| //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| /// \file |
| //===----------------------------------------------------------------------===// |
| // |
| |
| #include "AMDGPU.h" |
| #include "AMDGPUSubtarget.h" |
| #include "SIInstrInfo.h" |
| #include "SIMachineFunctionInfo.h" |
| #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| |
| #define DEBUG_TYPE "si-fold-operands" |
| using namespace llvm; |
| |
| namespace { |
| |
| struct FoldCandidate { |
| MachineInstr *UseMI; |
| union { |
| MachineOperand *OpToFold; |
| uint64_t ImmToFold; |
| int FrameIndexToFold; |
| }; |
| unsigned char UseOpNo; |
| MachineOperand::MachineOperandType Kind; |
| bool Commuted; |
| |
| FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, |
| bool Commuted_ = false) : |
| UseMI(MI), OpToFold(nullptr), UseOpNo(OpNo), Kind(FoldOp->getType()), |
| Commuted(Commuted_) { |
| if (FoldOp->isImm()) { |
| ImmToFold = FoldOp->getImm(); |
| } else if (FoldOp->isFI()) { |
| FrameIndexToFold = FoldOp->getIndex(); |
| } else { |
| assert(FoldOp->isReg()); |
| OpToFold = FoldOp; |
| } |
| } |
| |
| bool isFI() const { |
| return Kind == MachineOperand::MO_FrameIndex; |
| } |
| |
| bool isImm() const { |
| return Kind == MachineOperand::MO_Immediate; |
| } |
| |
| bool isReg() const { |
| return Kind == MachineOperand::MO_Register; |
| } |
| |
| bool isCommuted() const { |
| return Commuted; |
| } |
| }; |
| |
| class SIFoldOperands : public MachineFunctionPass { |
| public: |
| static char ID; |
| MachineRegisterInfo *MRI; |
| const SIInstrInfo *TII; |
| const SIRegisterInfo *TRI; |
| const GCNSubtarget *ST; |
| |
| void foldOperand(MachineOperand &OpToFold, |
| MachineInstr *UseMI, |
| unsigned UseOpIdx, |
| SmallVectorImpl<FoldCandidate> &FoldList, |
| SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; |
| |
| void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; |
| |
| const MachineOperand *isClamp(const MachineInstr &MI) const; |
| bool tryFoldClamp(MachineInstr &MI); |
| |
| std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; |
| bool tryFoldOMod(MachineInstr &MI); |
| |
| public: |
| SIFoldOperands() : MachineFunctionPass(ID) { |
| initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| StringRef getPassName() const override { return "SI Fold Operands"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| }; |
| |
| } // End anonymous namespace. |
| |
| INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, |
| "SI Fold Operands", false, false) |
| |
| char SIFoldOperands::ID = 0; |
| |
| char &llvm::SIFoldOperandsID = SIFoldOperands::ID; |
| |
| // Wrapper around isInlineConstant that understands special cases when |
| // instruction types are replaced during operand folding. |
| static bool isInlineConstantIfFolded(const SIInstrInfo *TII, |
| const MachineInstr &UseMI, |
| unsigned OpNo, |
| const MachineOperand &OpToFold) { |
| if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) |
| return true; |
| |
| unsigned Opc = UseMI.getOpcode(); |
| switch (Opc) { |
| case AMDGPU::V_MAC_F32_e64: |
| case AMDGPU::V_MAC_F16_e64: |
| case AMDGPU::V_FMAC_F32_e64: { |
| // Special case for mac. Since this is replaced with mad when folded into |
| // src2, we need to check the legality for the final instruction. |
| int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); |
| if (static_cast<int>(OpNo) == Src2Idx) { |
| bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64; |
| bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; |
| |
| unsigned Opc = IsFMA ? |
| AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); |
| const MCInstrDesc &MadDesc = TII->get(Opc); |
| return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); |
| } |
| return false; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| FunctionPass *llvm::createSIFoldOperandsPass() { |
| return new SIFoldOperands(); |
| } |
| |
| static bool updateOperand(FoldCandidate &Fold, |
| const TargetRegisterInfo &TRI) { |
| MachineInstr *MI = Fold.UseMI; |
| MachineOperand &Old = MI->getOperand(Fold.UseOpNo); |
| assert(Old.isReg()); |
| |
| if (Fold.isImm()) { |
| if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked) { |
| // Set op_sel/op_sel_hi on this operand or bail out if op_sel is |
| // already set. |
| unsigned Opcode = MI->getOpcode(); |
| int OpNo = MI->getOperandNo(&Old); |
| int ModIdx = -1; |
| if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) |
| ModIdx = AMDGPU::OpName::src0_modifiers; |
| else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) |
| ModIdx = AMDGPU::OpName::src1_modifiers; |
| else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) |
| ModIdx = AMDGPU::OpName::src2_modifiers; |
| assert(ModIdx != -1); |
| ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); |
| MachineOperand &Mod = MI->getOperand(ModIdx); |
| unsigned Val = Mod.getImm(); |
| if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1)) |
| return false; |
| // If upper part is all zero we do not need op_sel_hi. |
| if (!isUInt<16>(Fold.ImmToFold)) { |
| if (!(Fold.ImmToFold & 0xffff)) { |
| Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); |
| Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); |
| Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); |
| return true; |
| } |
| Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); |
| } |
| } |
| Old.ChangeToImmediate(Fold.ImmToFold); |
| return true; |
| } |
| |
| if (Fold.isFI()) { |
| Old.ChangeToFrameIndex(Fold.FrameIndexToFold); |
| return true; |
| } |
| |
| MachineOperand *New = Fold.OpToFold; |
| if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) && |
| TargetRegisterInfo::isVirtualRegister(New->getReg())) { |
| Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); |
| |
| Old.setIsUndef(New->isUndef()); |
| return true; |
| } |
| |
| // FIXME: Handle physical registers. |
| |
| return false; |
| } |
| |
| static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, |
| const MachineInstr *MI) { |
| for (auto Candidate : FoldList) { |
| if (Candidate.UseMI == MI) |
| return true; |
| } |
| return false; |
| } |
| |
| static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, |
| MachineInstr *MI, unsigned OpNo, |
| MachineOperand *OpToFold, |
| const SIInstrInfo *TII) { |
| if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { |
| |
| // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 |
| unsigned Opc = MI->getOpcode(); |
| if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || |
| Opc == AMDGPU::V_FMAC_F32_e64) && |
| (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { |
| bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64; |
| bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; |
| unsigned NewOpc = IsFMA ? |
| AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); |
| |
| // Check if changing this to a v_mad_{f16, f32} instruction will allow us |
| // to fold the operand. |
| MI->setDesc(TII->get(NewOpc)); |
| bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); |
| if (FoldAsMAD) { |
| MI->untieRegOperand(OpNo); |
| return true; |
| } |
| MI->setDesc(TII->get(Opc)); |
| } |
| |
| // Special case for s_setreg_b32 |
| if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { |
| MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); |
| FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); |
| return true; |
| } |
| |
| // If we are already folding into another operand of MI, then |
| // we can't commute the instruction, otherwise we risk making the |
| // other fold illegal. |
| if (isUseMIInFoldList(FoldList, MI)) |
| return false; |
| |
| // Operand is not legal, so try to commute the instruction to |
| // see if this makes it possible to fold. |
| unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; |
| unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; |
| bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); |
| |
| if (CanCommute) { |
| if (CommuteIdx0 == OpNo) |
| OpNo = CommuteIdx1; |
| else if (CommuteIdx1 == OpNo) |
| OpNo = CommuteIdx0; |
| } |
| |
| // One of operands might be an Imm operand, and OpNo may refer to it after |
| // the call of commuteInstruction() below. Such situations are avoided |
| // here explicitly as OpNo must be a register operand to be a candidate |
| // for memory folding. |
| if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || |
| !MI->getOperand(CommuteIdx1).isReg())) |
| return false; |
| |
| if (!CanCommute || |
| !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) |
| return false; |
| |
| if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { |
| TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); |
| return false; |
| } |
| |
| FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold, true)); |
| return true; |
| } |
| |
| FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); |
| return true; |
| } |
| |
| // If the use operand doesn't care about the value, this may be an operand only |
| // used for register indexing, in which case it is unsafe to fold. |
| static bool isUseSafeToFold(const SIInstrInfo *TII, |
| const MachineInstr &MI, |
| const MachineOperand &UseMO) { |
| return !UseMO.isUndef() && !TII->isSDWA(MI); |
| //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); |
| } |
| |
| void SIFoldOperands::foldOperand( |
| MachineOperand &OpToFold, |
| MachineInstr *UseMI, |
| unsigned UseOpIdx, |
| SmallVectorImpl<FoldCandidate> &FoldList, |
| SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { |
| const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); |
| |
| if (!isUseSafeToFold(TII, *UseMI, UseOp)) |
| return; |
| |
| // FIXME: Fold operands with subregs. |
| if (UseOp.isReg() && OpToFold.isReg()) { |
| if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) |
| return; |
| |
| // Don't fold subregister extracts into tied operands, only if it is a full |
| // copy since a subregister use tied to a full register def doesn't really |
| // make sense. e.g. don't fold: |
| // |
| // %1 = COPY %0:sub1 |
| // %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0> |
| // |
| // into |
| // %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0> |
| if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister) |
| return; |
| } |
| |
| // Special case for REG_SEQUENCE: We can't fold literals into |
| // REG_SEQUENCE instructions, so we have to fold them into the |
| // uses of REG_SEQUENCE. |
| if (UseMI->isRegSequence()) { |
| unsigned RegSeqDstReg = UseMI->getOperand(0).getReg(); |
| unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); |
| |
| for (MachineRegisterInfo::use_iterator |
| RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end(); |
| RSUse != RSE; ++RSUse) { |
| |
| MachineInstr *RSUseMI = RSUse->getParent(); |
| if (RSUse->getSubReg() != RegSeqDstSubReg) |
| continue; |
| |
| foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, |
| CopiesToReplace); |
| } |
| |
| return; |
| } |
| |
| |
| bool FoldingImm = OpToFold.isImm(); |
| |
| // In order to fold immediates into copies, we need to change the |
| // copy to a MOV. |
| if (FoldingImm && UseMI->isCopy()) { |
| unsigned DestReg = UseMI->getOperand(0).getReg(); |
| const TargetRegisterClass *DestRC |
| = TargetRegisterInfo::isVirtualRegister(DestReg) ? |
| MRI->getRegClass(DestReg) : |
| TRI->getPhysRegClass(DestReg); |
| |
| unsigned MovOp = TII->getMovOpcode(DestRC); |
| if (MovOp == AMDGPU::COPY) |
| return; |
| |
| UseMI->setDesc(TII->get(MovOp)); |
| CopiesToReplace.push_back(UseMI); |
| } else { |
| const MCInstrDesc &UseDesc = UseMI->getDesc(); |
| |
| // Don't fold into target independent nodes. Target independent opcodes |
| // don't have defined register classes. |
| if (UseDesc.isVariadic() || |
| UseOp.isImplicit() || |
| UseDesc.OpInfo[UseOpIdx].RegClass == -1) |
| return; |
| } |
| |
| if (!FoldingImm) { |
| tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); |
| |
| // FIXME: We could try to change the instruction from 64-bit to 32-bit |
| // to enable more folding opportunites. The shrink operands pass |
| // already does this. |
| return; |
| } |
| |
| |
| const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); |
| const TargetRegisterClass *FoldRC = |
| TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); |
| |
| |
| // Split 64-bit constants into 32-bits for folding. |
| if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { |
| unsigned UseReg = UseOp.getReg(); |
| const TargetRegisterClass *UseRC |
| = TargetRegisterInfo::isVirtualRegister(UseReg) ? |
| MRI->getRegClass(UseReg) : |
| TRI->getPhysRegClass(UseReg); |
| |
| if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) |
| return; |
| |
| APInt Imm(64, OpToFold.getImm()); |
| if (UseOp.getSubReg() == AMDGPU::sub0) { |
| Imm = Imm.getLoBits(32); |
| } else { |
| assert(UseOp.getSubReg() == AMDGPU::sub1); |
| Imm = Imm.getHiBits(32); |
| } |
| |
| MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); |
| tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); |
| return; |
| } |
| |
| |
| |
| tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); |
| } |
| |
| static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, |
| uint32_t LHS, uint32_t RHS) { |
| switch (Opcode) { |
| case AMDGPU::V_AND_B32_e64: |
| case AMDGPU::V_AND_B32_e32: |
| case AMDGPU::S_AND_B32: |
| Result = LHS & RHS; |
| return true; |
| case AMDGPU::V_OR_B32_e64: |
| case AMDGPU::V_OR_B32_e32: |
| case AMDGPU::S_OR_B32: |
| Result = LHS | RHS; |
| return true; |
| case AMDGPU::V_XOR_B32_e64: |
| case AMDGPU::V_XOR_B32_e32: |
| case AMDGPU::S_XOR_B32: |
| Result = LHS ^ RHS; |
| return true; |
| case AMDGPU::V_LSHL_B32_e64: |
| case AMDGPU::V_LSHL_B32_e32: |
| case AMDGPU::S_LSHL_B32: |
| // The instruction ignores the high bits for out of bounds shifts. |
| Result = LHS << (RHS & 31); |
| return true; |
| case AMDGPU::V_LSHLREV_B32_e64: |
| case AMDGPU::V_LSHLREV_B32_e32: |
| Result = RHS << (LHS & 31); |
| return true; |
| case AMDGPU::V_LSHR_B32_e64: |
| case AMDGPU::V_LSHR_B32_e32: |
| case AMDGPU::S_LSHR_B32: |
| Result = LHS >> (RHS & 31); |
| return true; |
| case AMDGPU::V_LSHRREV_B32_e64: |
| case AMDGPU::V_LSHRREV_B32_e32: |
| Result = RHS >> (LHS & 31); |
