| //===-- SIInstructions.td - SI Instruction Defintions ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // This file was originally auto-generated from a GPU register header file and |
| // all the instruction definitions were originally commented out. Instructions |
| // that are not yet supported remain commented out. |
| //===----------------------------------------------------------------------===// |
| |
| class GCNPat<dag pattern, dag result> : Pat<pattern, result>, GCNPredicateControl { |
| let SubtargetPredicate = isGCN; |
| } |
| |
| include "VOPInstructions.td" |
| include "SOPInstructions.td" |
| include "SMInstructions.td" |
| include "FLATInstructions.td" |
| include "BUFInstructions.td" |
| |
| //===----------------------------------------------------------------------===// |
| // EXP Instructions |
| //===----------------------------------------------------------------------===// |
| |
| defm EXP : EXP_m<0, AMDGPUexport>; |
| defm EXP_DONE : EXP_m<1, AMDGPUexport_done>; |
| |
| //===----------------------------------------------------------------------===// |
| // VINTRP Instructions |
| //===----------------------------------------------------------------------===// |
| |
| // Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI) |
| def VINTRPDst : VINTRPDstOperand <VGPR_32>; |
| |
| let Uses = [M0, EXEC] in { |
| |
| // FIXME: Specify SchedRW for VINTRP insturctions. |
| |
| multiclass V_INTERP_P1_F32_m : VINTRP_m < |
| 0x00000000, |
| (outs VINTRPDst:$vdst), |
| (ins VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan), |
| "v_interp_p1_f32$vdst, $vsrc, $attr$attrchan", |
| [(set f32:$vdst, (AMDGPUinterp_p1 f32:$vsrc, (i32 imm:$attrchan), |
| (i32 imm:$attr)))] |
| >; |
| |
| let OtherPredicates = [has32BankLDS] in { |
| |
| defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m; |
| |
| } // End OtherPredicates = [has32BankLDS] |
| |
| let OtherPredicates = [has16BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in { |
| |
| defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m; |
| |
| } // End OtherPredicates = [has32BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 |
| |
| let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in { |
| |
| defm V_INTERP_P2_F32 : VINTRP_m < |
| 0x00000001, |
| (outs VINTRPDst:$vdst), |
| (ins VGPR_32:$src0, VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan), |
| "v_interp_p2_f32$vdst, $vsrc, $attr$attrchan", |
| [(set f32:$vdst, (AMDGPUinterp_p2 f32:$src0, f32:$vsrc, (i32 imm:$attrchan), |
| (i32 imm:$attr)))]>; |
| |
| } // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst" |
| |
| defm V_INTERP_MOV_F32 : VINTRP_m < |
| 0x00000002, |
| (outs VINTRPDst:$vdst), |
| (ins InterpSlot:$vsrc, Attr:$attr, AttrChan:$attrchan), |
| "v_interp_mov_f32$vdst, $vsrc, $attr$attrchan", |
| [(set f32:$vdst, (AMDGPUinterp_mov (i32 imm:$vsrc), (i32 imm:$attrchan), |
| (i32 imm:$attr)))]>; |
| |
| } // End Uses = [M0, EXEC] |
| |
| //===----------------------------------------------------------------------===// |
| // Pseudo Instructions |
| //===----------------------------------------------------------------------===// |
| def ATOMIC_FENCE : SPseudoInstSI< |
| (outs), (ins i32imm:$ordering, i32imm:$scope), |
| [(atomic_fence (i32 imm:$ordering), (i32 imm:$scope))], |
| "ATOMIC_FENCE $ordering, $scope"> { |
| let hasSideEffects = 1; |
| let maybeAtomic = 1; |
| } |
| |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in { |
| |
| // For use in patterns |
| def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst), |
| (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> { |
| let isPseudo = 1; |
| let isCodeGenOnly = 1; |
| let usesCustomInserter = 1; |
| } |
| |
| // 64-bit vector move instruction. This is mainly used by the |
| // SIFoldOperands pass to enable folding of inline immediates. |
| def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst), |
| (ins VSrc_b64:$src0)>; |
| |
| // Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the |
| // WQM pass processes it. |
| def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; |
| |
| // Pseudoinstruction for @llvm.amdgcn.wwm. It is turned into a copy post-RA, so |
| // that the @earlyclobber is respected. The @earlyclobber is to make sure that |
| // the instruction that defines $src0 (which is run in WWM) doesn't |
| // accidentally clobber inactive channels of $vdst. |
| let Constraints = "@earlyclobber $vdst" in { |
| def WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; |
| } |
| |
| } // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] |
| |
| def EXIT_WWM : SPseudoInstSI <(outs SReg_64:$sdst), (ins SReg_64:$src0)> { |
| let hasSideEffects = 0; |
| let mayLoad = 0; |
| let mayStore = 0; |
| } |
| |
| // Invert the exec mask and overwrite the inactive lanes of dst with inactive, |
| // restoring it after we're done. |
| def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst), |
| (ins VGPR_32: $src, VSrc_b32:$inactive), |
| [(set i32:$vdst, (int_amdgcn_set_inactive i32:$src, i32:$inactive))]> { |
| let Constraints = "$src = $vdst"; |
| } |
| |
| def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst), |
| (ins VReg_64: $src, VSrc_b64:$inactive), |
| [(set i64:$vdst, (int_amdgcn_set_inactive i64:$src, i64:$inactive))]> { |
| let Constraints = "$src = $vdst"; |
| } |
| |
| |
| let usesCustomInserter = 1, Defs = [SCC] in { |
| def S_ADD_U64_PSEUDO : SPseudoInstSI < |
| (outs SReg_64:$vdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), |
| [(set SReg_64:$vdst, (add i64:$src0, i64:$src1))] |
| >; |
| |
| def S_SUB_U64_PSEUDO : SPseudoInstSI < |
| (outs SReg_64:$vdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), |
| [(set SReg_64:$vdst, (sub i64:$src0, i64:$src1))] |
| >; |
| |
| def S_ADD_U64_CO_PSEUDO : SPseudoInstSI < |
| (outs SReg_64:$vdst, VOPDstS64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1) |
| >; |
| |
| def S_SUB_U64_CO_PSEUDO : SPseudoInstSI < |
| (outs SReg_64:$vdst, VOPDstS64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1) |
| >; |
| |
| } // End usesCustomInserter = 1, Defs = [SCC] |
| |
| let usesCustomInserter = 1, SALU = 1 in { |
| def GET_GROUPSTATICSIZE : PseudoInstSI <(outs SReg_32:$sdst), (ins), |
| [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>; |
| } // End let usesCustomInserter = 1, SALU = 1 |
| |
| def S_MOV_B64_term : PseudoInstSI<(outs SReg_64:$dst), |
| (ins SSrc_b64:$src0)> { |
| let SALU = 1; |
| let isAsCheapAsAMove = 1; |
| let isTerminator = 1; |
| } |
| |
