|  | //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass eliminates machine instruction PHI nodes by inserting copy | 
|  | // instructions.  This destroys SSA information, but is the desired input for | 
|  | // some register allocators. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "phielim" | 
|  | #include "PHIEliminationUtils.h" | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> | 
|  | DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), | 
|  | cl::Hidden, cl::desc("Disable critical edge splitting " | 
|  | "during PHI elimination")); | 
|  |  | 
|  | namespace { | 
|  | class PHIElimination : public MachineFunctionPass { | 
|  | MachineRegisterInfo *MRI; // Machine register information | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | PHIElimination() : MachineFunctionPass(ID) { | 
|  | initializePHIEliminationPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | virtual bool runOnMachineFunction(MachineFunction &Fn); | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const; | 
|  |  | 
|  | private: | 
|  | /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions | 
|  | /// in predecessor basic blocks. | 
|  | /// | 
|  | bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); | 
|  | void LowerAtomicPHINode(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator AfterPHIsIt); | 
|  |  | 
|  | /// analyzePHINodes - Gather information about the PHI nodes in | 
|  | /// here. In particular, we want to map the number of uses of a virtual | 
|  | /// register which is used in a PHI node. We map that to the BB the | 
|  | /// vreg is coming from. This is used later to determine when the vreg | 
|  | /// is killed in the BB. | 
|  | /// | 
|  | void analyzePHINodes(const MachineFunction& Fn); | 
|  |  | 
|  | /// Split critical edges where necessary for good coalescer performance. | 
|  | bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, | 
|  | LiveVariables &LV, MachineLoopInfo *MLI); | 
|  |  | 
|  | typedef std::pair<unsigned, unsigned> BBVRegPair; | 
|  | typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse; | 
|  |  | 
|  | VRegPHIUse VRegPHIUseCount; | 
|  |  | 
|  | // Defs of PHI sources which are implicit_def. | 
|  | SmallPtrSet<MachineInstr*, 4> ImpDefs; | 
|  |  | 
|  | // Map reusable lowered PHI node -> incoming join register. | 
|  | typedef DenseMap<MachineInstr*, unsigned, | 
|  | MachineInstrExpressionTrait> LoweredPHIMap; | 
|  | LoweredPHIMap LoweredPHIs; | 
|  | }; | 
|  | } | 
|  |  | 
|  | STATISTIC(NumAtomic, "Number of atomic phis lowered"); | 
|  | STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); | 
|  | STATISTIC(NumReused, "Number of reused lowered phis"); | 
|  |  | 
|  | char PHIElimination::ID = 0; | 
|  | INITIALIZE_PASS(PHIElimination, "phi-node-elimination", | 
|  | "Eliminate PHI nodes for register allocation", false, false) | 
|  |  | 
|  | char& llvm::PHIEliminationID = PHIElimination::ID; | 
|  |  | 
|  | void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addPreserved<LiveVariables>(); | 
|  | AU.addPreserved<MachineDominatorTree>(); | 
|  | AU.addPreserved<MachineLoopInfo>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { | 
|  | MRI = &MF.getRegInfo(); | 
|  |  | 
|  | bool Changed = false; | 
|  |  | 
|  | // This pass takes the function out of SSA form. | 
|  | MRI->leaveSSA(); | 
|  |  | 
|  | // Split critical edges to help the coalescer | 
|  | if (!DisableEdgeSplitting) { | 
|  | if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) { | 
|  | MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); | 
|  | for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) | 
|  | Changed |= SplitPHIEdges(MF, *I, *LV, MLI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Populate VRegPHIUseCount | 
|  | analyzePHINodes(MF); | 
|  |  | 
|  | // Eliminate PHI instructions by inserting copies into predecessor blocks. | 
|  | for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) | 
|  | Changed |= EliminatePHINodes(MF, *I); | 
|  |  | 
|  | // Remove dead IMPLICIT_DEF instructions. | 
|  | for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(), | 
|  | E = ImpDefs.end(); I != E; ++I) { | 
|  | MachineInstr *DefMI = *I; | 
