| ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py |
| ; RUN: opt -S -instcombine < %s | FileCheck %s |
| |
| declare double @llvm.sqrt.f64(double) nounwind readnone speculatable |
| declare void @use(double) |
| |
| ; sqrt(a) * sqrt(b) no math flags |
| |
| define double @sqrt_a_sqrt_b(double %a, double %b) { |
| ; CHECK-LABEL: @sqrt_a_sqrt_b( |
| ; CHECK-NEXT: [[TMP1:%.*]] = call double @llvm.sqrt.f64(double [[A:%.*]]) |
| ; CHECK-NEXT: [[TMP2:%.*]] = call double @llvm.sqrt.f64(double [[B:%.*]]) |
| ; CHECK-NEXT: [[MUL:%.*]] = fmul double [[TMP1]], [[TMP2]] |
| ; CHECK-NEXT: ret double [[MUL]] |
| ; |
| %1 = call double @llvm.sqrt.f64(double %a) |
| %2 = call double @llvm.sqrt.f64(double %b) |
| %mul = fmul double %1, %2 |
| ret double %mul |
| } |
| |
| ; sqrt(a) * sqrt(b) fast-math, multiple uses |
| |
| define double @sqrt_a_sqrt_b_multiple_uses(double %a, double %b) { |
| ; CHECK-LABEL: @sqrt_a_sqrt_b_multiple_uses( |
| ; CHECK-NEXT: [[TMP1:%.*]] = call fast double @llvm.sqrt.f64(double [[A:%.*]]) |
| ; CHECK-NEXT: [[TMP2:%.*]] = call fast double @llvm.sqrt.f64(double [[B:%.*]]) |
| ; CHECK-NEXT: [[MUL:%.*]] = fmul fast double [[TMP1]], [[TMP2]] |
| ; CHECK-NEXT: call void @use(double [[TMP2]]) |
| ; CHECK-NEXT: ret double [[MUL]] |
| ; |
| %1 = call fast double @llvm.sqrt.f64(double %a) |
| %2 = call fast double @llvm.sqrt.f64(double %b) |
| %mul = fmul fast double %1, %2 |
| call void @use(double %2) |
| ret double %mul |
| } |
| |
| ; sqrt(a) * sqrt(b) => sqrt(a*b) with fast-math |
| |
| define double @sqrt_a_sqrt_b_reassoc_nnan(double %a, double %b) { |
| ; CHECK-LABEL: @sqrt_a_sqrt_b_reassoc_nnan( |
| ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc nnan double [[A:%.*]], [[B:%.*]] |
| ; CHECK-NEXT: [[TMP2:%.*]] = call reassoc nnan double @llvm.sqrt.f64(double [[TMP1]]) |
| ; CHECK-NEXT: ret double [[TMP2]] |
| ; |
| %1 = call double @llvm.sqrt.f64(double %a) |
| %2 = call double @llvm.sqrt.f64(double %b) |
| %mul = fmul reassoc nnan double %1, %2 |
| ret double %mul |
| } |
| |
| ; nnan disallows the possibility that both operands are negative, |
| ; so we won't return a number when the answer should be NaN. |
| |
| define double @sqrt_a_sqrt_b_reassoc(double %a, double %b) { |
| ; CHECK-LABEL: @sqrt_a_sqrt_b_reassoc( |
| ; CHECK-NEXT: [[TMP1:%.*]] = call double @llvm.sqrt.f64(double [[A:%.*]]) |
| ; CHECK-NEXT: [[TMP2:%.*]] = call double @llvm.sqrt.f64(double [[B:%.*]]) |
| ; CHECK-NEXT: [[MUL:%.*]] = fmul reassoc double [[TMP1]], [[TMP2]] |
| ; CHECK-NEXT: ret double [[MUL]] |
| ; |
| %1 = call double @llvm.sqrt.f64(double %a) |
| %2 = call double @llvm.sqrt.f64(double %b) |
| %mul = fmul reassoc double %1, %2 |
| ret double %mul |
| } |
| |
| ; sqrt(a) * sqrt(b) * sqrt(c) * sqrt(d) => sqrt(a*b*c*d) with fast-math |
| ; 'reassoc nnan' on the fmuls is all that is required, but check propagation of other FMF. |
| |
| define double @sqrt_a_sqrt_b_sqrt_c_sqrt_d_reassoc(double %a, double %b, double %c, double %d) { |
| ; CHECK-LABEL: @sqrt_a_sqrt_b_sqrt_c_sqrt_d_reassoc( |
| ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc nnan arcp double [[A:%.*]], [[B:%.*]] |
| ; CHECK-NEXT: [[TMP2:%.*]] = fmul reassoc nnan double [[TMP1]], [[C:%.*]] |
| ; CHECK-NEXT: [[TMP3:%.*]] = fmul reassoc nnan ninf double [[TMP2]], [[D:%.*]] |
| ; CHECK-NEXT: [[TMP4:%.*]] = call reassoc nnan ninf double @llvm.sqrt.f64(double [[TMP3]]) |
| ; CHECK-NEXT: ret double [[TMP4]] |
| ; |
| %1 = call double @llvm.sqrt.f64(double %a) |
| %2 = call double @llvm.sqrt.f64(double %b) |
| %3 = call double @llvm.sqrt.f64(double %c) |
| %4 = call double @llvm.sqrt.f64(double %d) |
| %mul = fmul reassoc nnan arcp double %1, %2 |
| %mul1 = fmul reassoc nnan double %mul, %3 |
| %mul2 = fmul reassoc nnan ninf double %mul1, %4 |
| ret double %mul2 |
| } |
| |