|  | ///===- FastISelEmitter.cpp - Generate an instruction selector -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This tablegen backend emits code for use by the "fast" instruction | 
|  | // selection algorithm. See the comments at the top of | 
|  | // lib/CodeGen/SelectionDAG/FastISel.cpp for background. | 
|  | // | 
|  | // This file scans through the target's tablegen instruction-info files | 
|  | // and extracts instructions with obvious-looking patterns, and it emits | 
|  | // code to look up these instructions by type and operator. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CodeGenDAGPatterns.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/TableGen/Error.h" | 
|  | #include "llvm/TableGen/Record.h" | 
|  | #include "llvm/TableGen/TableGenBackend.h" | 
|  | #include <utility> | 
|  | using namespace llvm; | 
|  |  | 
|  |  | 
|  | /// InstructionMemo - This class holds additional information about an | 
|  | /// instruction needed to emit code for it. | 
|  | /// | 
|  | namespace { | 
|  | struct InstructionMemo { | 
|  | std::string Name; | 
|  | const CodeGenRegisterClass *RC; | 
|  | std::string SubRegNo; | 
|  | std::vector<std::string> PhysRegs; | 
|  | std::string PredicateCheck; | 
|  |  | 
|  | InstructionMemo(std::string Name, const CodeGenRegisterClass *RC, | 
|  | std::string SubRegNo, std::vector<std::string> PhysRegs, | 
|  | std::string PredicateCheck) | 
|  | : Name(Name), RC(RC), SubRegNo(SubRegNo), PhysRegs(PhysRegs), | 
|  | PredicateCheck(PredicateCheck) {} | 
|  |  | 
|  | // Make sure we do not copy InstructionMemo. | 
|  | InstructionMemo(const InstructionMemo &Other) = delete; | 
|  | InstructionMemo(InstructionMemo &&Other) = default; | 
|  | }; | 
|  | } // End anonymous namespace | 
|  |  | 
|  | /// ImmPredicateSet - This uniques predicates (represented as a string) and | 
|  | /// gives them unique (small) integer ID's that start at 0. | 
|  | namespace { | 
|  | class ImmPredicateSet { | 
|  | DenseMap<TreePattern *, unsigned> ImmIDs; | 
|  | std::vector<TreePredicateFn> PredsByName; | 
|  | public: | 
|  |  | 
|  | unsigned getIDFor(TreePredicateFn Pred) { | 
|  | unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()]; | 
|  | if (Entry == 0) { | 
|  | PredsByName.push_back(Pred); | 
|  | Entry = PredsByName.size(); | 
|  | } | 
|  | return Entry-1; | 
|  | } | 
|  |  | 
|  | const TreePredicateFn &getPredicate(unsigned i) { | 
|  | assert(i < PredsByName.size()); | 
|  | return PredsByName[i]; | 
|  | } | 
|  |  | 
|  | typedef std::vector<TreePredicateFn>::const_iterator iterator; | 
|  | iterator begin() const { return PredsByName.begin(); } | 
|  | iterator end() const { return PredsByName.end(); } | 
|  |  | 
|  | }; | 
|  | } // End anonymous namespace | 
|  |  | 
|  | /// OperandsSignature - This class holds a description of a list of operand | 
|  | /// types. It has utility methods for emitting text based on the operands. | 
|  | /// | 
|  | namespace { | 
|  | struct OperandsSignature { | 
|  | class OpKind { | 
|  | enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 }; | 
|  | char Repr; | 
|  | public: | 
|  |  | 
|  | OpKind() : Repr(OK_Invalid) {} | 
|  |  | 
|  | bool operator<(OpKind RHS) const { return Repr < RHS.Repr; } | 
|  | bool operator==(OpKind RHS) const { return Repr == RHS.Repr; } | 
|  |  | 
|  | static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; } | 
|  | static OpKind getFP()  { OpKind K; K.Repr = OK_FP; return K; } | 
|  | static OpKind getImm(unsigned V) { | 
|  | assert((unsigned)OK_Imm+V < 128 && | 
|  | "Too many integer predicates for the 'Repr' char"); | 
|  | OpKind K; K.Repr = OK_Imm+V; return K; | 
|  | } | 
|  |  | 
|  | bool isReg() const { return Repr == OK_Reg; } | 
|  | bool isFP() const  { return Repr == OK_FP; } | 
|  | bool isImm() const { return Repr >= OK_Imm; } | 
|  |  | 
|  | unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; } | 
|  |  | 
|  | void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, | 
|  | bool StripImmCodes) const { | 
|  | if (isReg()) | 
|  | OS << 'r'; | 
|  | else if (isFP()) | 