|  | unsigned DefReg = DefMI->getOperand(0).getReg(); | 
|  | if (MRI->use_nodbg_empty(DefReg)) | 
|  | DefMI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Clean up the lowered PHI instructions. | 
|  | for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end(); | 
|  | I != E; ++I) | 
|  | MF.DeleteMachineInstr(I->first); | 
|  |  | 
|  | LoweredPHIs.clear(); | 
|  | ImpDefs.clear(); | 
|  | VRegPHIUseCount.clear(); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in | 
|  | /// predecessor basic blocks. | 
|  | /// | 
|  | bool PHIElimination::EliminatePHINodes(MachineFunction &MF, | 
|  | MachineBasicBlock &MBB) { | 
|  | if (MBB.empty() || !MBB.front().isPHI()) | 
|  | return false;   // Quick exit for basic blocks without PHIs. | 
|  |  | 
|  | // Get an iterator to the first instruction after the last PHI node (this may | 
|  | // also be the end of the basic block). | 
|  | MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin()); | 
|  |  | 
|  | while (MBB.front().isPHI()) | 
|  | LowerAtomicPHINode(MBB, AfterPHIsIt); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node | 
|  | /// are implicit_def's. | 
|  | static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, | 
|  | const MachineRegisterInfo *MRI) { | 
|  | for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { | 
|  | unsigned SrcReg = MPhi->getOperand(i).getReg(); | 
|  | const MachineInstr *DefMI = MRI->getVRegDef(SrcReg); | 
|  | if (!DefMI || !DefMI->isImplicitDef()) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block, | 
|  | /// under the assuption that it needs to be lowered in a way that supports | 
|  | /// atomic execution of PHIs.  This lowering method is always correct all of the | 
|  | /// time. | 
|  | /// | 
|  | void PHIElimination::LowerAtomicPHINode( | 
|  | MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator AfterPHIsIt) { | 
|  | ++NumAtomic; | 
|  | // Unlink the PHI node from the basic block, but don't delete the PHI yet. | 
|  | MachineInstr *MPhi = MBB.remove(MBB.begin()); | 
|  |  | 
|  | unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; | 
|  | unsigned DestReg = MPhi->getOperand(0).getReg(); | 
|  | assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); | 
|  | bool isDead = MPhi->getOperand(0).isDead(); | 
|  |  | 
|  | // Create a new register for the incoming PHI arguments. | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | unsigned IncomingReg = 0; | 
|  | bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI? | 
|  |  | 
|  | // Insert a register to register copy at the top of the current block (but | 
|  | // after any remaining phi nodes) which copies the new incoming register | 
|  | // into the phi node destination. | 
|  | const TargetInstrInfo *TII = MF.getTarget().getInstrInfo(); | 
|  | if (isSourceDefinedByImplicitDef(MPhi, MRI)) | 
|  | // If all sources of a PHI node are implicit_def, just emit an | 
|  | // implicit_def instead of a copy. | 
|  | BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), | 
|  | TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); | 
|  | else { | 
|  | // Can we reuse an earlier PHI node? This only happens for critical edges, | 
|  | // typically those created by tail duplication. | 
|  | unsigned &entry = LoweredPHIs[MPhi]; | 
|  | if (entry) { | 
|  | // An identical PHI node was already lowered. Reuse the incoming register. | 
|  | IncomingReg = entry; | 
|  | reusedIncoming = true; | 
|  | ++NumReused; | 
|  | DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi); | 
|  | } else { | 
|  | const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); | 
|  | entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); | 
|  | } | 
|  | BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), DestReg) | 
|  | .addReg(IncomingReg); | 
|  | } | 
|  |  | 
|  | // Update live variable information if there is any. | 
|  | LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>(); | 
|  | if (LV) { | 
|  | MachineInstr *PHICopy = prior(AfterPHIsIt); | 
|  |  | 
|  | if (IncomingReg) { | 
|  | LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); | 
|  |  | 
|  | // Increment use count of the newly created virtual register. | 
|  | VI.NumUses++; | 
|  | LV->setPHIJoin(IncomingReg); | 
