device->setStageOperation(unit, sw::TextureStage::STAGE_ADD);
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2);
case GL_LUMINANCE_ALPHA:
case GL_RGBA:
// Cv = Cp + Cs, Av = ApAs
device->setStageOperation(unit, sw::TextureStage::STAGE_ADD);
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE);
break;
default: UNREACHABLE();
}
break;
default:
UNREACHABLE();
}
}
else // GL_COMBINE
{
device->setFirstArgument(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src0RGB));
device->setFirstModifier(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand0RGB));
device->setSecondArgument(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src1RGB));
device->setSecondModifier(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand1RGB));
device->setThirdArgument(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src2RGB));
device->setThirdModifier(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand2RGB));
device->setStageOperation(unit, es2sw::ConvertCombineOperation(mState.textureUnit[unit].combineRGB));
device->setFirstArgumentAlpha(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src0Alpha));
device->setFirstModifierAlpha(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand0Alpha));
device->setSecondArgumentAlpha(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src1Alpha));
device->setSecondModifierAlpha(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand1Alpha));
device->setThirdArgumentAlpha(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src2Alpha));
device->setThirdModifierAlpha(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand2Alpha));
device->setStageOperationAlpha(unit, es2sw::ConvertCombineOperation(mState.textureUnit[unit].combineAlpha));
}
}
else
{
applyTexture(unit, 0);
device->setFirstArgument(unit, sw::TextureStage::SOURCE_CURRENT);
device->setFirstModifier(unit, sw::TextureStage::MODIFIER_COLOR);
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1);
device->setFirstArgumentAlpha(unit, sw::TextureStage::SOURCE_CURRENT);
device->setFirstModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA);
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG1);
}
}
}
void Context::setTextureEnvMode(GLenum texEnvMode)
{
mState.textureUnit[mState.activeSampler].environmentMode = texEnvMode;
}
void Context::setCombineRGB(GLenum combineRGB)
{
mState.textureUnit[mState.activeSampler].combineRGB = combineRGB;
}
void Context::setCombineAlpha(GLenum combineAlpha)
{
mState.textureUnit[mState.activeSampler].combineAlpha = combineAlpha;
}
void Context::applyTexture(int index, Texture *baseTexture)
{
sw::Resource *resource = 0;
if(baseTexture)
{
resource = baseTexture->getResource();
}
device->setTextureResource(index, resource);
if(baseTexture)
{
int levelCount = baseTexture->getLevelCount();
if(baseTexture->getTarget() == GL_TEXTURE_2D || baseTexture->getTarget() == GL_TEXTURE_EXTERNAL_OES)
{
Texture2D *texture = static_cast<Texture2D*>(baseTexture);
for(int mipmapLevel = 0; mipmapLevel < MIPMAP_LEVELS; mipmapLevel++)
{
int surfaceLevel = mipmapLevel;
if(surfaceLevel < 0)
{
surfaceLevel = 0;
}
else if(surfaceLevel >= levelCount)
{
surfaceLevel = levelCount - 1;
}
egl::Image *surface = texture->getImage(surfaceLevel);
device->setTextureLevel(index, 0, mipmapLevel, surface, sw::TEXTURE_2D);
}
}
else UNIMPLEMENTED();
}
else
{
device->setTextureLevel(index, 0, 0, 0, sw::TEXTURE_NULL);
}
}