| def S_XOR_B64_term : PseudoInstSI<(outs SReg_64:$dst), |
| (ins SSrc_b64:$src0, SSrc_b64:$src1)> { |
| let SALU = 1; |
| let isAsCheapAsAMove = 1; |
| let isTerminator = 1; |
| let Defs = [SCC]; |
| } |
| |
| def S_ANDN2_B64_term : PseudoInstSI<(outs SReg_64:$dst), |
| (ins SSrc_b64:$src0, SSrc_b64:$src1)> { |
| let SALU = 1; |
| let isAsCheapAsAMove = 1; |
| let isTerminator = 1; |
| } |
| |
| def WAVE_BARRIER : SPseudoInstSI<(outs), (ins), |
| [(int_amdgcn_wave_barrier)]> { |
| let SchedRW = []; |
| let hasNoSchedulingInfo = 1; |
| let hasSideEffects = 1; |
| let mayLoad = 1; |
| let mayStore = 1; |
| let isBarrier = 1; |
| let isConvergent = 1; |
| let FixedSize = 1; |
| let Size = 0; |
| } |
| |
| // SI pseudo instructions. These are used by the CFG structurizer pass |
| // and should be lowered to ISA instructions prior to codegen. |
| |
| // Dummy terminator instruction to use after control flow instructions |
| // replaced with exec mask operations. |
| def SI_MASK_BRANCH : VPseudoInstSI < |
| (outs), (ins brtarget:$target)> { |
| let isBranch = 0; |
| let isTerminator = 1; |
| let isBarrier = 0; |
| let SchedRW = []; |
| let hasNoSchedulingInfo = 1; |
| let FixedSize = 1; |
| let Size = 0; |
| } |
| |
| let isTerminator = 1 in { |
| |
| let OtherPredicates = [EnableLateCFGStructurize] in { |
| def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI < |
| (outs), |
| (ins SReg_64:$vcc, brtarget:$target), |
| [(brcond i1:$vcc, bb:$target)]> { |
| let Size = 12; |
| } |
| } |
| |
| def SI_IF: CFPseudoInstSI < |
| (outs SReg_64:$dst), (ins SReg_64:$vcc, brtarget:$target), |
| [(set i64:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> { |
| let Constraints = ""; |
| let Size = 12; |
| let hasSideEffects = 1; |
| } |
| |
| def SI_ELSE : CFPseudoInstSI < |
| (outs SReg_64:$dst), |
| (ins SReg_64:$src, brtarget:$target, i1imm:$execfix), [], 1, 1> { |
| let Size = 12; |
| let hasSideEffects = 1; |
| } |
| |
| def SI_LOOP : CFPseudoInstSI < |
| (outs), (ins SReg_64:$saved, brtarget:$target), |
| [(AMDGPUloop i64:$saved, bb:$target)], 1, 1> { |
| let Size = 8; |
| let isBranch = 0; |
| let hasSideEffects = 1; |
| } |
| |
| } // End isTerminator = 1 |
| |
| def SI_END_CF : CFPseudoInstSI < |
| (outs), (ins SReg_64:$saved), |
| [(int_amdgcn_end_cf i64:$saved)], 1, 1> { |
| let Size = 4; |
| let isAsCheapAsAMove = 1; |
| let isReMaterializable = 1; |
| let hasSideEffects = 1; |
| let mayLoad = 1; // FIXME: Should not need memory flags |
| let mayStore = 1; |
| } |
| |
| def SI_BREAK : CFPseudoInstSI < |
| (outs SReg_64:$dst), (ins SReg_64:$src), |
| [(set i64:$dst, (int_amdgcn_break i64:$src))], 1> { |
| let Size = 4; |
| let isAsCheapAsAMove = 1; |
| let isReMaterializable = 1; |
| } |
| |
| def SI_IF_BREAK : CFPseudoInstSI < |
| (outs SReg_64:$dst), (ins SReg_64:$vcc, SReg_64:$src), |
| [(set i64:$dst, (int_amdgcn_if_break i1:$vcc, i64:$src))]> { |
| let Size = 4; |
| let isAsCheapAsAMove = 1; |
| let isReMaterializable = 1; |
| } |
| |
| def SI_ELSE_BREAK : CFPseudoInstSI < |
| (outs SReg_64:$dst), (ins SReg_64:$src0, SReg_64:$src1), |
| [(set i64:$dst, (int_amdgcn_else_break i64:$src0, i64:$src1))]> { |
| let Size = 4; |
| let isAsCheapAsAMove = 1; |
| let isReMaterializable = 1; |
| } |
| |
| let Uses = [EXEC] in { |
| |
| multiclass PseudoInstKill <dag ins> { |
| // Even though this pseudo can usually be expanded without an SCC def, we |
| // conservatively assume that it has an SCC def, both because it is sometimes |
| // required in degenerate cases (when V_CMPX cannot be used due to constant |
| // bus limitations) and because it allows us to avoid having to track SCC |
| // liveness across basic blocks. |
| let Defs = [EXEC,VCC,SCC] in |
| def _PSEUDO : PseudoInstSI <(outs), ins> { |
| let isConvergent = 1; |
| let usesCustomInserter = 1; |
| } |
| |
| let Defs = [EXEC,VCC,SCC] in |
| def _TERMINATOR : SPseudoInstSI <(outs), ins> { |
| let isTerminator = 1; |
| } |
| } |
| |
| defm SI_KILL_I1 : PseudoInstKill <(ins SSrc_b64:$src, i1imm:$killvalue)>; |
| defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>; |
| |
| let Defs = [EXEC,VCC] in |
| def SI_ILLEGAL_COPY : SPseudoInstSI < |
| (outs unknown:$dst), (ins unknown:$src), |
| [], " ; illegal copy $src to $dst">; |
| |
| } // End Uses = [EXEC], Defs = [EXEC,VCC] |
| |
| // Branch on undef scc. Used to avoid intermediate copy from |
| // IMPLICIT_DEF to SCC. |
| def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins sopp_brtarget:$simm16)> { |
| let isTerminator = 1; |
| let usesCustomInserter = 1; |
| } |
| |
| def SI_PS_LIVE : PseudoInstSI < |
| (outs SReg_64:$dst), (ins), |
| [(set i1:$dst, (int_amdgcn_ps_live))]> { |
| let SALU = 1; |
| } |
| |
| def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins), |
| [(int_amdgcn_unreachable)], |
| "; divergent unreachable"> { |
| let Size = 0; |
| let hasNoSchedulingInfo = 1; |
| let FixedSize = 1; |
| } |
| |
| // Used as an isel pseudo to directly emit initialization with an |
| // s_mov_b32 rather than a copy of another initialized |
| // register. MachineCSE skips copies, and we don't want to have to |
| // fold operands before it runs. |
| def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> { |
| let Defs = [M0]; |
| let usesCustomInserter = 1; |
| let isAsCheapAsAMove = 1; |
| let isReMaterializable = 1; |
| } |
| |
| def SI_INIT_EXEC : SPseudoInstSI < |
| (outs), (ins i64imm:$src), []> { |
| let Defs = [EXEC]; |
| let usesCustomInserter = 1; |
| let isAsCheapAsAMove = 1; |
| } |
| |
| def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI < |
| (outs), (ins SSrc_b32:$input, i32imm:$shift), []> { |
| let Defs = [EXEC]; |
| let usesCustomInserter = 1; |
| } |
| |
| // Return for returning shaders to a shader variant epilog. |
| def SI_RETURN_TO_EPILOG : SPseudoInstSI < |
| (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> { |
| let isTerminator = 1; |
| let isBarrier = 1; |
| let isReturn = 1; |
| let hasNoSchedulingInfo = 1; |
| let DisableWQM = 1; |
| let FixedSize = 1; |
| } |
| |
| // Return for returning function calls. |
| def SI_RETURN : SPseudoInstSI < |
| (outs), (ins), [], |
| "; return"> { |
| let isTerminator = 1; |
| let isBarrier = 1; |
| let isReturn = 1; |
| let SchedRW = [WriteBranch]; |
| } |
| |
| // Return for returning function calls without output register. |
| // |
| // This version is only needed so we can fill in the output regiter in |
| // the custom inserter. |
| def SI_CALL_ISEL : SPseudoInstSI < |
| (outs), (ins SSrc_b64:$src0), [(AMDGPUcall i64:$src0)]> { |
| let Size = 4; |