|  | OS << 'f'; | 
|  | else { | 
|  | OS << 'i'; | 
|  | if (!StripImmCodes) | 
|  | if (unsigned Code = getImmCode()) | 
|  | OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName(); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | SmallVector<OpKind, 3> Operands; | 
|  |  | 
|  | bool operator<(const OperandsSignature &O) const { | 
|  | return Operands < O.Operands; | 
|  | } | 
|  | bool operator==(const OperandsSignature &O) const { | 
|  | return Operands == O.Operands; | 
|  | } | 
|  |  | 
|  | bool empty() const { return Operands.empty(); } | 
|  |  | 
|  | bool hasAnyImmediateCodes() const { | 
|  | for (unsigned i = 0, e = Operands.size(); i != e; ++i) | 
|  | if (Operands[i].isImm() && Operands[i].getImmCode() != 0) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getWithoutImmCodes - Return a copy of this with any immediate codes forced | 
|  | /// to zero. | 
|  | OperandsSignature getWithoutImmCodes() const { | 
|  | OperandsSignature Result; | 
|  | for (unsigned i = 0, e = Operands.size(); i != e; ++i) | 
|  | if (!Operands[i].isImm()) | 
|  | Result.Operands.push_back(Operands[i]); | 
|  | else | 
|  | Result.Operands.push_back(OpKind::getImm(0)); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) { | 
|  | bool EmittedAnything = false; | 
|  | for (unsigned i = 0, e = Operands.size(); i != e; ++i) { | 
|  | if (!Operands[i].isImm()) continue; | 
|  |  | 
|  | unsigned Code = Operands[i].getImmCode(); | 
|  | if (Code == 0) continue; | 
|  |  | 
|  | if (EmittedAnything) | 
|  | OS << " &&\n        "; | 
|  |  | 
|  | TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1); | 
|  |  | 
|  | // Emit the type check. | 
|  | TreePattern *TP = PredFn.getOrigPatFragRecord(); | 
|  | ValueTypeByHwMode VVT = TP->getTree(0)->getType(0); | 
|  | assert(VVT.isSimple() && | 
|  | "Cannot use variable value types with fast isel"); | 
|  | OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && "; | 
|  |  | 
|  | OS << PredFn.getFnName() << "(imm" << i <<')'; | 
|  | EmittedAnything = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// initialize - Examine the given pattern and initialize the contents | 
|  | /// of the Operands array accordingly. Return true if all the operands | 
|  | /// are supported, false otherwise. | 
|  | /// | 
|  | bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target, | 
|  | MVT::SimpleValueType VT, | 
|  | ImmPredicateSet &ImmediatePredicates, | 
|  | const CodeGenRegisterClass *OrigDstRC) { | 
|  | if (InstPatNode->isLeaf()) | 
|  | return false; | 
|  |  | 
|  | if (InstPatNode->getOperator()->getName() == "imm") { | 
|  | Operands.push_back(OpKind::getImm(0)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (InstPatNode->getOperator()->getName() == "fpimm") { | 
|  | Operands.push_back(OpKind::getFP()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const CodeGenRegisterClass *DstRC = nullptr; | 
|  |  | 
|  | for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { | 
|  | TreePatternNode *Op = InstPatNode->getChild(i); | 
|  |  | 
|  | // Handle imm operands specially. | 
|  | if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") { | 
|  | unsigned PredNo = 0; | 
|  | if (!Op->getPredicateFns().empty()) { | 
|  | TreePredicateFn PredFn = Op->getPredicateFns()[0]; | 
|  | // If there is more than one predicate weighing in on this operand | 
|  | // then we don't handle it.  This doesn't typically happen for | 
|  | // immediates anyway. | 
|  | if (Op->getPredicateFns().size() > 1 || | 
|  | !PredFn.isImmediatePattern()) | 
|  | return false; | 
|  | // Ignore any instruction with 'FastIselShouldIgnore', these are | 
|  | // not needed and just bloat the fast instruction selector.  For | 
|  | // example, X86 doesn't need to generate code to match ADD16ri8 since | 
|  | // ADD16ri will do just fine. | 
|  | Record *Rec = PredFn.getOrigPatFragRecord()->getRecord(); | 
|  | if (Rec->getValueAsBit("FastIselShouldIgnore")) | 
|  | return false; | 
|  |  | 
|  | PredNo = ImmediatePredicates.getIDFor(PredFn)+1; | 
|  | } | 
|  |  | 