void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type, GLsizei *bufSize, void* pixels)
{
Framebuffer *framebuffer = getFramebuffer();
int framebufferWidth, framebufferHeight, framebufferSamples;
if(framebuffer->completeness(framebufferWidth, framebufferHeight, framebufferSamples) != GL_FRAMEBUFFER_COMPLETE_OES)
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION_OES);
}
if(getFramebufferName() != 0 && framebufferSamples != 0)
{
return error(GL_INVALID_OPERATION);
}
if(format != GL_RGBA || type != GL_UNSIGNED_BYTE)
{
if(format != framebuffer->getImplementationColorReadFormat() || type != framebuffer->getImplementationColorReadType())
{
return error(GL_INVALID_OPERATION);
}
}
GLsizei outputPitch = egl::ComputePitch(width, format, type, mState.packAlignment);
// Sized query sanity check
if(bufSize)
{
int requiredSize = outputPitch * height;
if(requiredSize > *bufSize)
{
return error(GL_INVALID_OPERATION);
}
}
egl::Image *renderTarget = framebuffer->getRenderTarget();
if(!renderTarget)
{
return error(GL_OUT_OF_MEMORY);
}
sw::Rect rect = {x, y, x + width, y + height};
rect.clip(0, 0, renderTarget->getWidth(), renderTarget->getHeight());
unsigned char *source = (unsigned char*)renderTarget->lock(rect.x0, rect.y0, sw::LOCK_READONLY);
unsigned char *dest = (unsigned char*)pixels;
int inputPitch = (int)renderTarget->getPitch();
for(int j = 0; j < rect.y1 - rect.y0; j++)
{
unsigned short *dest16 = (unsigned short*)dest;
unsigned int *dest32 = (unsigned int*)dest;
if(renderTarget->getInternalFormat() == sw::FORMAT_A8B8G8R8 &&
format == GL_RGBA && type == GL_UNSIGNED_BYTE)
{
memcpy(dest, source, (rect.x1 - rect.x0) * 4);
}
else if(renderTarget->getInternalFormat() == sw::FORMAT_A8R8G8B8 &&
format == GL_RGBA && type == GL_UNSIGNED_BYTE)
{
for(int i = 0; i < rect.x1 - rect.x0; i++)
{
unsigned int argb = *(unsigned int*)(source + 4 * i);
dest32[i] = (argb & 0xFF00FF00) | ((argb & 0x000000FF) << 16) | ((argb & 0x00FF0000) >> 16);
}
}
else if(renderTarget->getInternalFormat() == sw::FORMAT_X8R8G8B8 &&
format == GL_RGBA && type == GL_UNSIGNED_BYTE)
{
for(int i = 0; i < rect.x1 - rect.x0; i++)
{
unsigned int xrgb = *(unsigned int*)(source + 4 * i);
dest32[i] = (xrgb & 0xFF00FF00) | ((xrgb & 0x000000FF) << 16) | ((xrgb & 0x00FF0000) >> 16) | 0xFF000000;
}
}
else if(renderTarget->getInternalFormat() == sw::FORMAT_X8R8G8B8 &&
format == GL_BGRA_EXT && type == GL_UNSIGNED_BYTE)
{
for(int i = 0; i < rect.x1 - rect.x0; i++)
{
unsigned int xrgb = *(unsigned int*)(source + 4 * i);
dest32[i] = xrgb | 0xFF000000;
}
}
else if(renderTarget->getInternalFormat() == sw::FORMAT_A8R8G8B8 &&
format == GL_BGRA_EXT && type == GL_UNSIGNED_BYTE)
{
memcpy(dest, source, (rect.x1 - rect.x0) * 4);
}
else if(renderTarget->getInternalFormat() == sw::FORMAT_A1R5G5B5 &&
format == GL_BGRA_EXT && type == GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT)
{
memcpy(dest, source, (rect.x1 - rect.x0) * 2);
}
else if(renderTarget->getInternalFormat() == sw::FORMAT_R5G6B5 &&
format == 0x80E0 && type == GL_UNSIGNED_SHORT_5_6_5) // GL_BGR_EXT
{
memcpy(dest, source, (rect.x1 - rect.x0) * 2);
}
else
{
for(int i = 0; i < rect.x1 - rect.x0; i++)
{
float r;
float g;
float b;
float a;
switch(renderTarget->getInternalFormat())
{
case sw::FORMAT_R5G6B5:
{
unsigned short rgb = *(unsigned short*)(source + 2 * i);
a = 1.0f;
b = (rgb & 0x001F) * (1.0f / 0x001F);
g = (rgb & 0x07E0) * (1.0f / 0x07E0);
r = (rgb & 0xF800) * (1.0f / 0xF800);
