| //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the ARM specific subclass of TargetSubtargetInfo. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARM.h" |
| |
| #include "ARMCallLowering.h" |
| #include "ARMLegalizerInfo.h" |
| #include "ARMRegisterBankInfo.h" |
| #include "ARMSubtarget.h" |
| #include "ARMFrameLowering.h" |
| #include "ARMInstrInfo.h" |
| #include "ARMSubtarget.h" |
| #include "ARMTargetMachine.h" |
| #include "MCTargetDesc/ARMMCTargetDesc.h" |
| #include "Thumb1FrameLowering.h" |
| #include "Thumb1InstrInfo.h" |
| #include "Thumb2InstrInfo.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCTargetOptions.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/TargetParser.h" |
| #include "llvm/Target/TargetOptions.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "arm-subtarget" |
| |
| #define GET_SUBTARGETINFO_TARGET_DESC |
| #define GET_SUBTARGETINFO_CTOR |
| #include "ARMGenSubtargetInfo.inc" |
| |
| static cl::opt<bool> |
| UseFusedMulOps("arm-use-mulops", |
| cl::init(true), cl::Hidden); |
| |
| enum ITMode { |
| DefaultIT, |
| RestrictedIT, |
| NoRestrictedIT |
| }; |
| |
| static cl::opt<ITMode> |
| IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), |
| cl::ZeroOrMore, |
| cl::values(clEnumValN(DefaultIT, "arm-default-it", |
| "Generate IT block based on arch"), |
| clEnumValN(RestrictedIT, "arm-restrict-it", |
| "Disallow deprecated IT based on ARMv8"), |
| clEnumValN(NoRestrictedIT, "arm-no-restrict-it", |
| "Allow IT blocks based on ARMv7"))); |
| |
| /// ForceFastISel - Use the fast-isel, even for subtargets where it is not |
| /// currently supported (for testing only). |
| static cl::opt<bool> |
| ForceFastISel("arm-force-fast-isel", |
| cl::init(false), cl::Hidden); |
| |
| static cl::opt<bool> EnableSubRegLiveness("arm-enable-subreg-liveness", |
| cl::init(false), cl::Hidden); |
| |
| /// initializeSubtargetDependencies - Initializes using a CPU and feature string |
| /// so that we can use initializer lists for subtarget initialization. |
| ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU, |
| StringRef FS) { |
| initializeEnvironment(); |
| initSubtargetFeatures(CPU, FS); |
| return *this; |
| } |
| |
| ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU, |
| StringRef FS) { |
| ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS); |
| if (STI.isThumb1Only()) |
| return (ARMFrameLowering *)new Thumb1FrameLowering(STI); |
| |
| return new ARMFrameLowering(STI); |
| } |
| |
| ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU, |
| const std::string &FS, |
| const ARMBaseTargetMachine &TM, bool IsLittle, |
| bool MinSize) |
| : ARMGenSubtargetInfo(TT, CPU, FS), UseMulOps(UseFusedMulOps), |
| CPUString(CPU), OptMinSize(MinSize), IsLittle(IsLittle), |
| TargetTriple(TT), Options(TM.Options), TM(TM), |
| FrameLowering(initializeFrameLowering(CPU, FS)), |
| // At this point initializeSubtargetDependencies has been called so |
| // we can query directly. |
| InstrInfo(isThumb1Only() |
| ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this) |
| : !isThumb() |
| ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this) |
| : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)), |
| TLInfo(TM, *this) { |
| |
| CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering())); |
| Legalizer.reset(new ARMLegalizerInfo(*this)); |
| |
| auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo()); |
| |
| // FIXME: At this point, we can't rely on Subtarget having RBI. |
| // It's awkward to mix passing RBI and the Subtarget; should we pass |
| // TII/TRI as well? |
| InstSelector.reset(createARMInstructionSelector( |
| *static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI)); |
| |
| RegBankInfo.reset(RBI); |
| } |
| |
| const CallLowering *ARMSubtarget::getCallLowering() const { |
| return CallLoweringInfo.get(); |
| } |
| |
| InstructionSelector *ARMSubtarget::getInstructionSelector() const { |
| return InstSelector.get(); |
| } |
| |
| const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const { |
| return Legalizer.get(); |
| } |
| |