| let isCall = 1; |
| let SchedRW = [WriteBranch]; |
| let usesCustomInserter = 1; |
| } |
| |
| // Wrapper around s_swappc_b64 with extra $callee parameter to track |
| // the called function after regalloc. |
| def SI_CALL : SPseudoInstSI < |
| (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> { |
| let Size = 4; |
| let isCall = 1; |
| let UseNamedOperandTable = 1; |
| let SchedRW = [WriteBranch]; |
| } |
| |
| // Tail call handling pseudo |
| def SI_TCRETURN_ISEL : SPseudoInstSI<(outs), |
| (ins SSrc_b64:$src0, i32imm:$fpdiff), |
| [(AMDGPUtc_return i64:$src0, i32:$fpdiff)]> { |
| let isCall = 1; |
| let isTerminator = 1; |
| let isReturn = 1; |
| let isBarrier = 1; |
| let SchedRW = [WriteBranch]; |
| let usesCustomInserter = 1; |
| } |
| |
| def SI_TCRETURN : SPseudoInstSI < |
| (outs), |
| (ins SSrc_b64:$src0, unknown:$callee, i32imm:$fpdiff)> { |
| let Size = 4; |
| let isCall = 1; |
| let isTerminator = 1; |
| let isReturn = 1; |
| let isBarrier = 1; |
| let UseNamedOperandTable = 1; |
| let SchedRW = [WriteBranch]; |
| } |
| |
| |
| def ADJCALLSTACKUP : SPseudoInstSI< |
| (outs), (ins i32imm:$amt0, i32imm:$amt1), |
| [(callseq_start timm:$amt0, timm:$amt1)], |
| "; adjcallstackup $amt0 $amt1"> { |
| let Size = 8; // Worst case. (s_add_u32 + constant) |
| let FixedSize = 1; |
| let hasSideEffects = 1; |
| let usesCustomInserter = 1; |
| } |
| |
| def ADJCALLSTACKDOWN : SPseudoInstSI< |
| (outs), (ins i32imm:$amt1, i32imm:$amt2), |
| [(callseq_end timm:$amt1, timm:$amt2)], |
| "; adjcallstackdown $amt1"> { |
| let Size = 8; // Worst case. (s_add_u32 + constant) |
| let hasSideEffects = 1; |
| let usesCustomInserter = 1; |
| } |
| |
| let Defs = [M0, EXEC, SCC], |
| UseNamedOperandTable = 1 in { |
| |
| class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI < |
| (outs VGPR_32:$vdst), |
| (ins rc:$src, VS_32:$idx, i32imm:$offset)> { |
| let usesCustomInserter = 1; |
| } |
| |
| class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI < |
| (outs rc:$vdst), |
| (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> { |
| let Constraints = "$src = $vdst"; |
| let usesCustomInserter = 1; |
| } |
| |
| // TODO: We can support indirect SGPR access. |
| def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>; |
| def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>; |
| def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>; |
| def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>; |
| def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>; |
| |
| def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>; |
| def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>; |
| def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>; |
| def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>; |
| def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>; |
| |
| } // End Uses = [EXEC], Defs = [M0, EXEC] |
| |
| multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> { |
| let UseNamedOperandTable = 1, SGPRSpill = 1, Uses = [EXEC] in { |
| def _SAVE : PseudoInstSI < |
| (outs), |
| (ins sgpr_class:$data, i32imm:$addr)> { |
| let mayStore = 1; |
| let mayLoad = 0; |
| } |
| |
| def _RESTORE : PseudoInstSI < |
| (outs sgpr_class:$data), |
| (ins i32imm:$addr)> { |
| let mayStore = 0; |
| let mayLoad = 1; |
| } |
| } // End UseNamedOperandTable = 1 |
| } |
| |
| // You cannot use M0 as the output of v_readlane_b32 instructions or |
| // use it in the sdata operand of SMEM instructions. We still need to |
| // be able to spill the physical register m0, so allow it for |
| // SI_SPILL_32_* instructions. |
| defm SI_SPILL_S32 : SI_SPILL_SGPR <SReg_32>; |
| defm SI_SPILL_S64 : SI_SPILL_SGPR <SReg_64>; |
| defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>; |
| defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>; |
| defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>; |
| |
| multiclass SI_SPILL_VGPR <RegisterClass vgpr_class> { |
| let UseNamedOperandTable = 1, VGPRSpill = 1, |
| SchedRW = [WriteVMEM] in { |
| def _SAVE : VPseudoInstSI < |
| (outs), |
| (ins vgpr_class:$vdata, i32imm:$vaddr, SReg_128:$srsrc, |
| SReg_32:$soffset, i32imm:$offset)> { |
| let mayStore = 1; |
| let mayLoad = 0; |
| // (2 * 4) + (8 * num_subregs) bytes maximum |
| let Size = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8); |
| } |
| |
| def _RESTORE : VPseudoInstSI < |
| (outs vgpr_class:$vdata), |
| (ins i32imm:$vaddr, SReg_128:$srsrc, SReg_32:$soffset, |
| i32imm:$offset)> { |
| let mayStore = 0; |
| let mayLoad = 1; |
| |
| // (2 * 4) + (8 * num_subregs) bytes maximum |
| let Size = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8); |
| } |
| } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM] |
| } |
| |
| defm SI_SPILL_V32 : SI_SPILL_VGPR <VGPR_32>; |
| defm SI_SPILL_V64 : SI_SPILL_VGPR <VReg_64>; |
| defm SI_SPILL_V96 : SI_SPILL_VGPR <VReg_96>; |
| defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>; |
| defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>; |
| defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>; |
| |
| def SI_PC_ADD_REL_OFFSET : SPseudoInstSI < |
| (outs SReg_64:$dst), |
| (ins si_ga:$ptr_lo, si_ga:$ptr_hi), |
| [(set SReg_64:$dst, |
| (i64 (SIpc_add_rel_offset (tglobaladdr:$ptr_lo), (tglobaladdr:$ptr_hi))))]> { |
| let Defs = [SCC]; |
| } |
| |
| def : GCNPat < |
| (AMDGPUinit_exec i64:$src), |
| (SI_INIT_EXEC (as_i64imm $src)) |
| >; |
| |
| def : GCNPat < |
| (AMDGPUinit_exec_from_input i32:$input, i32:$shift), |
| (SI_INIT_EXEC_FROM_INPUT (i32 $input), (as_i32imm $shift)) |
| >; |
| |
| def : GCNPat< |
| (AMDGPUtrap timm:$trapid), |
| (S_TRAP $trapid) |
| >; |
| |
| def : GCNPat< |
| (AMDGPUelse i64:$src, bb:$target), |
| (SI_ELSE $src, $target, 0) |
| >; |
| |
| def : Pat < |
| // -1.0 as i32 (LowerINTRINSIC_VOID converts all other constants to -1.0) |
| (AMDGPUkill (i32 -1082130432)), |
| (SI_KILL_I1_PSEUDO (i1 0), 0) |
| >; |
| |
| def : Pat < |
| (int_amdgcn_kill i1:$src), |
| (SI_KILL_I1_PSEUDO $src, 0) |
| >; |
| |
| def : Pat < |
| (int_amdgcn_kill (i1 (not i1:$src))), |
| (SI_KILL_I1_PSEUDO $src, -1) |
| >; |
| |
| def : Pat < |
| (AMDGPUkill i32:$src), |
| (SI_KILL_F32_COND_IMM_PSEUDO $src, 0, 3) // 3 means SETOGE |
| >; |
| |
| def : Pat < |
| (int_amdgcn_kill (i1 (setcc f32:$src, InlineFPImm<f32>:$imm, cond:$cond))), |
| (SI_KILL_F32_COND_IMM_PSEUDO $src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond)) |
| >; |
| // TODO: we could add more variants for other types of conditionals |
| |