}
break;
case sw::FORMAT_A1R5G5B5:
{
unsigned short argb = *(unsigned short*)(source + 2 * i);
a = (argb & 0x8000) ? 1.0f : 0.0f;
b = (argb & 0x001F) * (1.0f / 0x001F);
g = (argb & 0x03E0) * (1.0f / 0x03E0);
r = (argb & 0x7C00) * (1.0f / 0x7C00);
}
break;
case sw::FORMAT_A8R8G8B8:
{
unsigned int argb = *(unsigned int*)(source + 4 * i);
a = (argb & 0xFF000000) * (1.0f / 0xFF000000);
b = (argb & 0x000000FF) * (1.0f / 0x000000FF);
g = (argb & 0x0000FF00) * (1.0f / 0x0000FF00);
r = (argb & 0x00FF0000) * (1.0f / 0x00FF0000);
}
break;
case sw::FORMAT_A8B8G8R8:
{
unsigned int abgr = *(unsigned int*)(source + 4 * i);
a = (abgr & 0xFF000000) * (1.0f / 0xFF000000);
b = (abgr & 0x00FF0000) * (1.0f / 0x00FF0000);
g = (abgr & 0x0000FF00) * (1.0f / 0x0000FF00);
r = (abgr & 0x000000FF) * (1.0f / 0x000000FF);
}
break;
case sw::FORMAT_X8R8G8B8:
{
unsigned int xrgb = *(unsigned int*)(source + 4 * i);
a = 1.0f;
b = (xrgb & 0x000000FF) * (1.0f / 0x000000FF);
g = (xrgb & 0x0000FF00) * (1.0f / 0x0000FF00);
r = (xrgb & 0x00FF0000) * (1.0f / 0x00FF0000);
}
break;
case sw::FORMAT_X8B8G8R8:
{
unsigned int xbgr = *(unsigned int*)(source + 4 * i);
a = 1.0f;
b = (xbgr & 0x00FF0000) * (1.0f / 0x00FF0000);
g = (xbgr & 0x0000FF00) * (1.0f / 0x0000FF00);
r = (xbgr & 0x000000FF) * (1.0f / 0x000000FF);
}
break;
case sw::FORMAT_A2R10G10B10:
{
unsigned int argb = *(unsigned int*)(source + 4 * i);
a = (argb & 0xC0000000) * (1.0f / 0xC0000000);
b = (argb & 0x000003FF) * (1.0f / 0x000003FF);
g = (argb & 0x000FFC00) * (1.0f / 0x000FFC00);
r = (argb & 0x3FF00000) * (1.0f / 0x3FF00000);
}
break;
default:
UNIMPLEMENTED(); // FIXME
UNREACHABLE();
}
switch(format)
{
case GL_RGBA:
switch(type)
{
case GL_UNSIGNED_BYTE:
dest[4 * i + 0] = (unsigned char)(255 * r + 0.5f);
dest[4 * i + 1] = (unsigned char)(255 * g + 0.5f);
dest[4 * i + 2] = (unsigned char)(255 * b + 0.5f);
dest[4 * i + 3] = (unsigned char)(255 * a + 0.5f);
break;
default: UNREACHABLE();
}
break;
case GL_BGRA_EXT:
switch(type)
{
case GL_UNSIGNED_BYTE:
dest[4 * i + 0] = (unsigned char)(255 * b + 0.5f);
dest[4 * i + 1] = (unsigned char)(255 * g + 0.5f);
dest[4 * i + 2] = (unsigned char)(255 * r + 0.5f);
dest[4 * i + 3] = (unsigned char)(255 * a + 0.5f);
break;
case GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT:
// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section
// this type is packed as follows:
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
// --------------------------------------------------------------------------------
// | 4th | 3rd | 2nd | 1st component |
// --------------------------------------------------------------------------------
// in the case of BGRA_EXT, B is the first component, G the second, and so forth.
dest16[i] =
((unsigned short)(15 * a + 0.5f) << 12)|
((unsigned short)(15 * r + 0.5f) << 8) |
((unsigned short)(15 * g + 0.5f) << 4) |
((unsigned short)(15 * b + 0.5f) << 0);
break;
case GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT:
// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section
// this type is packed as follows:
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
// --------------------------------------------------------------------------------
// | 4th | 3rd | 2nd | 1st component |
// --------------------------------------------------------------------------------
// in the case of BGRA_EXT, B is the first component, G the second, and so forth.