| const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const { |
| return RegBankInfo.get(); |
| } |
| |
| bool ARMSubtarget::isXRaySupported() const { |
| // We don't currently suppport Thumb, but Windows requires Thumb. |
| return hasV6Ops() && hasARMOps() && !isTargetWindows(); |
| } |
| |
| void ARMSubtarget::initializeEnvironment() { |
| // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this |
| // directly from it, but we can try to make sure they're consistent when both |
| // available. |
| UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() && |
| Options.ExceptionModel == ExceptionHandling::None) || |
| Options.ExceptionModel == ExceptionHandling::SjLj; |
| assert((!TM.getMCAsmInfo() || |
| (TM.getMCAsmInfo()->getExceptionHandlingType() == |
| ExceptionHandling::SjLj) == UseSjLjEH) && |
| "inconsistent sjlj choice between CodeGen and MC"); |
| } |
| |
| void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) { |
| if (CPUString.empty()) { |
| CPUString = "generic"; |
| |
| if (isTargetDarwin()) { |
| StringRef ArchName = TargetTriple.getArchName(); |
| ARM::ArchKind AK = ARM::parseArch(ArchName); |
| if (AK == ARM::ArchKind::ARMV7S) |
| // Default to the Swift CPU when targeting armv7s/thumbv7s. |
| CPUString = "swift"; |
| else if (AK == ARM::ArchKind::ARMV7K) |
| // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k. |
| // ARMv7k does not use SjLj exception handling. |
| CPUString = "cortex-a7"; |
| } |
| } |
| |
| // Insert the architecture feature derived from the target triple into the |
| // feature string. This is important for setting features that are implied |
| // based on the architecture version. |
| std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString); |
| if (!FS.empty()) { |
| if (!ArchFS.empty()) |
| ArchFS = (Twine(ArchFS) + "," + FS).str(); |
| else |
| ArchFS = FS; |
| } |
| ParseSubtargetFeatures(CPUString, ArchFS); |
| |
| // FIXME: This used enable V6T2 support implicitly for Thumb2 mode. |
| // Assert this for now to make the change obvious. |
| assert(hasV6T2Ops() || !hasThumb2()); |
| |
| // Execute only support requires movt support |
| if (genExecuteOnly()) { |
| NoMovt = false; |
| assert(hasV8MBaselineOps() && "Cannot generate execute-only code for this target"); |
| } |
| |
| // Keep a pointer to static instruction cost data for the specified CPU. |
| SchedModel = getSchedModelForCPU(CPUString); |
| |
| // Initialize scheduling itinerary for the specified CPU. |
| InstrItins = getInstrItineraryForCPU(CPUString); |
| |
| // FIXME: this is invalid for WindowsCE |
| if (isTargetWindows()) |
| NoARM = true; |
| |
| if (isAAPCS_ABI()) |
| stackAlignment = Align(8); |
| if (isTargetNaCl() || isAAPCS16_ABI()) |
| stackAlignment = Align(16); |
| |
| // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo:: |
| // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as |
| // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation |
| // support in the assembler and linker to be used. This would need to be |
| // fixed to fully support tail calls in Thumb1. |
| // |
| // For ARMv8-M, we /do/ implement tail calls. Doing this is tricky for v8-M |
| // baseline, since the LDM/POP instruction on Thumb doesn't take LR. This |
| // means if we need to reload LR, it takes extra instructions, which outweighs |
| // the value of the tail call; but here we don't know yet whether LR is going |
| // to be used. We take the optimistic approach of generating the tail call and |
| // perhaps taking a hit if we need to restore the LR. |
| |
| // Thumb1 PIC calls to external symbols use BX, so they can be tail calls, |
| // but we need to make sure there are enough registers; the only valid |
| // registers are the 4 used for parameters. We don't currently do this |
| // case. |
| |
| SupportsTailCall = !isThumb() || hasV8MBaselineOps(); |
| |
| if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0)) |
| SupportsTailCall = false; |
| |
| switch (IT) { |
| case DefaultIT: |
| RestrictIT = hasV8Ops(); |
| break; |
| case RestrictedIT: |
| RestrictIT = true; |
| break; |
| case NoRestrictedIT: |
| RestrictIT = false; |
| break; |
| } |
| |
| // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default. |
| const FeatureBitset &Bits = getFeatureBits(); |
| if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters |
| (Options.UnsafeFPMath || isTargetDarwin())) |
| UseNEONForSinglePrecisionFP = true; |
| |
| if (isRWPI()) |
| ReserveR9 = true; |
| |
| // If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2 |
| if (MVEVectorCostFactor == 0) |
| MVEVectorCostFactor = 2; |
| |
| // FIXME: Teach TableGen to deal with these instead of doing it manually here. |
| switch (ARMProcFamily) { |
| case Others: |
| case CortexA5: |
| break; |
| case CortexA7: |
| LdStMultipleTiming = DoubleIssue; |
| break; |
| case CortexA8: |
| LdStMultipleTiming = DoubleIssue; |
| break; |
| case CortexA9: |
| LdStMultipleTiming = DoubleIssueCheckUnalignedAccess; |
| PreISelOperandLatencyAdjustment = 1; |
| break; |
| case CortexA12: |
| break; |
| case CortexA15: |
| MaxInterleaveFactor = 2; |
| PreISelOperandLatencyAdjustment = 1; |
| PartialUpdateClearance = 12; |
| break; |
| case CortexA17: |
| case CortexA32: |
| case CortexA35: |
| case CortexA53: |
| case CortexA55: |
| case CortexA57: |
| case CortexA72: |
| case CortexA73: |
| case CortexA75: |
| case CortexA76: |
| case CortexR4: |
| case CortexR4F: |
| case CortexR5: |
| case CortexR7: |
| case CortexM3: |
| case CortexR52: |
| break; |
| case Exynos: |
| LdStMultipleTiming = SingleIssuePlusExtras; |
| MaxInterleaveFactor = 4; |
| if (!isThumb()) |
| PrefLoopLogAlignment = 3; |
| break; |
| case Kryo: |
| break; |
| case Krait: |
| PreISelOperandLatencyAdjustment = 1; |
| break; |
| case NeoverseN1: |
| break; |
| case Swift: |
| MaxInterleaveFactor = 2; |
| LdStMultipleTiming = SingleIssuePlusExtras; |
| PreISelOperandLatencyAdjustment = 1; |
| PartialUpdateClearance = 12; |
| break; |
| } |
| } |
| |
| bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); } |
| |
| bool ARMSubtarget::isAPCS_ABI() const { |
| assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); |
| return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS; |
| } |
| bool ARMSubtarget::isAAPCS_ABI() const { |
| assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); |
| return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS || |
| TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16; |
| } |
| bool ARMSubtarget::isAAPCS16_ABI() const { |
| assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); |
| return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16; |
| } |
| |
| bool ARMSubtarget::isROPI() const { |
| return TM.getRelocationModel() == Reloc::ROPI || |
| TM.getRelocationModel() == Reloc::ROPI_RWPI; |
| } |
| bool ARMSubtarget::isRWPI() const { |
| return TM.getRelocationModel() == Reloc::RWPI || |
| TM.getRelocationModel() == Reloc::ROPI_RWPI; |
| } |
| |
| bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const { |
| if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) |
| return true; |
| |
| // 32 bit macho has no relocation for a-b if a is undefined, even if b is in |
| // the section that is being relocated. This means we have to use o load even |
| // for GVs that are known to be local to the dso. |
| if (isTargetMachO() && TM.isPositionIndependent() && |
| (GV->isDeclarationForLinker() || GV->hasCommonLinkage())) |
| return true; |
| |
| return false; |
| } |
| |
| bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const { |
| return isTargetELF() && TM.isPositionIndependent() && |
| !TM.shouldAssumeDSOLocal(*GV->getParent(), GV); |
| } |
| |
| unsigned ARMSubtarget::getMispredictionPenalty() const { |
| return SchedModel.MispredictPenalty; |
| } |
| |
| bool ARMSubtarget::enableMachineScheduler() const { |
| // The MachineScheduler can increase register usage, so we use more high |
| // registers and end up with more T2 instructions that cannot be converted to |
| // T1 instructions. At least until we do better at converting to thumb1 |
| // instructions, on cortex-m at Oz where we are size-paranoid, don't use the |
| // Machine scheduler, relying on the DAG register pressure scheduler instead. |
| if (isMClass() && hasMinSize()) |
| return false; |
| // Enable the MachineScheduler before register allocation for subtargets |
| // with the use-misched feature. |
| return useMachineScheduler(); |
| } |
| |
| bool ARMSubtarget::enableSubRegLiveness() const { return EnableSubRegLiveness; } |
| |
| // This overrides the PostRAScheduler bit in the SchedModel for any CPU. |
| bool ARMSubtarget::enablePostRAScheduler() const { |
| if (enableMachineScheduler()) |
| return false; |
| if (disablePostRAScheduler()) |
| return false; |
| // Thumb1 cores will generally not benefit from post-ra scheduling |
| return !isThumb1Only(); |
| } |
| |
| bool ARMSubtarget::enablePostRAMachineScheduler() const { |
| if (!enableMachineScheduler()) |
| return false; |
| if (disablePostRAScheduler()) |
| return false; |
| return !isThumb1Only(); |
| } |
| |
| bool ARMSubtarget::enableAtomicExpand() const { return hasAnyDataBarrier(); } |
| |
| bool ARMSubtarget::useStride4VFPs() const { |
| // For general targets, the prologue can grow when VFPs are allocated with |
| // stride 4 (more vpush instructions). But WatchOS uses a compact unwind |
| // format which it's more important to get right. |
| return isTargetWatchABI() || |
| (useWideStrideVFP() && !OptMinSize); |
| } |
| |
| bool ARMSubtarget::useMovt() const { |
| // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit |
| // immediates as it is inherently position independent, and may be out of |
| // range otherwise. |
| return !NoMovt && hasV8MBaselineOps() && |
| (isTargetWindows() || !OptMinSize || genExecuteOnly()); |
| } |
| |
| bool ARMSubtarget::useFastISel() const { |
| // Enable fast-isel for any target, for testing only. |
| if (ForceFastISel) |
| return true; |
| |
| // Limit fast-isel to the targets that are or have been tested. |
| if (!hasV6Ops()) |
| return false; |
| |
| // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl. |
| return TM.Options.EnableFastISel && |
| ((isTargetMachO() && !isThumb1Only()) || |
| (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb())); |
| } |
| |
| unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const { |
| // The GPR register class has multiple possible allocation orders, with |
| // tradeoffs preferred by different sub-architectures and optimisation goals. |
| // The allocation orders are: |
| // 0: (the default tablegen order, not used) |
| // 1: r14, r0-r13 |
| // 2: r0-r7 |
| // 3: r0-r7, r12, lr, r8-r11 |
| // Note that the register allocator will change this order so that |
| // callee-saved registers are used later, as they require extra work in the |
| // prologue/epilogue (though we sometimes override that). |
| |
| // For thumb1-only targets, only the low registers are allocatable. |
| if (isThumb1Only()) |
| return 2; |
| |
| // Allocate low registers first, so we can select more 16-bit instructions. |
| // We also (in ignoreCSRForAllocationOrder) override the default behaviour |
| // with regards to callee-saved registers, because pushing extra registers is |
| // much cheaper (in terms of code size) than using high registers. After |
| // that, we allocate r12 (doesn't need to be saved), lr (saving it means we |
| // can return with the pop, don't need an extra "bx lr") and then the rest of |
| // the high registers. |
| if (isThumb2() && MF.getFunction().hasMinSize()) |
| return 3; |
| |
| // Otherwise, allocate in the default order, using LR first because saving it |
| // allows a shorter epilogue sequence. |
| return 1; |
| } |
| |
| bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF, |
| unsigned PhysReg) const { |
| // To minimize code size in Thumb2, we prefer the usage of low regs (lower |
| // cost per use) so we can use narrow encoding. By default, caller-saved |
| // registers (e.g. lr, r12) are always allocated first, regardless of |
| // their cost per use. When optForMinSize, we prefer the low regs even if |
| // they are CSR because usually push/pop can be folded into existing ones. |
| return isThumb2() && MF.getFunction().hasMinSize() && |
| ARM::GPRRegClass.contains(PhysReg); |
| } |