|  | Operands.push_back(OpKind::getImm(PredNo)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  |  | 
|  | // For now, filter out any operand with a predicate. | 
|  | // For now, filter out any operand with multiple values. | 
|  | if (!Op->getPredicateFns().empty() || Op->getNumTypes() != 1) | 
|  | return false; | 
|  |  | 
|  | if (!Op->isLeaf()) { | 
|  | if (Op->getOperator()->getName() == "fpimm") { | 
|  | Operands.push_back(OpKind::getFP()); | 
|  | continue; | 
|  | } | 
|  | // For now, ignore other non-leaf nodes. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(Op->hasConcreteType(0) && "Type infererence not done?"); | 
|  |  | 
|  | // For now, all the operands must have the same type (if they aren't | 
|  | // immediates).  Note that this causes us to reject variable sized shifts | 
|  | // on X86. | 
|  | if (Op->getSimpleType(0) != VT) | 
|  | return false; | 
|  |  | 
|  | DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue()); | 
|  | if (!OpDI) | 
|  | return false; | 
|  | Record *OpLeafRec = OpDI->getDef(); | 
|  |  | 
|  | // For now, the only other thing we accept is register operands. | 
|  | const CodeGenRegisterClass *RC = nullptr; | 
|  | if (OpLeafRec->isSubClassOf("RegisterOperand")) | 
|  | OpLeafRec = OpLeafRec->getValueAsDef("RegClass"); | 
|  | if (OpLeafRec->isSubClassOf("RegisterClass")) | 
|  | RC = &Target.getRegisterClass(OpLeafRec); | 
|  | else if (OpLeafRec->isSubClassOf("Register")) | 
|  | RC = Target.getRegBank().getRegClassForRegister(OpLeafRec); | 
|  | else if (OpLeafRec->isSubClassOf("ValueType")) { | 
|  | RC = OrigDstRC; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | // For now, this needs to be a register class of some sort. | 
|  | if (!RC) | 
|  | return false; | 
|  |  | 
|  | // For now, all the operands must have the same register class or be | 
|  | // a strict subclass of the destination. | 
|  | if (DstRC) { | 
|  | if (DstRC != RC && !DstRC->hasSubClass(RC)) | 
|  | return false; | 
|  | } else | 
|  | DstRC = RC; | 
|  | Operands.push_back(OpKind::getReg()); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void PrintParameters(raw_ostream &OS) const { | 
|  | for (unsigned i = 0, e = Operands.size(); i != e; ++i) { | 
|  | if (Operands[i].isReg()) { | 
|  | OS << "unsigned Op" << i << ", bool Op" << i << "IsKill"; | 
|  | } else if (Operands[i].isImm()) { | 
|  | OS << "uint64_t imm" << i; | 
|  | } else if (Operands[i].isFP()) { | 
|  | OS << "const ConstantFP *f" << i; | 
|  | } else { | 
|  | llvm_unreachable("Unknown operand kind!"); | 
|  | } | 
|  | if (i + 1 != e) | 
|  | OS << ", "; | 
|  | } | 
|  | } | 
|  |  | 
|  | void PrintArguments(raw_ostream &OS, | 
|  | const std::vector<std::string> &PR) const { | 
|  | assert(PR.size() == Operands.size()); | 
|  | bool PrintedArg = false; | 
|  | for (unsigned i = 0, e = Operands.size(); i != e; ++i) { | 
|  | if (PR[i] != "") | 
|  | // Implicit physical register operand. | 
|  | continue; | 
|  |  | 
|  | if (PrintedArg) | 
|  | OS << ", "; | 
|  | if (Operands[i].isReg()) { | 
|  | OS << "Op" << i << ", Op" << i << "IsKill"; | 
|  | PrintedArg = true; | 
|  | } else if (Operands[i].isImm()) { | 
|  | OS << "imm" << i; | 
|  | PrintedArg = true; | 
|  | } else if (Operands[i].isFP()) { | 
|  | OS << "f" << i; | 
|  | PrintedArg = true; | 
|  | } else { | 
|  | llvm_unreachable("Unknown operand kind!"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void PrintArguments(raw_ostream &OS) const { | 
|  | for (unsigned i = 0, e = Operands.size(); i != e; ++i) { | 
|  | if (Operands[i].isReg()) { | 
|  | OS << "Op" << i << ", Op" << i << "IsKill"; | 
|  | } else if (Operands[i].isImm()) { | 
|  | OS << "imm" << i; | 
|  | } else if (Operands[i].isFP()) { | 
|  | OS << "f" << i; | 
|  | } else { | 
|  | llvm_unreachable("Unknown operand kind!"); | 
|  | } | 
|  | if (i + 1 != e) | 
|  | OS << ", "; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR, | 
|  | ImmPredicateSet &ImmPredicates, | 
|  | bool StripImmCodes = false) const { | 
|  | for (unsigned i = 0, e = Operands.size(); i != e; ++i) { | 