|  |  | 
|  | // When we are reusing the incoming register, it may already have been | 
|  | // killed in this block. The old kill will also have been inserted at | 
|  | // AfterPHIsIt, so it appears before the current PHICopy. | 
|  | if (reusedIncoming) | 
|  | if (MachineInstr *OldKill = VI.findKill(&MBB)) { | 
|  | DEBUG(dbgs() << "Remove old kill from " << *OldKill); | 
|  | LV->removeVirtualRegisterKilled(IncomingReg, OldKill); | 
|  | DEBUG(MBB.dump()); | 
|  | } | 
|  |  | 
|  | // Add information to LiveVariables to know that the incoming value is | 
|  | // killed.  Note that because the value is defined in several places (once | 
|  | // each for each incoming block), the "def" block and instruction fields | 
|  | // for the VarInfo is not filled in. | 
|  | LV->addVirtualRegisterKilled(IncomingReg, PHICopy); | 
|  | } | 
|  |  | 
|  | // Since we are going to be deleting the PHI node, if it is the last use of | 
|  | // any registers, or if the value itself is dead, we need to move this | 
|  | // information over to the new copy we just inserted. | 
|  | LV->removeVirtualRegistersKilled(MPhi); | 
|  |  | 
|  | // If the result is dead, update LV. | 
|  | if (isDead) { | 
|  | LV->addVirtualRegisterDead(DestReg, PHICopy); | 
|  | LV->removeVirtualRegisterDead(DestReg, MPhi); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. | 
|  | for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) | 
|  | --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), | 
|  | MPhi->getOperand(i).getReg())]; | 
|  |  | 
|  | // Now loop over all of the incoming arguments, changing them to copy into the | 
|  | // IncomingReg register in the corresponding predecessor basic block. | 
|  | SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; | 
|  | for (int i = NumSrcs - 1; i >= 0; --i) { | 
|  | unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); | 
|  | unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); | 
|  |  | 
|  | assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && | 
|  | "Machine PHI Operands must all be virtual registers!"); | 
|  |  | 
|  | // Get the MachineBasicBlock equivalent of the BasicBlock that is the source | 
|  | // path the PHI. | 
|  | MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); | 
|  |  | 
|  | // If source is defined by an implicit def, there is no need to insert a | 
|  | // copy. | 
|  | MachineInstr *DefMI = MRI->getVRegDef(SrcReg); | 
|  | if (DefMI->isImplicitDef()) { | 
|  | ImpDefs.insert(DefMI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check to make sure we haven't already emitted the copy for this block. | 
|  | // This can happen because PHI nodes may have multiple entries for the same | 
|  | // basic block. | 
|  | if (!MBBsInsertedInto.insert(&opBlock)) | 
|  | continue;  // If the copy has already been emitted, we're done. | 
|  |  | 
|  | // Find a safe location to insert the copy, this may be the first terminator | 
|  | // in the block (or end()). | 
|  | MachineBasicBlock::iterator InsertPos = | 
|  | findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); | 
|  |  | 
|  | // Insert the copy. | 
|  | if (!reusedIncoming && IncomingReg) | 
|  | BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg); | 
|  |  | 
|  | // Now update live variable information if we have it.  Otherwise we're done | 
|  | if (!LV) continue; | 
|  |  | 
|  | // We want to be able to insert a kill of the register if this PHI (aka, the | 
|  | // copy we just inserted) is the last use of the source value.  Live | 
|  | // variable analysis conservatively handles this by saying that the value is | 
|  | // live until the end of the block the PHI entry lives in.  If the value | 
|  | // really is dead at the PHI copy, there will be no successor blocks which | 
|  | // have the value live-in. | 
|  |  | 
|  | // Also check to see if this register is in use by another PHI node which | 
|  | // has not yet been eliminated.  If so, it will be killed at an appropriate | 
|  | // point later. | 
|  |  | 
|  | // Is it used by any PHI instructions in this block? | 
|  | bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]; | 
|  |  | 
|  | // Okay, if we now know that the value is not live out of the block, we can | 