dest16[i] =
((unsigned short)( a + 0.5f) << 15) |
((unsigned short)(31 * r + 0.5f) << 10) |
((unsigned short)(31 * g + 0.5f) << 5) |
((unsigned short)(31 * b + 0.5f) << 0);
break;
default: UNREACHABLE();
}
break;
case GL_RGB:
switch(type)
{
case GL_UNSIGNED_SHORT_5_6_5:
dest16[i] =
((unsigned short)(31 * b + 0.5f) << 0) |
((unsigned short)(63 * g + 0.5f) << 5) |
((unsigned short)(31 * r + 0.5f) << 11);
break;
default: UNREACHABLE();
}
break;
default: UNREACHABLE();
}
}
}
source += inputPitch;
dest += outputPitch;
}
renderTarget->unlock();
renderTarget->release();
}
void Context::clear(GLbitfield mask)
{
Framebuffer *framebuffer = getFramebuffer();
if(!framebuffer || framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE_OES)
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION_OES);
}
if(!applyRenderTarget())
{
return;
}
unsigned int color = (unorm<8>(mState.colorClearValue.alpha) << 24) |
(unorm<8>(mState.colorClearValue.red) << 16) |
(unorm<8>(mState.colorClearValue.green) << 8) |
(unorm<8>(mState.colorClearValue.blue) << 0);
float depth = clamp01(mState.depthClearValue);
int stencil = mState.stencilClearValue & 0x000000FF;
if(mask & GL_COLOR_BUFFER_BIT)
{
unsigned int rgbaMask = (mState.colorMaskRed ? 0x1 : 0) |
(mState.colorMaskGreen ? 0x2 : 0) |
(mState.colorMaskBlue ? 0x4 : 0) |
(mState.colorMaskAlpha ? 0x8 : 0);
if(rgbaMask != 0)
{
device->clearColor(color, rgbaMask);
}
}
if(mask & GL_DEPTH_BUFFER_BIT)
{
if(mState.depthMask != 0)
{
device->clearDepth(depth);
}
}
if(mask & GL_STENCIL_BUFFER_BIT)
{
if(mState.stencilWritemask != 0)
{
device->clearStencil(stencil, mState.stencilWritemask);
}
}
}
void Context::drawArrays(GLenum mode, GLint first, GLsizei count)
{
PrimitiveType primitiveType;
int primitiveCount;
if(!es2sw::ConvertPrimitiveType(mode, count, primitiveType, primitiveCount))
return error(GL_INVALID_ENUM);
if(primitiveCount <= 0)
{
return;
}
if(!applyRenderTarget())
{
return;
}
applyState(mode);
GLenum err = applyVertexBuffer(0, first, count);
if(err != GL_NO_ERROR)
{
return error(err);
}
applyTextures();
if(!cullSkipsDraw(mode))
{
device->drawPrimitive(primitiveType, primitiveCount);
}
}
void Context::drawElements(GLenum mode, GLsizei count, GLenum type, const void *indices)
{
if(!indices && !mState.elementArrayBuffer)
{
return error(GL_INVALID_OPERATION);
}
PrimitiveType primitiveType;
int primitiveCount;
if(!es2sw::ConvertPrimitiveType(mode, count, primitiveType, primitiveCount))
return error(GL_INVALID_ENUM);
if(primitiveCount <= 0)
{
return;
}
if(!applyRenderTarget())
{
return;
}
applyState(mode);
TranslatedIndexData indexInfo;
GLenum err = applyIndexBuffer(indices, count, mode, type, &indexInfo);
if(err != GL_NO_ERROR)
{
return error(err);
}
GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1;
err = applyVertexBuffer(-(int)indexInfo.minIndex, indexInfo.minIndex, vertexCount);
if(err != GL_NO_ERROR)
{
return error(err);
}
applyTextures();
if(!cullSkipsDraw(mode))
{
device->drawIndexedPrimitive(primitiveType, indexInfo.indexOffset, primitiveCount, IndexDataManager::typeSize(type));
}
}
void Context::drawTexture(GLfloat x, GLfloat y, GLfloat z, GLfloat width, GLfloat height)
{
es1::Framebuffer *framebuffer = getFramebuffer();
es1::Renderbuffer *renderbuffer = framebuffer->getColorbuffer();
float targetWidth = renderbuffer->getWidth();
float targetHeight = renderbuffer->getHeight();
float x0 = 2.0f * x / targetWidth - 1.0f;
float y0 = 2.0f * y / targetHeight - 1.0f;
float x1 = 2.0f * (x + width) / targetWidth - 1.0f;
float y1 = 2.0f * (y + height) / targetHeight - 1.0f;
float Zw = sw::clamp(mState.zNear + z * (mState.zFar - mState.zNear), mState.zNear, mState.zFar);
float vertices[][3] = {{x0, y0, Zw},
{x0, y1, Zw},
{x1, y0, Zw},
{x1, y1, Zw}};
ASSERT(mState.samplerTexture[TEXTURE_2D][1].name() == 0); // Multi-texturing unimplemented
es1::Texture *texture = getSamplerTexture(0, TEXTURE_2D);
float textureWidth = texture->getWidth(GL_TEXTURE_2D, 0);
float textureHeight = texture->getHeight(GL_TEXTURE_2D, 0);
int Ucr = texture->getCropRectU();
int Vcr = texture->getCropRectV();
int Wcr = texture->getCropRectW();
int Hcr = texture->getCropRectH();
float texCoords[][2] = {{Ucr / textureWidth, Vcr / textureHeight},
{Ucr / textureWidth, (Vcr + Hcr) / textureHeight},
{(Ucr + Wcr) / textureWidth, Vcr / textureHeight},
{(Ucr + Wcr) / textureWidth, (Vcr + Hcr) / textureHeight}};
VertexAttribute oldPositionAttribute = mState.vertexAttribute[sw::Position];
VertexAttribute oldTexCoord0Attribute = mState.vertexAttribute[sw::TexCoord0];
glVertexPointer(3, GL_FLOAT, 3 * sizeof(float), vertices);
glEnableClientState(GL_VERTEX_ARRAY);
glTexCoordPointer(2, GL_FLOAT, 2 * sizeof(float), texCoords);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
textureStack0.push();
textureStack0.identity(); // Disable texture coordinate transformation
drawArrays(GL_TRIANGLE_STRIP, 0, 4);
// Restore state
mState.vertexAttribute[sw::Position] = oldPositionAttribute;
mState.vertexAttribute[sw::TexCoord0] = oldTexCoord0Attribute;
textureStack0.pop();
}
void Context::finish()
{
device->finish();
}
void Context::flush()
{
// We don't queue anything without processing it as fast as possible
}
void Context::recordInvalidEnum()
{
mInvalidEnum = true;
}
void Context::recordInvalidValue()
{
mInvalidValue = true;
}
void Context::recordInvalidOperation()
{
mInvalidOperation = true;
}
void Context::recordOutOfMemory()
{
mOutOfMemory = true;
}
void Context::recordInvalidFramebufferOperation()
{
mInvalidFramebufferOperation = true;
}
// Get one of the recorded errors and clear its flag, if any.
// [OpenGL ES 2.0.24] section 2.5 page 13.
GLenum Context::getError()
{
if(mInvalidEnum)
{
mInvalidEnum = false;
return GL_INVALID_ENUM;
}
if(mInvalidValue)
{
mInvalidValue = false;
return GL_INVALID_VALUE;
}
if(mInvalidOperation)
{
mInvalidOperation = false;
return GL_INVALID_OPERATION;
}
if(mOutOfMemory)
{
mOutOfMemory = false;
return GL_OUT_OF_MEMORY;
}
if(mInvalidFramebufferOperation)
{
mInvalidFramebufferOperation = false;
return GL_INVALID_FRAMEBUFFER_OPERATION_OES;
}
return GL_NO_ERROR;
}
int Context::getSupportedMultiSampleDepth(sw::Format format, int requested)
{
if(requested <= 1)
{
return 1;
}
if(requested == 2)
{
return 2;
}
return 4;
}
void Context::detachBuffer(GLuint buffer)
{
// [OpenGL ES 2.0.24] section 2.9 page 22:
// If a buffer object is deleted while it is bound, all bindings to that object in the current context
// (i.e. in the thread that called Delete-Buffers) are reset to zero.
if(mState.arrayBuffer.name() == buffer)
{
mState.arrayBuffer = NULL;
}
if(mState.elementArrayBuffer.name() == buffer)
{
mState.elementArrayBuffer = NULL;
}
for(int attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
{
if(mState.vertexAttribute[attribute].mBoundBuffer.name() == buffer)
{
mState.vertexAttribute[attribute].mBoundBuffer = NULL;
}
}
}
void Context::detachTexture(GLuint texture)
{
// [OpenGL ES 2.0.24] section 3.8 page 84:
// If a texture object is deleted, it is as if all texture units which are bound to that texture object are
// rebound to texture object zero
for(int type = 0; type < TEXTURE_TYPE_COUNT; type++)
{
for(int sampler = 0; sampler < MAX_TEXTURE_UNITS; sampler++)
{
if(mState.samplerTexture[type][sampler].name() == texture)
{
mState.samplerTexture[type][sampler] = NULL;
}
}
}
// [OpenGL ES 2.0.24] section 4.4 page 112:
// If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is
// as if FramebufferTexture2D had been called, with a texture of 0, for each attachment point to which this
// image was attached in the currently bound framebuffer.
Framebuffer *framebuffer = getFramebuffer();
if(framebuffer)
{
framebuffer->detachTexture(texture);
}
}
void Context::detachFramebuffer(GLuint framebuffer)
{
// [OpenGL ES 2.0.24] section 4.4 page 107:
// If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though
// BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero.
if(mState.framebuffer == framebuffer)
{
bindFramebuffer(0);
}
}
void Context::detachRenderbuffer(GLuint renderbuffer)
{
// [OpenGL ES 2.0.24] section 4.4 page 109:
// If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer
// had been executed with the target RENDERBUFFER and name of zero.
if(mState.renderbuffer.name() == renderbuffer)
{
bindRenderbuffer(0);
}
// [OpenGL ES 2.0.24] section 4.4 page 111:
// If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer,
// then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment
// point to which this image was attached in the currently bound framebuffer.
Framebuffer *framebuffer = getFramebuffer();
if(framebuffer)
{
framebuffer->detachRenderbuffer(renderbuffer);
}
}
bool Context::cullSkipsDraw(GLenum drawMode)
{
return mState.cullFace && mState.cullMode == GL_FRONT_AND_BACK && isTriangleMode(drawMode);
}
bool Context::isTriangleMode(GLenum drawMode)
{
switch (drawMode)
{
case GL_TRIANGLES:
case GL_TRIANGLE_FAN:
case GL_TRIANGLE_STRIP:
return true;
case GL_POINTS:
case GL_LINES:
case GL_LINE_LOOP:
case GL_LINE_STRIP:
return false;
default: UNREACHABLE();
}
return false;
}
void Context::setVertexAttrib(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
ASSERT(index < MAX_VERTEX_ATTRIBS);
mState.vertexAttribute[index].mCurrentValue[0] = x;
mState.vertexAttribute[index].mCurrentValue[1] = y;
mState.vertexAttribute[index].mCurrentValue[2] = z;
mState.vertexAttribute[index].mCurrentValue[3] = w;
mVertexDataManager->dirtyCurrentValue(index);
}
void Context::bindTexImage(egl::Surface *surface)
{
es1::Texture2D *textureObject = getTexture2D();
if(textureObject)
{
textureObject->bindTexImage(surface);
}
}
EGLenum Context::validateSharedImage(EGLenum target, GLuint name, GLuint textureLevel)
{
switch(target)
{
case EGL_GL_TEXTURE_2D_KHR:
break;
case EGL_GL_RENDERBUFFER_KHR:
break;
default:
return EGL_BAD_PARAMETER;