|  | if (PR[i] != "") | 
|  | // Implicit physical register operand. e.g. Instruction::Mul expect to | 
|  | // select to a binary op. On x86, mul may take a single operand with | 
|  | // the other operand being implicit. We must emit something that looks | 
|  | // like a binary instruction except for the very inner fastEmitInst_* | 
|  | // call. | 
|  | continue; | 
|  | Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); | 
|  | } | 
|  | } | 
|  |  | 
|  | void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, | 
|  | bool StripImmCodes = false) const { | 
|  | for (unsigned i = 0, e = Operands.size(); i != e; ++i) | 
|  | Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); | 
|  | } | 
|  | }; | 
|  | } // End anonymous namespace | 
|  |  | 
|  | namespace { | 
|  | class FastISelMap { | 
|  | // A multimap is needed instead of a "plain" map because the key is | 
|  | // the instruction's complexity (an int) and they are not unique. | 
|  | typedef std::multimap<int, InstructionMemo> PredMap; | 
|  | typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap; | 
|  | typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap; | 
|  | typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap; | 
|  | typedef std::map<OperandsSignature, OpcodeTypeRetPredMap> | 
|  | OperandsOpcodeTypeRetPredMap; | 
|  |  | 
|  | OperandsOpcodeTypeRetPredMap SimplePatterns; | 
|  |  | 
|  | // This is used to check that there are no duplicate predicates | 
|  | typedef std::multimap<std::string, bool> PredCheckMap; | 
|  | typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap; | 
|  | typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap; | 
|  | typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap; | 
|  | typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap> | 
|  | OperandsOpcodeTypeRetPredCheckMap; | 
|  |  | 
|  | OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck; | 
|  |  | 
|  | std::map<OperandsSignature, std::vector<OperandsSignature> > | 
|  | SignaturesWithConstantForms; | 
|  |  | 
|  | StringRef InstNS; | 
|  | ImmPredicateSet ImmediatePredicates; | 
|  | public: | 
|  | explicit FastISelMap(StringRef InstNS); | 
|  |  | 
|  | void collectPatterns(CodeGenDAGPatterns &CGP); | 
|  | void printImmediatePredicates(raw_ostream &OS); | 
|  | void printFunctionDefinitions(raw_ostream &OS); | 
|  | private: | 
|  | void emitInstructionCode(raw_ostream &OS, | 
|  | const OperandsSignature &Operands, | 
|  | const PredMap &PM, | 
|  | const std::string &RetVTName); | 
|  | }; | 
|  | } // End anonymous namespace | 
|  |  | 
|  | static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { | 
|  | return CGP.getSDNodeInfo(Op).getEnumName(); | 
|  | } | 
|  |  | 
|  | static std::string getLegalCName(std::string OpName) { | 
|  | std::string::size_type pos = OpName.find("::"); | 
|  | if (pos != std::string::npos) | 
|  | OpName.replace(pos, 2, "_"); | 
|  | return OpName; | 
|  | } | 
|  |  | 
|  | FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {} | 
|  |  | 
|  | static std::string PhyRegForNode(TreePatternNode *Op, | 
|  | const CodeGenTarget &Target) { | 
|  | std::string PhysReg; | 
|  |  | 
|  | if (!Op->isLeaf()) | 
|  | return PhysReg; | 
|  |  | 
|  | Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef(); | 
|  | if (!OpLeafRec->isSubClassOf("Register")) | 
|  | return PhysReg; | 
|  |  | 
|  | PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue()) | 
|  | ->getValue(); | 
|  | PhysReg += "::"; | 
|  | PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName(); | 
|  | return PhysReg; | 
|  | } | 
|  |  | 
|  | void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) { | 
|  | const CodeGenTarget &Target = CGP.getTargetInfo(); | 
|  |  | 
|  | // Scan through all the patterns and record the simple ones. | 
|  | for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), | 
|  | E = CGP.ptm_end(); I != E; ++I) { | 
|  | const PatternToMatch &Pattern = *I; | 
|  |  | 
|  | // For now, just look at Instructions, so that we don't have to worry | 
|  | // about emitting multiple instructions for a pattern. | 