|  | // add a kill marker in this block saying that it kills the incoming value! | 
|  | if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) { | 
|  | // In our final twist, we have to decide which instruction kills the | 
|  | // register.  In most cases this is the copy, however, the first | 
|  | // terminator instruction at the end of the block may also use the value. | 
|  | // In this case, we should mark *it* as being the killing block, not the | 
|  | // copy. | 
|  | MachineBasicBlock::iterator KillInst; | 
|  | MachineBasicBlock::iterator Term = opBlock.getFirstTerminator(); | 
|  | if (Term != opBlock.end() && Term->readsRegister(SrcReg)) { | 
|  | KillInst = Term; | 
|  |  | 
|  | // Check that no other terminators use values. | 
|  | #ifndef NDEBUG | 
|  | for (MachineBasicBlock::iterator TI = llvm::next(Term); | 
|  | TI != opBlock.end(); ++TI) { | 
|  | if (TI->isDebugValue()) | 
|  | continue; | 
|  | assert(!TI->readsRegister(SrcReg) && | 
|  | "Terminator instructions cannot use virtual registers unless" | 
|  | "they are the first terminator in a block!"); | 
|  | } | 
|  | #endif | 
|  | } else if (reusedIncoming || !IncomingReg) { | 
|  | // We may have to rewind a bit if we didn't insert a copy this time. | 
|  | KillInst = Term; | 
|  | while (KillInst != opBlock.begin()) { | 
|  | --KillInst; | 
|  | if (KillInst->isDebugValue()) | 
|  | continue; | 
|  | if (KillInst->readsRegister(SrcReg)) | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | // We just inserted this copy. | 
|  | KillInst = prior(InsertPos); | 
|  | } | 
|  | assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); | 
|  |  | 
|  | // Finally, mark it killed. | 
|  | LV->addVirtualRegisterKilled(SrcReg, KillInst); | 
|  |  | 
|  | // This vreg no longer lives all of the way through opBlock. | 
|  | unsigned opBlockNum = opBlock.getNumber(); | 
|  | LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. | 
|  | if (reusedIncoming || !IncomingReg) | 
|  | MF.DeleteMachineInstr(MPhi); | 
|  | } | 
|  |  | 
|  | /// analyzePHINodes - Gather information about the PHI nodes in here. In | 
|  | /// particular, we want to map the number of uses of a virtual register which is | 
|  | /// used in a PHI node. We map that to the BB the vreg is coming from. This is | 
|  | /// used later to determine when the vreg is killed in the BB. | 
|  | /// | 
|  | void PHIElimination::analyzePHINodes(const MachineFunction& MF) { | 
|  | for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); | 
|  | I != E; ++I) | 
|  | for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); | 
|  | BBI != BBE && BBI->isPHI(); ++BBI) | 
|  | for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) | 
|  | ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(), | 
|  | BBI->getOperand(i).getReg())]; | 
|  | } | 
|  |  | 
|  | bool PHIElimination::SplitPHIEdges(MachineFunction &MF, | 
|  | MachineBasicBlock &MBB, | 
|  | LiveVariables &LV, | 
|  | MachineLoopInfo *MLI) { | 
|  | if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad()) | 
|  | return false;   // Quick exit for basic blocks without PHIs. | 
|  |  | 
|  | bool Changed = false; | 
|  | for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end(); | 
|  | BBI != BBE && BBI->isPHI(); ++BBI) { | 
|  | for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { | 
|  | unsigned Reg = BBI->getOperand(i).getReg(); | 
|  | MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); | 
|  | // We break edges when registers are live out from the predecessor block | 
|  | // (not considering PHI nodes). If the register is live in to this block | 
|  | // anyway, we would gain nothing from splitting. | 
|  | // Avoid splitting backedges of loops. It would introduce small | 
|  | // out-of-line blocks into the loop which is very bad for code placement. | 
|  | if (PreMBB != &MBB && | 
|  | !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) { | 
|  | if (!MLI || | 
|  | !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) && | 
|  | MLI->isLoopHeader(&MBB))) { | 
|  | if (PreMBB->SplitCriticalEdge(&MBB, this)) { | 
|  | Changed = true; | 
|  | ++NumCriticalEdgesSplit; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } |