| //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file defines the DenseMap class. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #ifndef LLVM_ADT_DENSEMAP_H | 
 | #define LLVM_ADT_DENSEMAP_H | 
 |  | 
 | #include "llvm/ADT/DenseMapInfo.h" | 
 | #include "llvm/ADT/EpochTracker.h" | 
 | #include "llvm/Support/AlignOf.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/type_traits.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <cstddef> | 
 | #include <cstring> | 
 | #include <iterator> | 
 | #include <limits> | 
 | #include <new> | 
 | #include <utility> | 
 |  | 
 | namespace llvm { | 
 |  | 
 | namespace detail { | 
 |  | 
 | // We extend a pair to allow users to override the bucket type with their own | 
 | // implementation without requiring two members. | 
 | template <typename KeyT, typename ValueT> | 
 | struct DenseMapPair : public std::pair<KeyT, ValueT> { | 
 |   KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; } | 
 |   const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; } | 
 |   ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; } | 
 |   const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; } | 
 | }; | 
 |  | 
 | } // end namespace detail | 
 |  | 
 | template < | 
 |     typename KeyT, typename ValueT, typename KeyInfoT = DenseMapInfo<KeyT>, | 
 |     typename Bucket = detail::DenseMapPair<KeyT, ValueT>, bool IsConst = false> | 
 | class DenseMapIterator; | 
 |  | 
 | template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, | 
 |           typename BucketT> | 
 | class DenseMapBase : public DebugEpochBase { | 
 | public: | 
 |   typedef unsigned size_type; | 
 |   typedef KeyT key_type; | 
 |   typedef ValueT mapped_type; | 
 |   typedef BucketT value_type; | 
 |  | 
 |   typedef DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT> iterator; | 
 |   typedef DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true> | 
 |       const_iterator; | 
 |   inline iterator begin() { | 
 |     // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets(). | 
 |     return empty() ? end() : iterator(getBuckets(), getBucketsEnd(), *this); | 
 |   } | 
 |   inline iterator end() { | 
 |     return iterator(getBucketsEnd(), getBucketsEnd(), *this, true); | 
 |   } | 
 |   inline const_iterator begin() const { | 
 |     return empty() ? end() | 
 |                    : const_iterator(getBuckets(), getBucketsEnd(), *this); | 
 |   } | 
 |   inline const_iterator end() const { | 
 |     return const_iterator(getBucketsEnd(), getBucketsEnd(), *this, true); | 
 |   } | 
 |  | 
 |   LLVM_NODISCARD bool empty() const { | 
 |     return getNumEntries() == 0; | 
 |   } | 
 |   unsigned size() const { return getNumEntries(); } | 
 |  | 
 |   /// Grow the densemap so that it can contain at least \p NumEntries items | 
 |   /// before resizing again. | 
 |   void reserve(size_type NumEntries) { | 
 |     auto NumBuckets = getMinBucketToReserveForEntries(NumEntries); | 
 |     incrementEpoch(); | 
 |     if (NumBuckets > getNumBuckets()) | 
 |       grow(NumBuckets); | 
 |   } | 
 |  | 
 |   void clear() { | 
 |     incrementEpoch(); | 
 |     if (getNumEntries() == 0 && getNumTombstones() == 0) return; | 
 |  | 
 |     // If the capacity of the array is huge, and the # elements used is small, | 
 |     // shrink the array. | 
 |     if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) { | 
 |       shrink_and_clear(); | 
 |       return; | 
 |     } | 
 |  | 
 |     const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); | 
 |     unsigned NumEntries = getNumEntries(); | 
 |     for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { | 
 |       if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) { | 
 |         if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { | 
 |           P->getSecond().~ValueT(); | 
 |           --NumEntries; | 
 |         } | 
 |         P->getFirst() = EmptyKey; | 
 |       } | 
 |     } | 
 |     assert(NumEntries == 0 && "Node count imbalance!"); | 
 |     setNumEntries(0); | 
 |     setNumTombstones(0); | 
 |   } | 
 |  | 
 |   /// Return 1 if the specified key is in the map, 0 otherwise. | 
 |   size_type count(const KeyT &Val) const { | 
 |     const BucketT *TheBucket; | 
 |     return LookupBucketFor(Val, TheBucket) ? 1 : 0; | 
 |   } | 
 |  | 
 |   iterator find(const KeyT &Val) { | 
 |     BucketT *TheBucket; | 
 |     if (LookupBucketFor(Val, TheBucket)) | 
 |       return iterator(TheBucket, getBucketsEnd(), *this, true); | 
 |     return end(); | 
 |   } | 
 |   const_iterator find(const KeyT &Val) const { | 
 |     const BucketT *TheBucket; | 
 |     if (LookupBucketFor(Val, TheBucket)) | 
 |       return const_iterator(TheBucket, getBucketsEnd(), *this, true); | 
 |     return end(); | 
 |   } | 
 |  | 
 |   /// Alternate version of find() which allows a different, and possibly | 
 |   /// less expensive, key type. | 
 |   /// The DenseMapInfo is responsible for supplying methods | 
 |   /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key | 
 |   /// type used. | 
 |   template<class LookupKeyT> | 
 |   iterator find_as(const LookupKeyT &Val) { | 
 |     BucketT *TheBucket; | 
 |     if (LookupBucketFor(Val, TheBucket)) | 
 |       return iterator(TheBucket, getBucketsEnd(), *this, true); | 
 |     return end(); | 
 |   } | 
 |   template<class LookupKeyT> | 
 |   const_iterator find_as(const LookupKeyT &Val) const { | 
 |     const BucketT *TheBucket; | 
 |     if (LookupBucketFor(Val, TheBucket)) | 
 |       return const_iterator(TheBucket, getBucketsEnd(), *this, true); | 
 |     return end(); | 
 |   } | 
 |  | 
 |   /// lookup - Return the entry for the specified key, or a default | 
 |   /// constructed value if no such entry exists. | 
 |   ValueT lookup(const KeyT &Val) const { | 
 |     const BucketT *TheBucket; | 
 |     if (LookupBucketFor(Val, TheBucket)) | 
 |       return TheBucket->getSecond(); | 
 |     return ValueT(); | 
 |   } | 
 |  | 
 |   // Inserts key,value pair into the map if the key isn't already in the map. | 
 |   // If the key is already in the map, it returns false and doesn't update the | 
 |   // value. | 
 |   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) { | 
 |     return try_emplace(KV.first, KV.second); | 
 |   } | 
 |  | 
 |   // Inserts key,value pair into the map if the key isn't already in the map. | 
 |   // If the key is already in the map, it returns false and doesn't update the | 
 |   // value. | 
 |   std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) { | 
 |     return try_emplace(std::move(KV.first), std::move(KV.second)); | 
 |   } | 
 |  | 
 |   // Inserts key,value pair into the map if the key isn't already in the map. | 
 |   // The value is constructed in-place if the key is not in the map, otherwise | 
 |   // it is not moved. | 
 |   template <typename... Ts> | 
 |   std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) { | 
 |     BucketT *TheBucket; | 
 |     if (LookupBucketFor(Key, TheBucket)) | 
 |       return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true), | 
 |                             false); // Already in map. | 
 |  | 
 |     // Otherwise, insert the new element. | 
 |     TheBucket = | 
 |         InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...); | 
 |     return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true), | 
 |                           true); | 
 |   } | 
 |  | 
 |   // Inserts key,value pair into the map if the key isn't already in the map. | 
 |   // The value is constructed in-place if the key is not in the map, otherwise | 
 |   // it is not moved. | 
 |   template <typename... Ts> | 
 |   std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) { | 
 |     BucketT *TheBucket; | 
 |     if (LookupBucketFor(Key, TheBucket)) | 
 |       return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true), | 
 |                             false); // Already in map. | 
 |  | 
 |     // Otherwise, insert the new element. | 
 |     TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...); | 
 |     return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true), | 
 |                           true); | 
 |   } | 
 |  | 
 |   /// Alternate version of insert() which allows a different, and possibly | 
 |   /// less expensive, key type. | 
 |   /// The DenseMapInfo is responsible for supplying methods | 
 |   /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key | 
 |   /// type used. | 
 |   template <typename LookupKeyT> | 
 |   std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV, | 
 |                                       const LookupKeyT &Val) { | 
 |     BucketT *TheBucket; | 
 |     if (LookupBucketFor(Val, TheBucket)) | 
 |       return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true), | 
 |                             false); // Already in map. | 
 |  | 
 |     // Otherwise, insert the new element. | 
 |     TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first), | 
 |                                            std::move(KV.second), Val); | 
 |     return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true), | 
 |                           true); | 
 |   } | 
 |  | 
 |   /// insert - Range insertion of pairs. | 
 |   template<typename InputIt> | 
 |   void insert(InputIt I, InputIt E) { | 
 |     for (; I != E; ++I) | 
 |       insert(*I); | 
 |   } | 
 |  | 
 |   bool erase(const KeyT &Val) { | 
 |     BucketT *TheBucket; | 
 |     if (!LookupBucketFor(Val, TheBucket)) | 
 |       return false; // not in map. | 
 |  | 
 |     TheBucket->getSecond().~ValueT(); | 
 |     TheBucket->getFirst() = getTombstoneKey(); | 
 |     decrementNumEntries(); | 
 |     incrementNumTombstones(); | 
 |     return true; | 
 |   } | 
 |   void erase(iterator I) { | 
 |     BucketT *TheBucket = &*I; | 
 |     TheBucket->getSecond().~ValueT(); | 
 |     TheBucket->getFirst() = getTombstoneKey(); | 
 |     decrementNumEntries(); | 
 |     incrementNumTombstones(); | 
 |   } | 
 |  | 
 |   value_type& FindAndConstruct(const KeyT &Key) { | 
 |     BucketT *TheBucket; | 
 |     if (LookupBucketFor(Key, TheBucket)) | 
 |       return *TheBucket; | 
 |  | 
 |     return *InsertIntoBucket(TheBucket, Key); | 
 |   } | 
 |  | 
 |   ValueT &operator[](const KeyT &Key) { | 
 |     return FindAndConstruct(Key).second; | 
 |   } | 
 |  | 
 |   value_type& FindAndConstruct(KeyT &&Key) { | 
 |     BucketT *TheBucket; | 
 |     if (LookupBucketFor(Key, TheBucket)) | 
 |       return *TheBucket; | 
 |  | 
 |     return *InsertIntoBucket(TheBucket, std::move(Key)); | 
 |   } | 
 |  | 
 |   ValueT &operator[](KeyT &&Key) { | 
 |     return FindAndConstruct(std::move(Key)).second; | 
 |   } | 
 |  | 
 |   /// isPointerIntoBucketsArray - Return true if the specified pointer points | 
 |   /// somewhere into the DenseMap's array of buckets (i.e. either to a key or | 
 |   /// value in the DenseMap). | 
 |   bool isPointerIntoBucketsArray(const void *Ptr) const { | 
 |     return Ptr >= getBuckets() && Ptr < getBucketsEnd(); | 
 |   } | 
 |  | 
 |   /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets | 
 |   /// array.  In conjunction with the previous method, this can be used to | 
 |   /// determine whether an insertion caused the DenseMap to reallocate. | 
 |   const void *getPointerIntoBucketsArray() const { return getBuckets(); } | 
 |  | 
 | protected: | 
 |   DenseMapBase() = default; | 
 |  | 
 |   void destroyAll() { | 
 |     if (getNumBuckets() == 0) // Nothing to do. | 
 |       return; | 
 |  | 
 |     const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); | 
 |     for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { | 
 |       if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && | 
 |           !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) | 
 |         P->getSecond().~ValueT(); | 
 |       P->getFirst().~KeyT(); | 
 |     } | 
 |   } | 
 |  | 
 |   void initEmpty() { | 
 |     setNumEntries(0); | 
 |     setNumTombstones(0); | 
 |  | 
 |     assert((getNumBuckets() & (getNumBuckets()-1)) == 0 && | 
 |            "# initial buckets must be a power of two!"); | 
 |     const KeyT EmptyKey = getEmptyKey(); | 
 |     for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B) | 
 |       ::new (&B->getFirst()) KeyT(EmptyKey); | 
 |   } | 
 |  | 
 |   /// Returns the number of buckets to allocate to ensure that the DenseMap can | 
 |   /// accommodate \p NumEntries without need to grow(). | 
 |   unsigned getMinBucketToReserveForEntries(unsigned NumEntries) { | 
 |     // Ensure that "NumEntries * 4 < NumBuckets * 3" | 
 |     if (NumEntries == 0) | 
 |       return 0; | 
 |     // +1 is required because of the strict equality. | 
 |     // For example if NumEntries is 48, we need to return 401. | 
 |     return NextPowerOf2(NumEntries * 4 / 3 + 1); | 
 |   } | 
 |  | 
 |   void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) { | 
 |     initEmpty(); | 
 |  | 
 |     // Insert all the old elements. | 
 |     const KeyT EmptyKey = getEmptyKey(); | 
 |     const KeyT TombstoneKey = getTombstoneKey(); | 
 |     for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) { | 
 |       if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) && | 
 |           !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) { | 
 |         // Insert the key/value into the new table. | 
 |         BucketT *DestBucket; | 
 |         bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket); | 
 |         (void)FoundVal; // silence warning. | 
 |         assert(!FoundVal && "Key already in new map?"); | 
 |         DestBucket->getFirst() = std::move(B->getFirst()); | 
 |         ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond())); | 
 |         incrementNumEntries(); | 
 |  | 
 |         // Free the value. | 
 |         B->getSecond().~ValueT(); | 
 |       } | 
 |       B->getFirst().~KeyT(); | 
 |     } | 
 |   } | 
 |  | 
 |   template <typename OtherBaseT> | 
 |   void copyFrom( | 
 |       const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) { | 
 |     assert(&other != this); | 
 |     assert(getNumBuckets() == other.getNumBuckets()); | 
 |  | 
 |     setNumEntries(other.getNumEntries()); | 
 |     setNumTombstones(other.getNumTombstones()); | 
 |  | 
 |     if (isPodLike<KeyT>::value && isPodLike<ValueT>::value) | 
 |       memcpy(getBuckets(), other.getBuckets(), | 
 |              getNumBuckets() * sizeof(BucketT)); | 
 |     else | 
 |       for (size_t i = 0; i < getNumBuckets(); ++i) { | 
 |         ::new (&getBuckets()[i].getFirst()) | 
 |             KeyT(other.getBuckets()[i].getFirst()); | 
 |         if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) && | 
 |             !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey())) | 
 |           ::new (&getBuckets()[i].getSecond()) | 
 |               ValueT(other.getBuckets()[i].getSecond()); | 
 |       } | 
 |   } | 
 |  | 
 |   static unsigned getHashValue(const KeyT &Val) { | 
 |     return KeyInfoT::getHashValue(Val); | 
 |   } | 
 |   template<typename LookupKeyT> | 
 |   static unsigned getHashValue(const LookupKeyT &Val) { | 
 |     return KeyInfoT::getHashValue(Val); | 
 |   } | 
 |   static const KeyT getEmptyKey() { | 
 |     return KeyInfoT::getEmptyKey(); | 
 |   } | 
 |   static const KeyT getTombstoneKey() { | 
 |     return KeyInfoT::getTombstoneKey(); | 
 |   } | 
 |  | 
 | private: | 
 |   unsigned getNumEntries() const { | 
 |     return static_cast<const DerivedT *>(this)->getNumEntries(); | 
 |   } | 
 |   void setNumEntries(unsigned Num) { | 
 |     static_cast<DerivedT *>(this)->setNumEntries(Num); | 
 |   } | 
 |   void incrementNumEntries() { | 
 |     setNumEntries(getNumEntries() + 1); | 
 |   } | 
 |   void decrementNumEntries() { | 
 |     setNumEntries(getNumEntries() - 1); | 
 |   } | 
 |   unsigned getNumTombstones() const { | 
 |     return static_cast<const DerivedT *>(this)->getNumTombstones(); | 
 |   } | 
 |   void setNumTombstones(unsigned Num) { | 
 |     static_cast<DerivedT *>(this)->setNumTombstones(Num); | 
 |   } | 
 |   void incrementNumTombstones() { | 
 |     setNumTombstones(getNumTombstones() + 1); | 
 |   } | 
 |   void decrementNumTombstones() { | 
 |     setNumTombstones(getNumTombstones() - 1); | 
 |   } | 
 |   const BucketT *getBuckets() const { | 
 |     return static_cast<const DerivedT *>(this)->getBuckets(); | 
 |   } | 
 |   BucketT *getBuckets() { | 
 |     return static_cast<DerivedT *>(this)->getBuckets(); | 
 |   } | 
 |   unsigned getNumBuckets() const { | 
 |     return static_cast<const DerivedT *>(this)->getNumBuckets(); | 
 |   } | 
 |   BucketT *getBucketsEnd() { | 
 |     return getBuckets() + getNumBuckets(); | 
 |   } | 
 |   const BucketT *getBucketsEnd() const { | 
 |     return getBuckets() + getNumBuckets(); | 
 |   } | 
 |  | 
 |   void grow(unsigned AtLeast) { | 
 |     static_cast<DerivedT *>(this)->grow(AtLeast); | 
 |   } | 
 |  | 
 |   void shrink_and_clear() { | 
 |     static_cast<DerivedT *>(this)->shrink_and_clear(); | 
 |   } | 
 |  | 
 |   template <typename KeyArg, typename... ValueArgs> | 
 |   BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key, | 
 |                             ValueArgs &&... Values) { | 
 |     TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket); | 
 |  | 
 |     TheBucket->getFirst() = std::forward<KeyArg>(Key); | 
 |     ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...); | 
 |     return TheBucket; | 
 |   } | 
 |  | 
 |   template <typename LookupKeyT> | 
 |   BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key, | 
 |                                       ValueT &&Value, LookupKeyT &Lookup) { | 
 |     TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket); | 
 |  | 
 |     TheBucket->getFirst() = std::move(Key); | 
 |     ::new (&TheBucket->getSecond()) ValueT(std::move(Value)); | 
 |     return TheBucket; | 
 |   } | 
 |  | 
 |   template <typename LookupKeyT> | 
 |   BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup, | 
 |                                 BucketT *TheBucket) { | 
 |     incrementEpoch(); | 
 |  | 
 |     // If the load of the hash table is more than 3/4, or if fewer than 1/8 of | 
 |     // the buckets are empty (meaning that many are filled with tombstones), | 
 |     // grow the table. | 
 |     // | 
 |     // The later case is tricky.  For example, if we had one empty bucket with | 
 |     // tons of tombstones, failing lookups (e.g. for insertion) would have to | 
 |     // probe almost the entire table until it found the empty bucket.  If the | 
 |     // table completely filled with tombstones, no lookup would ever succeed, | 
 |     // causing infinite loops in lookup. | 
 |     unsigned NewNumEntries = getNumEntries() + 1; | 
 |     unsigned NumBuckets = getNumBuckets(); | 
 |     if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) { | 
 |       this->grow(NumBuckets * 2); | 
 |       LookupBucketFor(Lookup, TheBucket); | 
 |       NumBuckets = getNumBuckets(); | 
 |     } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <= | 
 |                              NumBuckets/8)) { | 
 |       this->grow(NumBuckets); | 
 |       LookupBucketFor(Lookup, TheBucket); | 
 |     } | 
 |     assert(TheBucket); | 
 |  | 
 |     // Only update the state after we've grown our bucket space appropriately | 
 |     // so that when growing buckets we have self-consistent entry count. | 
 |     incrementNumEntries(); | 
 |  | 
 |     // If we are writing over a tombstone, remember this. | 
 |     const KeyT EmptyKey = getEmptyKey(); | 
 |     if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey)) | 
 |       decrementNumTombstones(); | 
 |  | 
 |     return TheBucket; | 
 |   } | 
 |  | 
 |   /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in | 
 |   /// FoundBucket.  If the bucket contains the key and a value, this returns | 
 |   /// true, otherwise it returns a bucket with an empty marker or tombstone and | 
 |   /// returns false. | 
 |   template<typename LookupKeyT> | 
 |   bool LookupBucketFor(const LookupKeyT &Val, | 
 |                        const BucketT *&FoundBucket) const { | 
 |     const BucketT *BucketsPtr = getBuckets(); | 
 |     const unsigned NumBuckets = getNumBuckets(); | 
 |  | 
 |     if (NumBuckets == 0) { | 
 |       FoundBucket = nullptr; | 
 |       return false; | 
 |     } | 
 |  | 
 |     // FoundTombstone - Keep track of whether we find a tombstone while probing. | 
 |     const BucketT *FoundTombstone = nullptr; | 
 |     const KeyT EmptyKey = getEmptyKey(); | 
 |     const KeyT TombstoneKey = getTombstoneKey(); | 
 |     assert(!KeyInfoT::isEqual(Val, EmptyKey) && | 
 |            !KeyInfoT::isEqual(Val, TombstoneKey) && | 
 |            "Empty/Tombstone value shouldn't be inserted into map!"); | 
 |  | 
 |     unsigned BucketNo = getHashValue(Val) & (NumBuckets-1); | 
 |     unsigned ProbeAmt = 1; | 
 |     while (true) { | 
 |       const BucketT *ThisBucket = BucketsPtr + BucketNo; | 
 |       // Found Val's bucket?  If so, return it. | 
 |       if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) { | 
 |         FoundBucket = ThisBucket; | 
 |         return true; | 
 |       } | 
 |  | 
 |       // If we found an empty bucket, the key doesn't exist in the set. | 
 |       // Insert it and return the default value. | 
 |       if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) { | 
 |         // If we've already seen a tombstone while probing, fill it in instead | 
 |         // of the empty bucket we eventually probed to. | 
 |         FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket; | 
 |         return false; | 
 |       } | 
 |  | 
 |       // If this is a tombstone, remember it.  If Val ends up not in the map, we | 
 |       // prefer to return it than something that would require more probing. | 
 |       if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) && | 
 |           !FoundTombstone) | 
 |         FoundTombstone = ThisBucket;  // Remember the first tombstone found. | 
 |  | 
 |       // Otherwise, it's a hash collision or a tombstone, continue quadratic | 
 |       // probing. | 
 |       BucketNo += ProbeAmt++; | 
 |       BucketNo &= (NumBuckets-1); | 
 |     } | 
 |   } | 
 |  | 
 |   template <typename LookupKeyT> | 
 |   bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) { | 
 |     const BucketT *ConstFoundBucket; | 
 |     bool Result = const_cast<const DenseMapBase *>(this) | 
 |       ->LookupBucketFor(Val, ConstFoundBucket); | 
 |     FoundBucket = const_cast<BucketT *>(ConstFoundBucket); | 
 |     return Result; | 
 |   } | 
 |  | 
 | public: | 
 |   /// Return the approximate size (in bytes) of the actual map. | 
 |   /// This is just the raw memory used by DenseMap. | 
 |   /// If entries are pointers to objects, the size of the referenced objects | 
 |   /// are not included. | 
 |   size_t getMemorySize() const { | 
 |     return getNumBuckets() * sizeof(BucketT); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename KeyT, typename ValueT, | 
 |           typename KeyInfoT = DenseMapInfo<KeyT>, | 
 |           typename BucketT = detail::DenseMapPair<KeyT, ValueT>> | 
 | class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>, | 
 |                                      KeyT, ValueT, KeyInfoT, BucketT> { | 
 |   // Lift some types from the dependent base class into this class for | 
 |   // simplicity of referring to them. | 
 |   typedef DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT> BaseT; | 
 |   friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>; | 
 |  | 
 |   BucketT *Buckets; | 
 |   unsigned NumEntries; | 
 |   unsigned NumTombstones; | 
 |   unsigned NumBuckets; | 
 |  | 
 | public: | 
 |   /// Create a DenseMap wth an optional \p InitialReserve that guarantee that | 
 |   /// this number of elements can be inserted in the map without grow() | 
 |   explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); } | 
 |  | 
 |   DenseMap(const DenseMap &other) : BaseT() { | 
 |     init(0); | 
 |     copyFrom(other); | 
 |   } | 
 |  | 
 |   DenseMap(DenseMap &&other) : BaseT() { | 
 |     init(0); | 
 |     swap(other); | 
 |   } | 
 |  | 
 |   template<typename InputIt> | 
 |   DenseMap(const InputIt &I, const InputIt &E) { | 
 |     init(std::distance(I, E)); | 
 |     this->insert(I, E); | 
 |   } | 
 |  | 
 |   ~DenseMap() { | 
 |     this->destroyAll(); | 
 |     operator delete(Buckets); | 
 |   } | 
 |  | 
 |   void swap(DenseMap& RHS) { | 
 |     this->incrementEpoch(); | 
 |     RHS.incrementEpoch(); | 
 |     std::swap(Buckets, RHS.Buckets); | 
 |     std::swap(NumEntries, RHS.NumEntries); | 
 |     std::swap(NumTombstones, RHS.NumTombstones); | 
 |     std::swap(NumBuckets, RHS.NumBuckets); | 
 |   } | 
 |  | 
 |   DenseMap& operator=(const DenseMap& other) { | 
 |     if (&other != this) | 
 |       copyFrom(other); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   DenseMap& operator=(DenseMap &&other) { | 
 |     this->destroyAll(); | 
 |     operator delete(Buckets); | 
 |     init(0); | 
 |     swap(other); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   void copyFrom(const DenseMap& other) { | 
 |     this->destroyAll(); | 
 |     operator delete(Buckets); | 
 |     if (allocateBuckets(other.NumBuckets)) { | 
 |       this->BaseT::copyFrom(other); | 
 |     } else { | 
 |       NumEntries = 0; | 
 |       NumTombstones = 0; | 
 |     } | 
 |   } | 
 |  | 
 |   void init(unsigned InitNumEntries) { | 
 |     auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries); | 
 |     if (allocateBuckets(InitBuckets)) { | 
 |       this->BaseT::initEmpty(); | 
 |     } else { | 
 |       NumEntries = 0; | 
 |       NumTombstones = 0; | 
 |     } | 
 |   } | 
 |  | 
 |   void grow(unsigned AtLeast) { | 
 |     unsigned OldNumBuckets = NumBuckets; | 
 |     BucketT *OldBuckets = Buckets; | 
 |  | 
 |     allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1)))); | 
 |     assert(Buckets); | 
 |     if (!OldBuckets) { | 
 |       this->BaseT::initEmpty(); | 
 |       return; | 
 |     } | 
 |  | 
 |     this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets); | 
 |  | 
 |     // Free the old table. | 
 |     operator delete(OldBuckets); | 
 |   } | 
 |  | 
 |   void shrink_and_clear() { | 
 |     unsigned OldNumEntries = NumEntries; | 
 |     this->destroyAll(); | 
 |  | 
 |     // Reduce the number of buckets. | 
 |     unsigned NewNumBuckets = 0; | 
 |     if (OldNumEntries) | 
 |       NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1)); | 
 |     if (NewNumBuckets == NumBuckets) { | 
 |       this->BaseT::initEmpty(); | 
 |       return; | 
 |     } | 
 |  | 
 |     operator delete(Buckets); | 
 |     init(NewNumBuckets); | 
 |   } | 
 |  | 
 | private: | 
 |   unsigned getNumEntries() const { | 
 |     return NumEntries; | 
 |   } | 
 |   void setNumEntries(unsigned Num) { | 
 |     NumEntries = Num; | 
 |   } | 
 |  | 
 |   unsigned getNumTombstones() const { | 
 |     return NumTombstones; | 
 |   } | 
 |   void setNumTombstones(unsigned Num) { | 
 |     NumTombstones = Num; | 
 |   } | 
 |  | 
 |   BucketT *getBuckets() const { | 
 |     return Buckets; | 
 |   } | 
 |  | 
 |   unsigned getNumBuckets() const { | 
 |     return NumBuckets; | 
 |   } | 
 |  | 
 |   bool allocateBuckets(unsigned Num) { | 
 |     NumBuckets = Num; | 
 |     if (NumBuckets == 0) { | 
 |       Buckets = nullptr; | 
 |       return false; | 
 |     } | 
 |  | 
 |     Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets)); | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4, | 
 |           typename KeyInfoT = DenseMapInfo<KeyT>, | 
 |           typename BucketT = detail::DenseMapPair<KeyT, ValueT>> | 
 | class SmallDenseMap | 
 |     : public DenseMapBase< | 
 |           SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT, | 
 |           ValueT, KeyInfoT, BucketT> { | 
 |   // Lift some types from the dependent base class into this class for | 
 |   // simplicity of referring to them. | 
 |   typedef DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT> BaseT; | 
 |   friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>; | 
 |   static_assert(isPowerOf2_64(InlineBuckets), | 
 |                 "InlineBuckets must be a power of 2."); | 
 |  | 
 |   unsigned Small : 1; | 
 |   unsigned NumEntries : 31; | 
 |   unsigned NumTombstones; | 
 |  | 
 |   struct LargeRep { | 
 |     BucketT *Buckets; | 
 |     unsigned NumBuckets; | 
 |   }; | 
 |  | 
 |   /// A "union" of an inline bucket array and the struct representing | 
 |   /// a large bucket. This union will be discriminated by the 'Small' bit. | 
 |   AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage; | 
 |  | 
 | public: | 
 |   explicit SmallDenseMap(unsigned NumInitBuckets = 0) { | 
 |     init(NumInitBuckets); | 
 |   } | 
 |  | 
 |   SmallDenseMap(const SmallDenseMap &other) : BaseT() { | 
 |     init(0); | 
 |     copyFrom(other); | 
 |   } | 
 |  | 
 |   SmallDenseMap(SmallDenseMap &&other) : BaseT() { | 
 |     init(0); | 
 |     swap(other); | 
 |   } | 
 |  | 
 |   template<typename InputIt> | 
 |   SmallDenseMap(const InputIt &I, const InputIt &E) { | 
 |     init(NextPowerOf2(std::distance(I, E))); | 
 |     this->insert(I, E); | 
 |   } | 
 |  | 
 |   ~SmallDenseMap() { | 
 |     this->destroyAll(); | 
 |     deallocateBuckets(); | 
 |   } | 
 |  | 
 |   void swap(SmallDenseMap& RHS) { | 
 |     unsigned TmpNumEntries = RHS.NumEntries; | 
 |     RHS.NumEntries = NumEntries; | 
 |     NumEntries = TmpNumEntries; | 
 |     std::swap(NumTombstones, RHS.NumTombstones); | 
 |  | 
 |     const KeyT EmptyKey = this->getEmptyKey(); | 
 |     const KeyT TombstoneKey = this->getTombstoneKey(); | 
 |     if (Small && RHS.Small) { | 
 |       // If we're swapping inline bucket arrays, we have to cope with some of | 
 |       // the tricky bits of DenseMap's storage system: the buckets are not | 
 |       // fully initialized. Thus we swap every key, but we may have | 
 |       // a one-directional move of the value. | 
 |       for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { | 
 |         BucketT *LHSB = &getInlineBuckets()[i], | 
 |                 *RHSB = &RHS.getInlineBuckets()[i]; | 
 |         bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) && | 
 |                             !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey)); | 
 |         bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) && | 
 |                             !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey)); | 
 |         if (hasLHSValue && hasRHSValue) { | 
 |           // Swap together if we can... | 
 |           std::swap(*LHSB, *RHSB); | 
 |           continue; | 
 |         } | 
 |         // Swap separately and handle any assymetry. | 
 |         std::swap(LHSB->getFirst(), RHSB->getFirst()); | 
 |         if (hasLHSValue) { | 
 |           ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond())); | 
 |           LHSB->getSecond().~ValueT(); | 
 |         } else if (hasRHSValue) { | 
 |           ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond())); | 
 |           RHSB->getSecond().~ValueT(); | 
 |         } | 
 |       } | 
 |       return; | 
 |     } | 
 |     if (!Small && !RHS.Small) { | 
 |       std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets); | 
 |       std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets); | 
 |       return; | 
 |     } | 
 |  | 
 |     SmallDenseMap &SmallSide = Small ? *this : RHS; | 
 |     SmallDenseMap &LargeSide = Small ? RHS : *this; | 
 |  | 
 |     // First stash the large side's rep and move the small side across. | 
 |     LargeRep TmpRep = std::move(*LargeSide.getLargeRep()); | 
 |     LargeSide.getLargeRep()->~LargeRep(); | 
 |     LargeSide.Small = true; | 
 |     // This is similar to the standard move-from-old-buckets, but the bucket | 
 |     // count hasn't actually rotated in this case. So we have to carefully | 
 |     // move construct the keys and values into their new locations, but there | 
 |     // is no need to re-hash things. | 
 |     for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { | 
 |       BucketT *NewB = &LargeSide.getInlineBuckets()[i], | 
 |               *OldB = &SmallSide.getInlineBuckets()[i]; | 
 |       ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst())); | 
 |       OldB->getFirst().~KeyT(); | 
 |       if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) && | 
 |           !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) { | 
 |         ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond())); | 
 |         OldB->getSecond().~ValueT(); | 
 |       } | 
 |     } | 
 |  | 
 |     // The hard part of moving the small buckets across is done, just move | 
 |     // the TmpRep into its new home. | 
 |     SmallSide.Small = false; | 
 |     new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep)); | 
 |   } | 
 |  | 
 |   SmallDenseMap& operator=(const SmallDenseMap& other) { | 
 |     if (&other != this) | 
 |       copyFrom(other); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   SmallDenseMap& operator=(SmallDenseMap &&other) { | 
 |     this->destroyAll(); | 
 |     deallocateBuckets(); | 
 |     init(0); | 
 |     swap(other); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   void copyFrom(const SmallDenseMap& other) { | 
 |     this->destroyAll(); | 
 |     deallocateBuckets(); | 
 |     Small = true; | 
 |     if (other.getNumBuckets() > InlineBuckets) { | 
 |       Small = false; | 
 |       new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets())); | 
 |     } | 
 |     this->BaseT::copyFrom(other); | 
 |   } | 
 |  | 
 |   void init(unsigned InitBuckets) { | 
 |     Small = true; | 
 |     if (InitBuckets > InlineBuckets) { | 
 |       Small = false; | 
 |       new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets)); | 
 |     } | 
 |     this->BaseT::initEmpty(); | 
 |   } | 
 |  | 
 |   void grow(unsigned AtLeast) { | 
 |     if (AtLeast >= InlineBuckets) | 
 |       AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1)); | 
 |  | 
 |     if (Small) { | 
 |       if (AtLeast < InlineBuckets) | 
 |         return; // Nothing to do. | 
 |  | 
 |       // First move the inline buckets into a temporary storage. | 
 |       AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage; | 
 |       BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer); | 
 |       BucketT *TmpEnd = TmpBegin; | 
 |  | 
 |       // Loop over the buckets, moving non-empty, non-tombstones into the | 
 |       // temporary storage. Have the loop move the TmpEnd forward as it goes. | 
 |       const KeyT EmptyKey = this->getEmptyKey(); | 
 |       const KeyT TombstoneKey = this->getTombstoneKey(); | 
 |       for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) { | 
 |         if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && | 
 |             !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { | 
 |           assert(size_t(TmpEnd - TmpBegin) < InlineBuckets && | 
 |                  "Too many inline buckets!"); | 
 |           ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst())); | 
 |           ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond())); | 
 |           ++TmpEnd; | 
 |           P->getSecond().~ValueT(); | 
 |         } | 
 |         P->getFirst().~KeyT(); | 
 |       } | 
 |  | 
 |       // Now make this map use the large rep, and move all the entries back | 
 |       // into it. | 
 |       Small = false; | 
 |       new (getLargeRep()) LargeRep(allocateBuckets(AtLeast)); | 
 |       this->moveFromOldBuckets(TmpBegin, TmpEnd); | 
 |       return; | 
 |     } | 
 |  | 
 |     LargeRep OldRep = std::move(*getLargeRep()); | 
 |     getLargeRep()->~LargeRep(); | 
 |     if (AtLeast <= InlineBuckets) { | 
 |       Small = true; | 
 |     } else { | 
 |       new (getLargeRep()) LargeRep(allocateBuckets(AtLeast)); | 
 |     } | 
 |  | 
 |     this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets); | 
 |  | 
 |     // Free the old table. | 
 |     operator delete(OldRep.Buckets); | 
 |   } | 
 |  | 
 |   void shrink_and_clear() { | 
 |     unsigned OldSize = this->size(); | 
 |     this->destroyAll(); | 
 |  | 
 |     // Reduce the number of buckets. | 
 |     unsigned NewNumBuckets = 0; | 
 |     if (OldSize) { | 
 |       NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1); | 
 |       if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u) | 
 |         NewNumBuckets = 64; | 
 |     } | 
 |     if ((Small && NewNumBuckets <= InlineBuckets) || | 
 |         (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) { | 
 |       this->BaseT::initEmpty(); | 
 |       return; | 
 |     } | 
 |  | 
 |     deallocateBuckets(); | 
 |     init(NewNumBuckets); | 
 |   } | 
 |  | 
 | private: | 
 |   unsigned getNumEntries() const { | 
 |     return NumEntries; | 
 |   } | 
 |   void setNumEntries(unsigned Num) { | 
 |     // NumEntries is hardcoded to be 31 bits wide. | 
 |     assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries"); | 
 |     NumEntries = Num; | 
 |   } | 
 |  | 
 |   unsigned getNumTombstones() const { | 
 |     return NumTombstones; | 
 |   } | 
 |   void setNumTombstones(unsigned Num) { | 
 |     NumTombstones = Num; | 
 |   } | 
 |  | 
 |   const BucketT *getInlineBuckets() const { | 
 |     assert(Small); | 
 |     // Note that this cast does not violate aliasing rules as we assert that | 