| //===----------------------------------------------------------------------===// |
| // VOP1 Patterns |
| //===----------------------------------------------------------------------===// |
| |
| let SubtargetPredicate = isGCN, OtherPredicates = [UnsafeFPMath] in { |
| |
| //def : RcpPat<V_RCP_F64_e32, f64>; |
| //defm : RsqPat<V_RSQ_F64_e32, f64>; |
| //defm : RsqPat<V_RSQ_F32_e32, f32>; |
| |
| def : RsqPat<V_RSQ_F32_e32, f32>; |
| def : RsqPat<V_RSQ_F64_e32, f64>; |
| |
| // Convert (x - floor(x)) to fract(x) |
| def : GCNPat < |
| (f32 (fsub (f32 (VOP3Mods f32:$x, i32:$mods)), |
| (f32 (ffloor (f32 (VOP3Mods f32:$x, i32:$mods)))))), |
| (V_FRACT_F32_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| |
| // Convert (x + (-floor(x))) to fract(x) |
| def : GCNPat < |
| (f64 (fadd (f64 (VOP3Mods f64:$x, i32:$mods)), |
| (f64 (fneg (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))))))), |
| (V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| |
| } // End SubtargetPredicate = isGCN, OtherPredicates = [UnsafeFPMath] |
| |
| |
| // f16_to_fp patterns |
| def : GCNPat < |
| (f32 (f16_to_fp i32:$src0)), |
| (V_CVT_F32_F16_e64 SRCMODS.NONE, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| |
| def : GCNPat < |
| (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))), |
| (V_CVT_F32_F16_e64 SRCMODS.ABS, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| |
| def : GCNPat < |
| (f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))), |
| (V_CVT_F32_F16_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0)), DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| |
| def : GCNPat < |
| (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))), |
| (V_CVT_F32_F16_e64 SRCMODS.NEG_ABS, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| |
| def : GCNPat < |
| (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))), |
| (V_CVT_F32_F16_e64 SRCMODS.NEG, $src0, DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| |
| def : GCNPat < |
| (f64 (fpextend f16:$src)), |
| (V_CVT_F64_F32_e32 (V_CVT_F32_F16_e32 $src)) |
| >; |
| |
| // fp_to_fp16 patterns |
| def : GCNPat < |
| (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))), |
| (V_CVT_F16_F32_e64 $src0_modifiers, f32:$src0, DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| |
| def : GCNPat < |
| (i32 (fp_to_sint f16:$src)), |
| (V_CVT_I32_F32_e32 (V_CVT_F32_F16_e32 $src)) |
| >; |
| |
| def : GCNPat < |
| (i32 (fp_to_uint f16:$src)), |
| (V_CVT_U32_F32_e32 (V_CVT_F32_F16_e32 $src)) |
| >; |
| |
| def : GCNPat < |
| (f16 (sint_to_fp i32:$src)), |
| (V_CVT_F16_F32_e32 (V_CVT_F32_I32_e32 $src)) |
| >; |
| |
| def : GCNPat < |
| (f16 (uint_to_fp i32:$src)), |
| (V_CVT_F16_F32_e32 (V_CVT_F32_U32_e32 $src)) |
| >; |
| |
| //===----------------------------------------------------------------------===// |
| // VOP2 Patterns |
| //===----------------------------------------------------------------------===// |
| |
| multiclass FMADPat <ValueType vt, Instruction inst> { |
| def : GCNPat < |
| (vt (fmad (VOP3NoMods vt:$src0), |
| (VOP3NoMods vt:$src1), |
| (VOP3NoMods vt:$src2))), |
| (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, |
| SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| } |
| |
| defm : FMADPat <f16, V_MAC_F16_e64>; |
| defm : FMADPat <f32, V_MAC_F32_e64>; |
| |
| class FMADModsPat<Instruction inst, SDPatternOperator mad_opr, ValueType Ty> |
| : GCNPat< |
| (Ty (mad_opr (VOP3Mods Ty:$src0, i32:$src0_mod), |
| (VOP3Mods Ty:$src1, i32:$src1_mod), |
| (VOP3Mods Ty:$src2, i32:$src2_mod))), |
| (inst $src0_mod, $src0, $src1_mod, $src1, |
| $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| |
| def : FMADModsPat<V_MAD_F32, AMDGPUfmad_ftz, f32>; |
| def : FMADModsPat<V_MAD_F16, AMDGPUfmad_ftz, f16> { |
| let SubtargetPredicate = Has16BitInsts; |
| } |
| |
| multiclass SelectPat <ValueType vt, Instruction inst> { |
| def : GCNPat < |
| (vt (select i1:$src0, vt:$src1, vt:$src2)), |
| (inst $src2, $src1, $src0) |
| >; |
| } |
| |
| defm : SelectPat <i16, V_CNDMASK_B32_e64>; |
| defm : SelectPat <i32, V_CNDMASK_B32_e64>; |
| defm : SelectPat <f16, V_CNDMASK_B32_e64>; |
| defm : SelectPat <f32, V_CNDMASK_B32_e64>; |
| |
| def : GCNPat < |
| (i32 (add (i32 (ctpop i32:$popcnt)), i32:$val)), |
| (V_BCNT_U32_B32_e64 $popcnt, $val) |
| >; |
| def : GCNPat < |
| (i16 (add (i16 (trunc (ctpop i32:$popcnt))), i16:$val)), |
| (V_BCNT_U32_B32_e64 $popcnt, $val) |
| >; |
| |
| /********** ============================================ **********/ |
| /********** Extraction, Insertion, Building and Casting **********/ |
| /********** ============================================ **********/ |
| |
| foreach Index = 0-2 in { |
| def Extract_Element_v2i32_#Index : Extract_Element < |
| i32, v2i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v2i32_#Index : Insert_Element < |
| i32, v2i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Extract_Element_v2f32_#Index : Extract_Element < |
| f32, v2f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v2f32_#Index : Insert_Element < |
| f32, v2f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| } |
| |
| foreach Index = 0-3 in { |
| def Extract_Element_v4i32_#Index : Extract_Element < |
| i32, v4i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v4i32_#Index : Insert_Element < |
| i32, v4i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Extract_Element_v4f32_#Index : Extract_Element < |
| f32, v4f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v4f32_#Index : Insert_Element < |
| f32, v4f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| } |
| |
| foreach Index = 0-7 in { |
| def Extract_Element_v8i32_#Index : Extract_Element < |
| i32, v8i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v8i32_#Index : Insert_Element < |
| i32, v8i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Extract_Element_v8f32_#Index : Extract_Element < |
| f32, v8f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v8f32_#Index : Insert_Element < |
| f32, v8f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| } |
| |
| foreach Index = 0-15 in { |
| def Extract_Element_v16i32_#Index : Extract_Element < |
| i32, v16i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v16i32_#Index : Insert_Element < |
| i32, v16i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Extract_Element_v16f32_#Index : Extract_Element < |
| f32, v16f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v16f32_#Index : Insert_Element < |
| f32, v16f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| } |
| |
| |
| def : Pat < |
| (extract_subvector v4i16:$vec, (i32 0)), |
| (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub0)) |
| >; |
| |
| def : Pat < |
| (extract_subvector v4i16:$vec, (i32 2)), |
| (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub1)) |
| >; |
| |
| def : Pat < |
| (extract_subvector v4f16:$vec, (i32 0)), |
| (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub0)) |
| >; |
| |
| def : Pat < |
| (extract_subvector v4f16:$vec, (i32 2)), |
| (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub1)) |
| >; |
| |
| let SubtargetPredicate = isGCN in { |
| |
| // FIXME: Why do only some of these type combinations for SReg and |
| // VReg? |
| // 16-bit bitcast |
| def : BitConvert <i16, f16, VGPR_32>; |
| def : BitConvert <f16, i16, VGPR_32>; |
| def : BitConvert <i16, f16, SReg_32>; |
| def : BitConvert <f16, i16, SReg_32>; |
| |
| // 32-bit bitcast |
| def : BitConvert <i32, f32, VGPR_32>; |
| def : BitConvert <f32, i32, VGPR_32>; |
| def : BitConvert <i32, f32, SReg_32>; |
| def : BitConvert <f32, i32, SReg_32>; |
| def : BitConvert <v2i16, i32, SReg_32>; |
| def : BitConvert <i32, v2i16, SReg_32>; |
| def : BitConvert <v2f16, i32, SReg_32>; |
| def : BitConvert <i32, v2f16, SReg_32>; |
| def : BitConvert <v2i16, v2f16, SReg_32>; |
| def : BitConvert <v2f16, v2i16, SReg_32>; |
| def : BitConvert <v2f16, f32, SReg_32>; |
| def : BitConvert <f32, v2f16, SReg_32>; |
| def : BitConvert <v2i16, f32, SReg_32>; |
| def : BitConvert <f32, v2i16, SReg_32>; |
| |
| // 64-bit bitcast |
| def : BitConvert <i64, f64, VReg_64>; |
| def : BitConvert <f64, i64, VReg_64>; |
| def : BitConvert <v2i32, v2f32, VReg_64>; |
| def : BitConvert <v2f32, v2i32, VReg_64>; |
| def : BitConvert <i64, v2i32, VReg_64>; |
| def : BitConvert <v2i32, i64, VReg_64>; |
| def : BitConvert <i64, v2f32, VReg_64>; |
| def : BitConvert <v2f32, i64, VReg_64>; |
| def : BitConvert <f64, v2f32, VReg_64>; |
| def : BitConvert <v2f32, f64, VReg_64>; |
| def : BitConvert <f64, v2i32, VReg_64>; |
| def : BitConvert <v2i32, f64, VReg_64>; |
| |
| // FIXME: Make SGPR |
| def : BitConvert <v2i32, v4f16, VReg_64>; |
| def : BitConvert <v4f16, v2i32, VReg_64>; |
| def : BitConvert <v2i32, v4f16, VReg_64>; |
| def : BitConvert <v2i32, v4i16, VReg_64>; |
| def : BitConvert <v4i16, v2i32, VReg_64>; |
| def : BitConvert <v2f32, v4f16, VReg_64>; |
| def : BitConvert <v4f16, v2f32, VReg_64>; |
| def : BitConvert <v2f32, v4i16, VReg_64>; |
| def : BitConvert <v4i16, v2f32, VReg_64>; |
| def : BitConvert <v4i16, f64, VReg_64>; |
| def : BitConvert <v4f16, f64, VReg_64>; |
| def : BitConvert <f64, v4i16, VReg_64>; |
| def : BitConvert <f64, v4f16, VReg_64>; |
| def : BitConvert <v4i16, i64, VReg_64>; |
| def : BitConvert <v4f16, i64, VReg_64>; |
| def : BitConvert <i64, v4i16, VReg_64>; |
| def : BitConvert <i64, v4f16, VReg_64>; |
| |
| def : BitConvert <v4i32, v4f32, VReg_128>; |
| def : BitConvert <v4f32, v4i32, VReg_128>; |
| |
| // 128-bit bitcast |
| def : BitConvert <v2i64, v4i32, SReg_128>; |
| def : BitConvert <v4i32, v2i64, SReg_128>; |
| def : BitConvert <v2f64, v4f32, VReg_128>; |
| def : BitConvert <v2f64, v4i32, VReg_128>; |
| def : BitConvert <v4f32, v2f64, VReg_128>; |
| def : BitConvert <v4i32, v2f64, VReg_128>; |
| def : BitConvert <v2i64, v2f64, VReg_128>; |
| def : BitConvert <v2f64, v2i64, VReg_128>; |
| |
| // 256-bit bitcast |
| def : BitConvert <v8i32, v8f32, SReg_256>; |
| def : BitConvert <v8f32, v8i32, SReg_256>; |
| def : BitConvert <v8i32, v8f32, VReg_256>; |
| def : BitConvert <v8f32, v8i32, VReg_256>; |
| |
| // 512-bit bitcast |
| def : BitConvert <v16i32, v16f32, VReg_512>; |
| def : BitConvert <v16f32, v16i32, VReg_512>; |
| |
| } // End SubtargetPredicate = isGCN |
| |
| /********** =================== **********/ |
| /********** Src & Dst modifiers **********/ |
| /********** =================== **********/ |
| |
| |
| // If denormals are not enabled, it only impacts the compare of the |
| // inputs. The output result is not flushed. |
| class ClampPat<Instruction inst, ValueType vt> : GCNPat < |
| (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))), |
| (inst i32:$src0_modifiers, vt:$src0, |
| i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE) |
| >; |
| |
| def : ClampPat<V_MAX_F32_e64, f32>; |
| def : ClampPat<V_MAX_F64, f64>; |
| def : ClampPat<V_MAX_F16_e64, f16>; |
| |
| let SubtargetPredicate = HasVOP3PInsts in { |
| def : GCNPat < |
| (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))), |
| (V_PK_MAX_F16 $src0_modifiers, $src0, |
| $src0_modifiers, $src0, DSTCLAMP.ENABLE) |
| >; |
| } |
| |
| /********** ================================ **********/ |
| /********** Floating point absolute/negative **********/ |
| /********** ================================ **********/ |
| |
| // Prevent expanding both fneg and fabs. |
| |
| def : GCNPat < |
| (fneg (fabs f32:$src)), |
| (S_OR_B32 $src, (S_MOV_B32(i32 0x80000000))) // Set sign bit |
| >; |
| |
| // FIXME: Should use S_OR_B32 |
| def : GCNPat < |
| (fneg (fabs f64:$src)), |
| (REG_SEQUENCE VReg_64, |
| (i32 (EXTRACT_SUBREG f64:$src, sub0)), |
| sub0, |
| (V_OR_B32_e32 (i32 (EXTRACT_SUBREG f64:$src, sub1)), |
| (V_MOV_B32_e32 (i32 0x80000000))), // Set sign bit. |
| sub1) |
| >; |
| |
| def : GCNPat < |
| (fabs f32:$src), |
| (S_AND_B32 $src, (S_MOV_B32 (i32 0x7fffffff))) |
| >; |
| |
| def : GCNPat < |
| (fneg f32:$src), |
| (V_XOR_B32_e32 $src, (V_MOV_B32_e32 (i32 0x80000000))) |
| >; |
| |
| def : GCNPat < |
| (fabs f64:$src), |
| (REG_SEQUENCE VReg_64, |
| (i32 (EXTRACT_SUBREG f64:$src, sub0)), |
| sub0, |
| (V_AND_B32_e64 (i32 (EXTRACT_SUBREG f64:$src, sub1)), |
| (V_MOV_B32_e32 (i32 0x7fffffff))), // Set sign bit. |
| sub1) |
| >; |
| |
| def : GCNPat < |
| (fneg f64:$src), |
| (REG_SEQUENCE VReg_64, |
| (i32 (EXTRACT_SUBREG f64:$src, sub0)), |
| sub0, |
| (V_XOR_B32_e32 (i32 (EXTRACT_SUBREG f64:$src, sub1)), |
| (i32 (V_MOV_B32_e32 (i32 0x80000000)))), |
| sub1) |
| >; |
| |
| def : GCNPat < |
| (fcopysign f16:$src0, f16:$src1), |
| (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1) |
| >; |
| |
| def : GCNPat < |
| (fcopysign f32:$src0, f16:$src1), |
| (V_BFI_B32 (S_MOV_B32 (i32 0x7fffffff)), $src0, |
| (V_LSHLREV_B32_e64 (i32 16), $src1)) |
| >; |
| |
| def : GCNPat < |
| (fcopysign f64:$src0, f16:$src1), |
| (REG_SEQUENCE SReg_64, |
| (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, |
| (V_BFI_B32 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)), |
| (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1) |
| >; |
| |
| def : GCNPat < |
| (fcopysign f16:$src0, f32:$src1), |
| (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, |
| (V_LSHRREV_B32_e64 (i32 16), $src1)) |
| >; |
| |
| def : GCNPat < |
| (fcopysign f16:$src0, f64:$src1), |
| (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, |
| (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1))) |
| >; |
| |
| def : GCNPat < |
| (fneg f16:$src), |
| (S_XOR_B32 $src, (S_MOV_B32 (i32 0x00008000))) |
| >; |
| |
| def : GCNPat < |
| (fabs f16:$src), |
| (S_AND_B32 $src, (S_MOV_B32 (i32 0x00007fff))) |
| >; |
| |
| def : GCNPat < |
| (fneg (fabs f16:$src)), |
| (S_OR_B32 $src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit |
| >; |
| |
| def : GCNPat < |
| (fneg v2f16:$src), |
| (S_XOR_B32 $src, (S_MOV_B32 (i32 0x80008000))) |
| >; |
| |
| def : GCNPat < |
| (fabs v2f16:$src), |
| (S_AND_B32 $src, (S_MOV_B32 (i32 0x7fff7fff))) |
| >; |
| |
| // This is really (fneg (fabs v2f16:$src)) |
| // |
| // fabs is not reported as free because there is modifier for it in |
| // VOP3P instructions, so it is turned into the bit op. |
| def : GCNPat < |
| (fneg (v2f16 (bitconvert (and_oneuse i32:$src, 0x7fff7fff)))), |
| (S_OR_B32 $src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit |
| >; |
| |
| def : GCNPat < |
| (fneg (v2f16 (fabs v2f16:$src))), |
| (S_OR_B32 $src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit |
| >; |
| |
| /********** ================== **********/ |
| /********** Immediate Patterns **********/ |
| /********** ================== **********/ |
| |
| def : GCNPat < |
| (VGPRImm<(i32 imm)>:$imm), |
| (V_MOV_B32_e32 imm:$imm) |
| >; |
| |
| def : GCNPat < |
| (VGPRImm<(f32 fpimm)>:$imm), |
| (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm))) |
| >; |
| |
| def : GCNPat < |
| (i32 imm:$imm), |
| (S_MOV_B32 imm:$imm) |
| >; |
| |
| // FIXME: Workaround for ordering issue with peephole optimizer where |
| // a register class copy interferes with immediate folding. Should |
| // use s_mov_b32, which can be shrunk to s_movk_i32 |
| def : GCNPat < |
| (VGPRImm<(f16 fpimm)>:$imm), |
| (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm))) |
| >; |
| |
| def : GCNPat < |
| (f32 fpimm:$imm), |
| (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm))) |
| >; |
| |
| def : GCNPat < |
| (f16 fpimm:$imm), |
| (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm))) |
| >; |
| |
| def : GCNPat < |
| (i32 frameindex:$fi), |
| (V_MOV_B32_e32 (i32 (frameindex_to_targetframeindex $fi))) |
| >; |
| |
| def : GCNPat < |
| (i64 InlineImm<i64>:$imm), |
| (S_MOV_B64 InlineImm<i64>:$imm) |
| >; |
| |
| // XXX - Should this use a s_cmp to set SCC? |
| |
| // Set to sign-extended 64-bit value (true = -1, false = 0) |
| def : GCNPat < |
| (i1 imm:$imm), |
| (S_MOV_B64 (i64 (as_i64imm $imm))) |
| >; |
| |
| def : GCNPat < |
| (f64 InlineFPImm<f64>:$imm), |
| (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineFPImm<f64>:$imm))) |
| >; |
| |
| /********** ================== **********/ |
| /********** Intrinsic Patterns **********/ |
| /********** ================== **********/ |
| |
| let SubtargetPredicate = isGCN in { |
| def : POW_Common <V_LOG_F32_e32, V_EXP_F32_e32, V_MUL_LEGACY_F32_e32>; |
| } |
| |
| def : GCNPat < |
| (i32 (sext i1:$src0)), |
| (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src0) |
| >; |
| |
| class Ext32Pat <SDNode ext> : GCNPat < |
| (i32 (ext i1:$src0)), |
| (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src0) |
| >; |
| |
| def : Ext32Pat <zext>; |
| def : Ext32Pat <anyext>; |
| |
| // The multiplication scales from [0,1] to the unsigned integer range |
| def : GCNPat < |
| (AMDGPUurecip i32:$src0), |
| (V_CVT_U32_F32_e32 |
| (V_MUL_F32_e32 (i32 CONST.FP_UINT_MAX_PLUS_1), |
| (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0)))) |
| >; |
| |
| //===----------------------------------------------------------------------===// |
| // VOP3 Patterns |
| //===----------------------------------------------------------------------===// |
| |
| let SubtargetPredicate = isGCN in { |
| |
| def : IMad24Pat<V_MAD_I32_I24, 1>; |
| def : UMad24Pat<V_MAD_U32_U24, 1>; |
| |
| // FIXME: This should only be done for VALU inputs |
| defm : BFIPatterns <V_BFI_B32, S_MOV_B32, SReg_64>; |
| def : ROTRPattern <V_ALIGNBIT_B32>; |
| |
| } |
| |
| def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))), |
| (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), |
| (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; |
| |
| def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))), |
| (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), |
| (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; |
| |
| /********** ====================== **********/ |
| /********** Indirect addressing **********/ |
| /********** ====================== **********/ |
| |
| multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> { |
| // Extract with offset |
| def : GCNPat< |
| (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))), |
| (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset) |
| >; |
| |
| // Insert with offset |
| def : GCNPat< |
| (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))), |
| (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val) |
| >; |
| } |
| |
| defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">; |
| defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">; |
| defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">; |
| defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">; |
| |
| defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">; |
| defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">; |
| defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">; |
| defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">; |
| |
| //===----------------------------------------------------------------------===// |
| // SAD Patterns |
| //===----------------------------------------------------------------------===// |
| |
| def : GCNPat < |
| (add (sub_oneuse (umax i32:$src0, i32:$src1), |
| (umin i32:$src0, i32:$src1)), |
| i32:$src2), |
| (V_SAD_U32 $src0, $src1, $src2, (i1 0)) |
| >; |
| |
| def : GCNPat < |
| (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)), |
| (sub i32:$src0, i32:$src1), |
| (sub i32:$src1, i32:$src0)), |
| i32:$src2), |
| (V_SAD_U32 $src0, $src1, $src2, (i1 0)) |
| >; |
| |
| //===----------------------------------------------------------------------===// |
| // Conversion Patterns |
| //===----------------------------------------------------------------------===// |
| |
| def : GCNPat<(i32 (sext_inreg i32:$src, i1)), |
| (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16 |
| |
| // Handle sext_inreg in i64 |
| def : GCNPat < |
| (i64 (sext_inreg i64:$src, i1)), |
| (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16 |
| >; |
| |
| def : GCNPat < |
| (i16 (sext_inreg i16:$src, i1)), |
| (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16 |
| >; |
| |
| def : GCNPat < |
| (i16 (sext_inreg i16:$src, i8)), |
| (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16 |
| >; |
| |
| def : GCNPat < |
| (i64 (sext_inreg i64:$src, i8)), |
| (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16 |
| >; |
| |
| def : GCNPat < |
| (i64 (sext_inreg i64:$src, i16)), |
| (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16 |
| >; |
| |
| def : GCNPat < |
| (i64 (sext_inreg i64:$src, i32)), |
| (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16 |
| >; |
| |
| def : GCNPat < |
| (i64 (zext i32:$src)), |
| (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1) |
| >; |
| |
| def : GCNPat < |
| (i64 (anyext i32:$src)), |
| (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1) |
| >; |
| |
| class ZExt_i64_i1_Pat <SDNode ext> : GCNPat < |
| (i64 (ext i1:$src)), |
| (REG_SEQUENCE VReg_64, |
| (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src), sub0, |
| (S_MOV_B32 (i32 0)), sub1) |
| >; |
| |
| |
| def : ZExt_i64_i1_Pat<zext>; |
| def : ZExt_i64_i1_Pat<anyext>; |
| |
| // FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that |
| // REG_SEQUENCE patterns don't support instructions with multiple outputs. |
| def : GCNPat < |
| (i64 (sext i32:$src)), |
| (REG_SEQUENCE SReg_64, $src, sub0, |
| (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1) |
| >; |
| |
| def : GCNPat < |
| (i64 (sext i1:$src)), |
| (REG_SEQUENCE VReg_64, |
| (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src), sub0, |
| (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src), sub1) |
| >; |
| |
| class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat < |
| (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))), |
| (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE)) |
| >; |
| |
| def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>; |
| def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>; |
| def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>; |
| def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>; |
| |
| // If we need to perform a logical operation on i1 values, we need to |
| // use vector comparisons since there is only one SCC register. Vector |
| // comparisons still write to a pair of SGPRs, so treat these as |
| // 64-bit comparisons. When legalizing SGPR copies, instructions |
| // resulting in the copies from SCC to these instructions will be |
| // moved to the VALU. |
| def : GCNPat < |
| (i1 (and i1:$src0, i1:$src1)), |
| (S_AND_B64 $src0, $src1) |
| >; |
| |
| def : GCNPat < |
| (i1 (or i1:$src0, i1:$src1)), |
| (S_OR_B64 $src0, $src1) |
| >; |
| |
| def : GCNPat < |
| (i1 (xor i1:$src0, i1:$src1)), |
| (S_XOR_B64 $src0, $src1) |
| >; |
| |
| def : GCNPat < |
| (f32 (sint_to_fp i1:$src)), |
| (V_CNDMASK_B32_e64 (i32 0), (i32 CONST.FP32_NEG_ONE), $src) |
| >; |
| |
| def : GCNPat < |
| (f32 (uint_to_fp i1:$src)), |
| (V_CNDMASK_B32_e64 (i32 0), (i32 CONST.FP32_ONE), $src) |
| >; |
| |
| def : GCNPat < |
| (f64 (sint_to_fp i1:$src)), |
| (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src)) |
| >; |
| |
| def : GCNPat < |
| (f64 (uint_to_fp i1:$src)), |
| (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src)) |
| >; |
| |
| //===----------------------------------------------------------------------===// |
| // Miscellaneous Patterns |
| //===----------------------------------------------------------------------===// |
| def : GCNPat < |
| (i32 (AMDGPUfp16_zext f16:$src)), |
| (COPY $src) |
| >; |
| |
| |
| def : GCNPat < |
| (i32 (trunc i64:$a)), |
| (EXTRACT_SUBREG $a, sub0) |
| >; |
| |
| def : GCNPat < |
| (i1 (trunc i32:$a)), |
| (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1)) |
| >; |
| |
| def : GCNPat < |
| (i1 (trunc i16:$a)), |
| (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1)) |
| >; |
| |
| def : GCNPat < |
| (i1 (trunc i64:$a)), |
| (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), |
| (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1)) |
| >; |
| |
| def : GCNPat < |
| (i32 (bswap i32:$a)), |
| (V_BFI_B32 (S_MOV_B32 (i32 0x00ff00ff)), |
| (V_ALIGNBIT_B32 $a, $a, (i32 24)), |
| (V_ALIGNBIT_B32 $a, $a, (i32 8))) |
| >; |
| |
| let OtherPredicates = [NoFP16Denormals] in { |
| def : GCNPat< |
| (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), |
| (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src, 0, 0) |
| >; |
| |
| def : GCNPat< |
| (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))), |
| (V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src, 0, 0) |
| >; |
| |
| def : GCNPat< |
| (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), |
| (V_PK_MUL_F16 0, (i32 CONST.V2FP16_ONE), $src_mods, $src, DSTCLAMP.NONE) |
| >; |
| } |
| |
| let OtherPredicates = [FP16Denormals] in { |
| def : GCNPat< |
| (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), |
| (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0) |
| >; |
| |
| let SubtargetPredicate = HasVOP3PInsts in { |
| def : GCNPat< |
| (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), |
| (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE) |
| >; |
| } |
| } |
| |
| let OtherPredicates = [NoFP32Denormals] in { |
| def : GCNPat< |
| (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), |
| (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src, 0, 0) |
| >; |
| |
| def : GCNPat< |
| (fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))), |
| (V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src, 0, 0) |
| >; |
| } |
| |
| let OtherPredicates = [FP32Denormals] in { |
| def : GCNPat< |
| (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), |
| (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src, 0, 0) |
| >; |
| } |
| |
| let OtherPredicates = [NoFP64Denormals] in { |
| def : GCNPat< |
| (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), |
| (V_MUL_F64 0, CONST.FP64_ONE, $src_mods, $src, 0, 0) |
| >; |
| } |
| |
| let OtherPredicates = [FP64Denormals] in { |
| def : GCNPat< |
| (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), |
| (V_MAX_F64 $src_mods, $src, $src_mods, $src, 0, 0) |
| >; |
| } |
| |