}
if(textureLevel >= IMPLEMENTATION_MAX_TEXTURE_LEVELS)
{
return EGL_BAD_MATCH;
}
if(target == EGL_GL_TEXTURE_2D_KHR)
{
Texture *texture = getTexture(name);
if(!texture || texture->getTarget() != GL_TEXTURE_2D)
{
return EGL_BAD_PARAMETER;
}
if(texture->isShared(GL_TEXTURE_2D, textureLevel)) // Bound to an EGLSurface or already an EGLImage sibling
{
return EGL_BAD_ACCESS;
}
if(textureLevel != 0 && !texture->isSamplerComplete())
{
return EGL_BAD_PARAMETER;
}
if(textureLevel == 0 && !(texture->isSamplerComplete() && texture->getLevelCount() == 1))
{
return EGL_BAD_PARAMETER;
}
}
else if(target == EGL_GL_RENDERBUFFER_KHR)
{
Renderbuffer *renderbuffer = getRenderbuffer(name);
if(!renderbuffer)
{
return EGL_BAD_PARAMETER;
}
if(renderbuffer->isShared()) // Already an EGLImage sibling
{
return EGL_BAD_ACCESS;
}
}
else UNREACHABLE();
return EGL_SUCCESS;
}
egl::Image *Context::createSharedImage(EGLenum target, GLuint name, GLuint textureLevel)
{
if(target == EGL_GL_TEXTURE_2D_KHR)
{
es1::Texture *texture = getTexture(name);
return texture->createSharedImage(GL_TEXTURE_2D, textureLevel);
}
else if(target == EGL_GL_RENDERBUFFER_KHR)
{
es1::Renderbuffer *renderbuffer = getRenderbuffer(name);
return renderbuffer->createSharedImage();
}
else UNREACHABLE();
return 0;
}
Device *Context::getDevice()
{
return device;
}
void Context::setMatrixMode(GLenum mode)
{
matrixMode = mode;
}
sw::MatrixStack &Context::currentMatrixStack()
{
switch(matrixMode)
{
case GL_MODELVIEW:
return modelViewStack;
case GL_PROJECTION:
return projectionStack;
case GL_TEXTURE:
switch(mState.activeSampler)
{
case 0: return textureStack0;
case 1: return textureStack1;
}
break;
}
UNREACHABLE();
return textureStack0;
}
void Context::loadIdentity()
{
currentMatrixStack().identity();
}
void Context::load(const GLfloat *m)
{
currentMatrixStack().load(m);
}
void Context::pushMatrix()
{
if(!currentMatrixStack().push())
{
return error(GL_STACK_OVERFLOW);
}
}
void Context::popMatrix()
{
if(!currentMatrixStack().pop())
{
return error(GL_STACK_OVERFLOW);
}
}
void Context::rotate(GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
{
currentMatrixStack().rotate(angle, x, y, z);
}
void Context::translate(GLfloat x, GLfloat y, GLfloat z)
{
currentMatrixStack().translate(x, y, z);
}
void Context::scale(GLfloat x, GLfloat y, GLfloat z)
{
currentMatrixStack().scale(x, y, z);
}
void Context::multiply(const GLfloat *m)
{
currentMatrixStack().multiply(m);
}
void Context::frustum(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat zNear, GLfloat zFar)
{
currentMatrixStack().frustum(left, right, bottom, top, zNear, zFar);
}
void Context::ortho(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat zNear, GLfloat zFar)
{
currentMatrixStack().ortho(left, right, bottom, top, zNear, zFar);
}
void Context::clientActiveTexture(GLenum texture)
{
clientTexture = texture;
}
GLenum Context::getClientActiveTexture() const
{
return clientTexture;
}
unsigned int Context::getActiveTexture() const
{
return mState.activeSampler;
}
}
egl::Context *es1CreateContext(const egl::Config *config, const egl::Context *shareContext)
{
ASSERT(!shareContext || shareContext->getClientVersion() == 1); // Should be checked by eglCreateContext
return new es1::Context(config, static_cast<const es1::Context*>(shareContext));
}