|  | TreePatternNode *Dst = Pattern.getDstPattern(); | 
|  | if (Dst->isLeaf()) continue; | 
|  | Record *Op = Dst->getOperator(); | 
|  | if (!Op->isSubClassOf("Instruction")) | 
|  | continue; | 
|  | CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); | 
|  | if (II.Operands.empty()) | 
|  | continue; | 
|  |  | 
|  | // Allow instructions to be marked as unavailable for FastISel for | 
|  | // certain cases, i.e. an ISA has two 'and' instruction which differ | 
|  | // by what registers they can use but are otherwise identical for | 
|  | // codegen purposes. | 
|  | if (II.FastISelShouldIgnore) | 
|  | continue; | 
|  |  | 
|  | // For now, ignore multi-instruction patterns. | 
|  | bool MultiInsts = false; | 
|  | for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) { | 
|  | TreePatternNode *ChildOp = Dst->getChild(i); | 
|  | if (ChildOp->isLeaf()) | 
|  | continue; | 
|  | if (ChildOp->getOperator()->isSubClassOf("Instruction")) { | 
|  | MultiInsts = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (MultiInsts) | 
|  | continue; | 
|  |  | 
|  | // For now, ignore instructions where the first operand is not an | 
|  | // output register. | 
|  | const CodeGenRegisterClass *DstRC = nullptr; | 
|  | std::string SubRegNo; | 
|  | if (Op->getName() != "EXTRACT_SUBREG") { | 
|  | Record *Op0Rec = II.Operands[0].Rec; | 
|  | if (Op0Rec->isSubClassOf("RegisterOperand")) | 
|  | Op0Rec = Op0Rec->getValueAsDef("RegClass"); | 
|  | if (!Op0Rec->isSubClassOf("RegisterClass")) | 
|  | continue; | 
|  | DstRC = &Target.getRegisterClass(Op0Rec); | 
|  | if (!DstRC) | 
|  | continue; | 
|  | } else { | 
|  | // If this isn't a leaf, then continue since the register classes are | 
|  | // a bit too complicated for now. | 
|  | if (!Dst->getChild(1)->isLeaf()) continue; | 
|  |  | 
|  | DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue()); | 
|  | if (SR) | 
|  | SubRegNo = getQualifiedName(SR->getDef()); | 
|  | else | 
|  | SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString(); | 
|  | } | 
|  |  | 
|  | // Inspect the pattern. | 
|  | TreePatternNode *InstPatNode = Pattern.getSrcPattern(); | 
|  | if (!InstPatNode) continue; | 
|  | if (InstPatNode->isLeaf()) continue; | 
|  |  | 
|  | // Ignore multiple result nodes for now. | 
|  | if (InstPatNode->getNumTypes() > 1) continue; | 
|  |  | 
|  | Record *InstPatOp = InstPatNode->getOperator(); | 
|  | std::string OpcodeName = getOpcodeName(InstPatOp, CGP); | 
|  | MVT::SimpleValueType RetVT = MVT::isVoid; | 
|  | if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getSimpleType(0); | 
|  | MVT::SimpleValueType VT = RetVT; | 
|  | if (InstPatNode->getNumChildren()) { | 
|  | assert(InstPatNode->getChild(0)->getNumTypes() == 1); | 
|  | VT = InstPatNode->getChild(0)->getSimpleType(0); | 
|  | } | 
|  |  | 
|  | // For now, filter out any instructions with predicates. | 
|  | if (!InstPatNode->getPredicateFns().empty()) | 
|  | continue; | 
|  |  | 
|  | // Check all the operands. | 
|  | OperandsSignature Operands; | 
|  | if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates, | 
|  | DstRC)) | 
|  | continue; | 
|  |  | 
|  | std::vector<std::string> PhysRegInputs; | 
|  | if (InstPatNode->getOperator()->getName() == "imm" || | 
|  | InstPatNode->getOperator()->getName() == "fpimm") | 
|  | PhysRegInputs.push_back(""); | 
|  | else { | 
|  | // Compute the PhysRegs used by the given pattern, and check that | 
|  | // the mapping from the src to dst patterns is simple. | 
|  | bool FoundNonSimplePattern = false; | 
|  | unsigned DstIndex = 0; | 
|  | for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { | 
|  | std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target); | 
|  | if (PhysReg.empty()) { | 
|  | if (DstIndex >= Dst->getNumChildren() || | 
|  | Dst->getChild(DstIndex)->getName() != | 
|  | InstPatNode->getChild(i)->getName()) { | 
|  | FoundNonSimplePattern = true; | 
|  | break; | 
|  | } | 
|  | ++DstIndex; | 
|  | } | 
|  |  | 
|  | PhysRegInputs.push_back(PhysReg); | 
|  | } | 
|  |  | 