| let OtherPredicates = [HasDLInsts] in { |
| def : GCNPat < |
| (fma (f32 (VOP3Mods0 f32:$src0, i32:$src0_modifiers, i1:$clamp, i32:$omod)), |
| (f32 (VOP3Mods f32:$src1, i32:$src1_modifiers)), |
| (f32 (VOP3NoMods f32:$src2))), |
| (V_FMAC_F32_e64 $src0_modifiers, $src0, $src1_modifiers, $src1, |
| SRCMODS.NONE, $src2, $clamp, $omod) |
| >; |
| } // End OtherPredicates = [HasDLInsts] |
| |
| |
| // Allow integer inputs |
| class ExpPattern<SDPatternOperator node, ValueType vt, Instruction Inst> : GCNPat< |
| (node (i8 timm:$tgt), (i8 timm:$en), vt:$src0, vt:$src1, vt:$src2, vt:$src3, (i1 timm:$compr), (i1 timm:$vm)), |
| (Inst i8:$tgt, vt:$src0, vt:$src1, vt:$src2, vt:$src3, i1:$vm, i1:$compr, i8:$en) |
| >; |
| |
| def : ExpPattern<AMDGPUexport, i32, EXP>; |
| def : ExpPattern<AMDGPUexport_done, i32, EXP_DONE>; |
| |
| // COPY_TO_REGCLASS is workaround tablegen bug from multiple outputs |
| // from S_LSHL_B32's multiple outputs from implicit scc def. |
| def : GCNPat < |
| (v2i16 (build_vector (i16 0), i16:$src1)), |
| (v2i16 (COPY_TO_REGCLASS (S_LSHL_B32 i16:$src1, (i16 16)), SReg_32_XM0)) |
| >; |
| |
| |
| let SubtargetPredicate = HasVOP3PInsts in { |
| def : GCNPat < |
| (v2i16 (build_vector i16:$src0, i16:$src1)), |
| (v2i16 (S_PACK_LL_B32_B16 $src0, $src1)) |
| >; |
| |
| // With multiple uses of the shift, this will duplicate the shift and |
| // increase register pressure. |
| def : GCNPat < |
| (v2i16 (build_vector i16:$src0, (i16 (trunc (srl_oneuse i32:$src1, (i32 16)))))), |
| (v2i16 (S_PACK_LH_B32_B16 i16:$src0, i32:$src1)) |
| >; |
| |
| |
| def : GCNPat < |
| (v2i16 (build_vector (i16 (trunc (srl_oneuse i32:$src0, (i32 16)))), |
| (i16 (trunc (srl_oneuse i32:$src1, (i32 16)))))), |
| (v2i16 (S_PACK_HH_B32_B16 $src0, $src1)) |
| >; |
| |
| // TODO: Should source modifiers be matched to v_pack_b32_f16? |
| def : GCNPat < |
| (v2f16 (build_vector f16:$src0, f16:$src1)), |
| (v2f16 (S_PACK_LL_B32_B16 $src0, $src1)) |
| >; |
| |
| } // End SubtargetPredicate = HasVOP3PInsts |
| |
| |
| // def : GCNPat < |
| // (v2f16 (scalar_to_vector f16:$src0)), |
| // (COPY $src0) |
| // >; |
| |
| // def : GCNPat < |
| // (v2i16 (scalar_to_vector i16:$src0)), |
| // (COPY $src0) |
| // >; |
| |
| def : GCNPat < |
| (v4i16 (scalar_to_vector i16:$src0)), |
| (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0) |
| >; |
| |
| def : GCNPat < |
| (v4f16 (scalar_to_vector f16:$src0)), |
| (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0) |
| >; |
| |
| //===----------------------------------------------------------------------===// |
| // Fract Patterns |
| //===----------------------------------------------------------------------===// |
| |
| let SubtargetPredicate = isSI in { |
| |
| // V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is |
| // used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient |
| // way to implement it is using V_FRACT_F64. |
| // The workaround for the V_FRACT bug is: |
| // fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999) |
| |
| // Convert floor(x) to (x - fract(x)) |
| def : GCNPat < |
| (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))), |
| (V_ADD_F64 |
| $mods, |
| $x, |
| SRCMODS.NEG, |
| (V_CNDMASK_B64_PSEUDO |
| (V_MIN_F64 |
| SRCMODS.NONE, |
| (V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE), |
| SRCMODS.NONE, |
| (V_MOV_B64_PSEUDO 0x3fefffffffffffff), |
| DSTCLAMP.NONE, DSTOMOD.NONE), |
| $x, |
| (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))), |
| DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| |
| } // End SubtargetPredicates = isSI |
| |
| //============================================================================// |
| // Miscellaneous Optimization Patterns |
| //============================================================================// |
| |
| // Undo sub x, c -> add x, -c canonicalization since c is more likely |
| // an inline immediate than -c. |
| // TODO: Also do for 64-bit. |
| def : GCNPat< |
| (add i32:$src0, (i32 NegSubInlineConst32:$src1)), |
| (S_SUB_I32 $src0, NegSubInlineConst32:$src1) |
| >; |
| |
| |
| multiclass BFMPatterns <ValueType vt, InstSI BFM, InstSI MOV> { |
| def : GCNPat < |
| (vt (shl (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)), |
| (BFM $a, $b) |
| >; |
| |
| def : GCNPat < |
| (vt (add (vt (shl 1, vt:$a)), -1)), |
| (BFM $a, (MOV (i32 0))) |
| >; |
| } |
| |
| let SubtargetPredicate = isGCN in { |
| |
| defm : BFMPatterns <i32, S_BFM_B32, S_MOV_B32>; |
| // FIXME: defm : BFMPatterns <i64, S_BFM_B64, S_MOV_B64>; |
| |
| defm : BFEPattern <V_BFE_U32, V_BFE_I32, S_MOV_B32>; |
| defm : SHA256MaPattern <V_BFI_B32, V_XOR_B32_e64, SReg_64>; |
| |
| def : IntMed3Pat<V_MED3_I32, smax, smax_oneuse, smin_oneuse>; |
| def : IntMed3Pat<V_MED3_U32, umax, umax_oneuse, umin_oneuse>; |
| |
| } |
| |
| // This matches 16 permutations of |
| // max(min(x, y), min(max(x, y), z)) |
| class FPMed3Pat<ValueType vt, |
| Instruction med3Inst> : GCNPat< |
| (fmaxnum (fminnum_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), |
| (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), |
| (fminnum_oneuse (fmaxnum_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), |
| (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), |
| (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))), |
| (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| |
| class FP16Med3Pat<ValueType vt, |
| Instruction med3Inst> : GCNPat< |
| (fmaxnum (fminnum_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), |
| (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), |
| (fminnum_oneuse (fmaxnum_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods), |
| (VOP3Mods_nnan vt:$src1, i32:$src1_mods)), |
| (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))), |
| (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE) |
| >; |
| |
| class Int16Med3Pat<Instruction med3Inst, |
| SDPatternOperator max, |
| SDPatternOperator max_oneuse, |
| SDPatternOperator min_oneuse, |
| ValueType vt = i32> : GCNPat< |
| (max (min_oneuse vt:$src0, vt:$src1), |
| (min_oneuse (max_oneuse vt:$src0, vt:$src1), vt:$src2)), |
| (med3Inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, SRCMODS.NONE, $src2, DSTCLAMP.NONE) |
| >; |
| |
| def : FPMed3Pat<f32, V_MED3_F32>; |
| |
| let OtherPredicates = [isGFX9] in { |
| def : FP16Med3Pat<f16, V_MED3_F16>; |
| def : Int16Med3Pat<V_MED3_I16, smax, smax_oneuse, smin_oneuse, i16>; |
| def : Int16Med3Pat<V_MED3_U16, umax, umax_oneuse, umin_oneuse, i16>; |
| } // End Predicates = [isGFX9] |