 |     // the memory's dynamic type is the small, inline bucket buffer, and the | 
 |     // 'storage.buffer' static type is 'char *'. | 
 |     return reinterpret_cast<const BucketT *>(storage.buffer); | 
 |   } | 
 |   BucketT *getInlineBuckets() { | 
 |     return const_cast<BucketT *>( | 
 |       const_cast<const SmallDenseMap *>(this)->getInlineBuckets()); | 
 |   } | 
 |   const LargeRep *getLargeRep() const { | 
 |     assert(!Small); | 
 |     // Note, same rule about aliasing as with getInlineBuckets. | 
 |     return reinterpret_cast<const LargeRep *>(storage.buffer); | 
 |   } | 
 |   LargeRep *getLargeRep() { | 
 |     return const_cast<LargeRep *>( | 
 |       const_cast<const SmallDenseMap *>(this)->getLargeRep()); | 
 |   } | 
 |  | 
 |   const BucketT *getBuckets() const { | 
 |     return Small ? getInlineBuckets() : getLargeRep()->Buckets; | 
 |   } | 
 |   BucketT *getBuckets() { | 
 |     return const_cast<BucketT *>( | 
 |       const_cast<const SmallDenseMap *>(this)->getBuckets()); | 
 |   } | 
 |   unsigned getNumBuckets() const { | 
 |     return Small ? InlineBuckets : getLargeRep()->NumBuckets; | 
 |   } | 
 |  | 
 |   void deallocateBuckets() { | 
 |     if (Small) | 
 |       return; | 
 |  | 
 |     operator delete(getLargeRep()->Buckets); | 
 |     getLargeRep()->~LargeRep(); | 
 |   } | 
 |  | 
 |   LargeRep allocateBuckets(unsigned Num) { | 
 |     assert(Num > InlineBuckets && "Must allocate more buckets than are inline"); | 
 |     LargeRep Rep = { | 
 |       static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num | 
 |     }; | 
 |     return Rep; | 
 |   } | 
 | }; | 
 |  | 
 | template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket, | 
 |           bool IsConst> | 
 | class DenseMapIterator : DebugEpochBase::HandleBase { | 
 |   typedef DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true> ConstIterator; | 
 |   friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>; | 
 |   friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>; | 
 |  | 
 | public: | 
 |   typedef ptrdiff_t difference_type; | 
 |   typedef typename std::conditional<IsConst, const Bucket, Bucket>::type | 
 |   value_type; | 
 |   typedef value_type *pointer; | 
 |   typedef value_type &reference; | 
 |   typedef std::forward_iterator_tag iterator_category; | 
 |  | 
 | private: | 
 |   pointer Ptr, End; | 
 |  | 
 | public: | 
 |   DenseMapIterator() : Ptr(nullptr), End(nullptr) {} | 
 |  | 
 |   DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch, | 
 |                    bool NoAdvance = false) | 
 |       : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) { | 
 |     assert(isHandleInSync() && "invalid construction!"); | 
 |     if (!NoAdvance) AdvancePastEmptyBuckets(); | 
 |   } | 
 |  | 
 |   // Converting ctor from non-const iterators to const iterators. SFINAE'd out | 
 |   // for const iterator destinations so it doesn't end up as a user defined copy | 
 |   // constructor. | 
 |   template <bool IsConstSrc, | 
 |             typename = typename std::enable_if<!IsConstSrc && IsConst>::type> | 
 |   DenseMapIterator( | 
 |       const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I) | 
 |       : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {} | 
 |  | 
 |   reference operator*() const { | 
 |     assert(isHandleInSync() && "invalid iterator access!"); | 
 |     return *Ptr; | 
 |   } | 
 |   pointer operator->() const { | 
 |     assert(isHandleInSync() && "invalid iterator access!"); | 
 |     return Ptr; | 
 |   } | 
 |  | 
 |   bool operator==(const ConstIterator &RHS) const { | 
 |     assert((!Ptr || isHandleInSync()) && "handle not in sync!"); | 
 |     assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!"); | 
 |     assert(getEpochAddress() == RHS.getEpochAddress() && | 
 |            "comparing incomparable iterators!"); | 
 |     return Ptr == RHS.Ptr; | 
 |   } | 
 |   bool operator!=(const ConstIterator &RHS) const { | 
 |     assert((!Ptr || isHandleInSync()) && "handle not in sync!"); | 
 |     assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!"); | 
 |     assert(getEpochAddress() == RHS.getEpochAddress() && | 
 |            "comparing incomparable iterators!"); | 
 |     return Ptr != RHS.Ptr; | 
 |   } | 
 |  | 
 |   inline DenseMapIterator& operator++() {  // Preincrement | 
 |     assert(isHandleInSync() && "invalid iterator access!"); | 
 |     ++Ptr; | 
 |     AdvancePastEmptyBuckets(); | 
 |     return *this; | 
 |   } | 
 |   DenseMapIterator operator++(int) {  // Postincrement | 
 |     assert(isHandleInSync() && "invalid iterator access!"); | 
 |     DenseMapIterator tmp = *this; ++*this; return tmp; | 
 |   } | 
 |  | 
 | private: | 
 |   void AdvancePastEmptyBuckets() { | 
 |     const KeyT Empty = KeyInfoT::getEmptyKey(); | 
 |     const KeyT Tombstone = KeyInfoT::getTombstoneKey(); | 
 |  | 
 |     while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) || | 
 |                           KeyInfoT::isEqual(Ptr->getFirst(), Tombstone))) | 
 |       ++Ptr; | 
 |   } | 
 | }; | 
 |  | 
 | template<typename KeyT, typename ValueT, typename KeyInfoT> | 
 | static inline size_t | 
 | capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) { | 
 |   return X.getMemorySize(); | 
 | } | 
 |  | 
 | } // end namespace llvm | 
 |  | 
 | #endif // LLVM_ADT_DENSEMAP_H |