|  | if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren()) | 
|  | FoundNonSimplePattern = true; | 
|  |  | 
|  | if (FoundNonSimplePattern) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Check if the operands match one of the patterns handled by FastISel. | 
|  | std::string ManglingSuffix; | 
|  | raw_string_ostream SuffixOS(ManglingSuffix); | 
|  | Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true); | 
|  | SuffixOS.flush(); | 
|  | if (!StringSwitch<bool>(ManglingSuffix) | 
|  | .Cases("", "r", "rr", "ri", "i", "f", true) | 
|  | .Default(false)) | 
|  | continue; | 
|  |  | 
|  | // Get the predicate that guards this pattern. | 
|  | std::string PredicateCheck = Pattern.getPredicateCheck(); | 
|  |  | 
|  | // Ok, we found a pattern that we can handle. Remember it. | 
|  | InstructionMemo Memo( | 
|  | Pattern.getDstPattern()->getOperator()->getName(), | 
|  | DstRC, | 
|  | SubRegNo, | 
|  | PhysRegInputs, | 
|  | PredicateCheck | 
|  | ); | 
|  |  | 
|  | int complexity = Pattern.getPatternComplexity(CGP); | 
|  |  | 
|  | if (SimplePatternsCheck[Operands][OpcodeName][VT] | 
|  | [RetVT].count(PredicateCheck)) { | 
|  | PrintFatalError(Pattern.getSrcRecord()->getLoc(), | 
|  | "Duplicate predicate in FastISel table!"); | 
|  | } | 
|  | SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert( | 
|  | std::make_pair(PredicateCheck, true)); | 
|  |  | 
|  | // Note: Instructions with the same complexity will appear in the order | 
|  | // that they are encountered. | 
|  | SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity, | 
|  | std::move(Memo)); | 
|  |  | 
|  | // If any of the operands were immediates with predicates on them, strip | 
|  | // them down to a signature that doesn't have predicates so that we can | 
|  | // associate them with the stripped predicate version. | 
|  | if (Operands.hasAnyImmediateCodes()) { | 
|  | SignaturesWithConstantForms[Operands.getWithoutImmCodes()] | 
|  | .push_back(Operands); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void FastISelMap::printImmediatePredicates(raw_ostream &OS) { | 
|  | if (ImmediatePredicates.begin() == ImmediatePredicates.end()) | 
|  | return; | 
|  |  | 
|  | OS << "\n// FastEmit Immediate Predicate functions.\n"; | 
|  | for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(), | 
|  | E = ImmediatePredicates.end(); I != E; ++I) { | 
|  | OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n"; | 
|  | OS << I->getImmediatePredicateCode() << "\n}\n"; | 
|  | } | 
|  |  | 
|  | OS << "\n\n"; | 
|  | } | 
|  |  | 
|  | void FastISelMap::emitInstructionCode(raw_ostream &OS, | 
|  | const OperandsSignature &Operands, | 
|  | const PredMap &PM, | 
|  | const std::string &RetVTName) { | 
|  | // Emit code for each possible instruction. There may be | 
|  | // multiple if there are subtarget concerns.  A reverse iterator | 
|  | // is used to produce the ones with highest complexity first. | 
|  |  | 
|  | bool OneHadNoPredicate = false; | 
|  | for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend(); | 
|  | PI != PE; ++PI) { | 
|  | const InstructionMemo &Memo = PI->second; | 
|  | std::string PredicateCheck = Memo.PredicateCheck; | 
|  |  | 
|  | if (PredicateCheck.empty()) { | 
|  | assert(!OneHadNoPredicate && | 
|  | "Multiple instructions match and more than one had " | 
|  | "no predicate!"); | 
|  | OneHadNoPredicate = true; | 
|  | } else { | 
|  | if (OneHadNoPredicate) { | 
|  | PrintFatalError("Multiple instructions match and one with no " | 
|  | "predicate came before one with a predicate!  " | 
|  | "name:" + Memo.Name + "  predicate: " + PredicateCheck); | 
|  | } | 
|  | OS << "  if (" + PredicateCheck + ") {\n"; | 
|  | OS << "  "; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) { | 
|  | if (Memo.PhysRegs[i] != "") | 
|  | OS << "  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, " | 
|  | << "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i] | 
|  | << ").addReg(Op" << i << ");\n"; | 
|  | } | 
|  |  | 
|  | OS << "  return fastEmitInst_"; | 
|  | if (Memo.SubRegNo.empty()) { | 
|  | Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates, | 
|  | true); | 
|  | OS << "(" << InstNS << "::" << Memo.Name << ", "; | 
|  | OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass"; | 
|  | if (!Operands.empty()) | 
|  | OS << ", "; | 
|  | Operands.PrintArguments(OS, Memo.PhysRegs); | 
|  | OS << ");\n"; | 
|  | } else { | 
|  | OS << "extractsubreg(" << RetVTName | 
|  | << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n"; | 
|  | } | 
|  |  | 
|  | if (!PredicateCheck.empty()) { | 
|  | OS << "  }\n"; | 
|  | } | 
|  | } | 
|  | // Return 0 if all of the possibilities had predicates but none | 
|  | // were satisfied. | 
|  | if (!OneHadNoPredicate) | 
|  | OS << "  return 0;\n"; | 
|  | OS << "}\n"; | 
|  | OS << "\n"; | 
|  | } | 
|  |  | 
|  |  | 
|  | void FastISelMap::printFunctionDefinitions(raw_ostream &OS) { | 
|  | // Now emit code for all the patterns that we collected. | 
|  | for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(), | 
|  | OE = SimplePatterns.end(); OI != OE; ++OI) { | 
|  | const OperandsSignature &Operands = OI->first; | 
|  | const OpcodeTypeRetPredMap &OTM = OI->second; | 
|  |  | 
|  | for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); | 
|  | I != E; ++I) { | 
|  | const std::string &Opcode = I->first; | 
|  | const TypeRetPredMap &TM = I->second; | 
|  |  | 
|  | OS << "// FastEmit functions for " << Opcode << ".\n"; | 
|  | OS << "\n"; | 
|  |  | 
|  | // Emit one function for each opcode,type pair. | 
|  | for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); | 
|  | TI != TE; ++TI) { | 
|  | MVT::SimpleValueType VT = TI->first; | 
|  | const RetPredMap &RM = TI->second; | 
|  | if (RM.size() != 1) { | 
|  | for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); | 
|  | RI != RE; ++RI) { | 
|  | MVT::SimpleValueType RetVT = RI->first; | 
|  | const PredMap &PM = RI->second; | 
|  |  | 
|  | OS << "unsigned fastEmit_" | 
|  | << getLegalCName(Opcode) | 
|  | << "_" << getLegalCName(getName(VT)) | 
|  | << "_" << getLegalCName(getName(RetVT)) << "_"; | 
|  | Operands.PrintManglingSuffix(OS, ImmediatePredicates); | 
|  | OS << "("; | 
|  | Operands.PrintParameters(OS); | 
|  | OS << ") {\n"; | 
|  |  | 
|  | emitInstructionCode(OS, Operands, PM, getName(RetVT)); | 
|  | } | 
|  |  | 
|  | // Emit one function for the type that demultiplexes on return type. | 
|  | OS << "unsigned fastEmit_" | 
|  | << getLegalCName(Opcode) << "_" | 
|  | << getLegalCName(getName(VT)) << "_"; | 
|  | Operands.PrintManglingSuffix(OS, ImmediatePredicates); | 
|  | OS << "(MVT RetVT"; | 
|  | if (!Operands.empty()) | 
|  | OS << ", "; | 
|  | Operands.PrintParameters(OS); | 
|  | OS << ") {\nswitch (RetVT.SimpleTy) {\n"; | 
|  | for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); | 
|  | RI != RE; ++RI) { | 
|  | MVT::SimpleValueType RetVT = RI->first; | 
|  | OS << "  case " << getName(RetVT) << ": return fastEmit_" | 
|  | << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) | 
|  | << "_" << getLegalCName(getName(RetVT)) << "_"; | 
|  | Operands.PrintManglingSuffix(OS, ImmediatePredicates); | 
|  | OS << "("; | 
|  | Operands.PrintArguments(OS); | 
|  | OS << ");\n"; | 
|  | } | 
|  | OS << "  default: return 0;\n}\n}\n\n"; | 
|  |  | 
|  | } else { | 
|  | // Non-variadic return type. | 
|  | OS << "unsigned fastEmit_" | 
|  | << getLegalCName(Opcode) << "_" | 
|  | << getLegalCName(getName(VT)) << "_"; | 
|  | Operands.PrintManglingSuffix(OS, ImmediatePredicates); | 
|  | OS << "(MVT RetVT"; | 
|  | if (!Operands.empty()) | 
|  | OS << ", "; | 
|  | Operands.PrintParameters(OS); | 
|  | OS << ") {\n"; | 
|  |  | 
|  | OS << "  if (RetVT.SimpleTy != " << getName(RM.begin()->first) | 
|  | << ")\n    return 0;\n"; | 
|  |  | 
|  | const PredMap &PM = RM.begin()->second; | 
|  |  | 
|  | emitInstructionCode(OS, Operands, PM, "RetVT"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit one function for the opcode that demultiplexes based on the type. | 
|  | OS << "unsigned fastEmit_" | 
|  | << getLegalCName(Opcode) << "_"; | 
|  | Operands.PrintManglingSuffix(OS, ImmediatePredicates); | 
|  | OS << "(MVT VT, MVT RetVT"; | 
|  | if (!Operands.empty()) | 
|  | OS << ", "; | 
|  | Operands.PrintParameters(OS); | 
|  | OS << ") {\n"; | 
|  | OS << "  switch (VT.SimpleTy) {\n"; | 
|  | for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); | 
|  | TI != TE; ++TI) { | 
|  | MVT::SimpleValueType VT = TI->first; | 
|  | std::string TypeName = getName(VT); | 
|  | OS << "  case " << TypeName << ": return fastEmit_" | 
|  | << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_"; | 
|  | Operands.PrintManglingSuffix(OS, ImmediatePredicates); | 
|  | OS << "(RetVT"; | 
|  | if (!Operands.empty()) | 
|  | OS << ", "; | 
|  | Operands.PrintArguments(OS); | 
|  | OS << ");\n"; | 
|  | } | 
|  | OS << "  default: return 0;\n"; | 
|  | OS << "  }\n"; | 
|  | OS << "}\n"; | 
|  | OS << "\n"; | 
|  | } | 
|  |  | 
|  | OS << "// Top-level FastEmit function.\n"; | 
|  | OS << "\n"; | 
|  |  | 
|  | // Emit one function for the operand signature that demultiplexes based | 
|  | // on opcode and type. | 
|  | OS << "unsigned fastEmit_"; | 
|  | Operands.PrintManglingSuffix(OS, ImmediatePredicates); | 
|  | OS << "(MVT VT, MVT RetVT, unsigned Opcode"; | 
|  | if (!Operands.empty()) | 
|  | OS << ", "; | 
|  | Operands.PrintParameters(OS); | 
|  | OS << ") "; | 
|  | if (!Operands.hasAnyImmediateCodes()) | 
|  | OS << "override "; | 
|  | OS << "{\n"; | 
|  |  | 
|  | // If there are any forms of this signature available that operate on | 
|  | // constrained forms of the immediate (e.g., 32-bit sext immediate in a | 
|  | // 64-bit operand), check them first. | 
|  |  | 
|  | std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI | 
|  | = SignaturesWithConstantForms.find(Operands); | 
|  | if (MI != SignaturesWithConstantForms.end()) { | 
|  | // Unique any duplicates out of the list. | 
|  | llvm::sort(MI->second.begin(), MI->second.end()); | 
|  | MI->second.erase(std::unique(MI->second.begin(), MI->second.end()), | 
|  | MI->second.end()); | 
|  |  | 
|  | // Check each in order it was seen.  It would be nice to have a good | 
|  | // relative ordering between them, but we're not going for optimality | 
|  | // here. | 
|  | for (unsigned i = 0, e = MI->second.size(); i != e; ++i) { | 
|  | OS << "  if ("; | 
|  | MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates); | 
|  | OS << ")\n    if (unsigned Reg = fastEmit_"; | 
|  | MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates); | 
|  | OS << "(VT, RetVT, Opcode"; | 
|  | if (!MI->second[i].empty()) | 
|  | OS << ", "; | 
|  | MI->second[i].PrintArguments(OS); | 
|  | OS << "))\n      return Reg;\n\n"; | 
|  | } | 
|  |  | 
|  | // Done with this, remove it. | 
|  | SignaturesWithConstantForms.erase(MI); | 
|  | } | 
|  |  | 
|  | OS << "  switch (Opcode) {\n"; | 
|  | for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); | 
|  | I != E; ++I) { | 
|  | const std::string &Opcode = I->first; | 
|  |  | 
|  | OS << "  case " << Opcode << ": return fastEmit_" | 
|  | << getLegalCName(Opcode) << "_"; | 
|  | Operands.PrintManglingSuffix(OS, ImmediatePredicates); | 
|  | OS << "(VT, RetVT"; | 
|  | if (!Operands.empty()) | 
|  | OS << ", "; | 
|  | Operands.PrintArguments(OS); | 
|  | OS << ");\n"; | 
|  | } | 
|  | OS << "  default: return 0;\n"; | 
|  | OS << "  }\n"; | 
|  | OS << "}\n"; | 
|  | OS << "\n"; | 
|  | } | 
|  |  | 
|  | // TODO: SignaturesWithConstantForms should be empty here. | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) { | 
|  | CodeGenDAGPatterns CGP(RK); | 
|  | const CodeGenTarget &Target = CGP.getTargetInfo(); | 
|  | emitSourceFileHeader("\"Fast\" Instruction Selector for the " + | 
|  | Target.getName().str() + " target", OS); | 
|  |  | 
|  | // Determine the target's namespace name. | 
|  | StringRef InstNS = Target.getInstNamespace(); | 
|  | assert(!InstNS.empty() && "Can't determine target-specific namespace!"); | 
|  |  | 
|  | FastISelMap F(InstNS); | 
|  | F.collectPatterns(CGP); | 
|  | F.printImmediatePredicates(OS); | 
|  | F.printFunctionDefinitions(OS); | 
|  | } | 
|  |  | 
|  | } // End llvm namespace |