| return true; |
| case AMDGPU::V_ASHR_I32_e64: |
| case AMDGPU::V_ASHR_I32_e32: |
| case AMDGPU::S_ASHR_I32: |
| Result = static_cast<int32_t>(LHS) >> (RHS & 31); |
| return true; |
| case AMDGPU::V_ASHRREV_I32_e64: |
| case AMDGPU::V_ASHRREV_I32_e32: |
| Result = static_cast<int32_t>(RHS) >> (LHS & 31); |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static unsigned getMovOpc(bool IsScalar) { |
| return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; |
| } |
| |
| /// Remove any leftover implicit operands from mutating the instruction. e.g. |
| /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def |
| /// anymore. |
| static void stripExtraCopyOperands(MachineInstr &MI) { |
| const MCInstrDesc &Desc = MI.getDesc(); |
| unsigned NumOps = Desc.getNumOperands() + |
| Desc.getNumImplicitUses() + |
| Desc.getNumImplicitDefs(); |
| |
| for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) |
| MI.RemoveOperand(I); |
| } |
| |
| static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { |
| MI.setDesc(NewDesc); |
| stripExtraCopyOperands(MI); |
| } |
| |
| static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, |
| MachineOperand &Op) { |
| if (Op.isReg()) { |
| // If this has a subregister, it obviously is a register source. |
| if (Op.getSubReg() != AMDGPU::NoSubRegister || |
| !TargetRegisterInfo::isVirtualRegister(Op.getReg())) |
| return &Op; |
| |
| MachineInstr *Def = MRI.getVRegDef(Op.getReg()); |
| if (Def && Def->isMoveImmediate()) { |
| MachineOperand &ImmSrc = Def->getOperand(1); |
| if (ImmSrc.isImm()) |
| return &ImmSrc; |
| } |
| } |
| |
| return &Op; |
| } |
| |
| // Try to simplify operations with a constant that may appear after instruction |
| // selection. |
| // TODO: See if a frame index with a fixed offset can fold. |
| static bool tryConstantFoldOp(MachineRegisterInfo &MRI, |
| const SIInstrInfo *TII, |
| MachineInstr *MI, |
| MachineOperand *ImmOp) { |
| unsigned Opc = MI->getOpcode(); |
| if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || |
| Opc == AMDGPU::S_NOT_B32) { |
| MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); |
| mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); |
| return true; |
| } |
| |
| int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); |
| if (Src1Idx == -1) |
| return false; |
| |
| int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); |
| MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); |
| MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); |
| |
| if (!Src0->isImm() && !Src1->isImm()) |
| return false; |
| |
| // and k0, k1 -> v_mov_b32 (k0 & k1) |
| // or k0, k1 -> v_mov_b32 (k0 | k1) |
| // xor k0, k1 -> v_mov_b32 (k0 ^ k1) |
| if (Src0->isImm() && Src1->isImm()) { |
| int32_t NewImm; |
| if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) |
| return false; |
| |
| const SIRegisterInfo &TRI = TII->getRegisterInfo(); |
| bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); |
| |
| // Be careful to change the right operand, src0 may belong to a different |
| // instruction. |
| MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); |
| MI->RemoveOperand(Src1Idx); |
| mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); |
| return true; |
| } |
| |
| if (!MI->isCommutable()) |
| return false; |
| |
| if (Src0->isImm() && !Src1->isImm()) { |
| std::swap(Src0, Src1); |
| std::swap(Src0Idx, Src1Idx); |
| } |
| |
| int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); |
| if (Opc == AMDGPU::V_OR_B32_e64 || |
| Opc == AMDGPU::V_OR_B32_e32 || |
| Opc == AMDGPU::S_OR_B32) { |
| if (Src1Val == 0) { |
| // y = or x, 0 => y = copy x |
| MI->RemoveOperand(Src1Idx); |
| mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); |
| } else if (Src1Val == -1) { |
| // y = or x, -1 => y = v_mov_b32 -1 |
| MI->RemoveOperand(Src1Idx); |
| mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); |
| } else |
| return false; |
| |
| return true; |
| } |
| |
| if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || |
| MI->getOpcode() == AMDGPU::V_AND_B32_e32 || |
| MI->getOpcode() == AMDGPU::S_AND_B32) { |
| if (Src1Val == 0) { |
| // y = and x, 0 => y = v_mov_b32 0 |
| MI->RemoveOperand(Src0Idx); |
| mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); |
| } else if (Src1Val == -1) { |
| // y = and x, -1 => y = copy x |
| MI->RemoveOperand(Src1Idx); |
| mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); |
| stripExtraCopyOperands(*MI); |
| } else |
| return false; |
| |
| return true; |
| } |
| |
| if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || |
| MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || |
| MI->getOpcode() == AMDGPU::S_XOR_B32) { |
| if (Src1Val == 0) { |
| // y = xor x, 0 => y = copy x |
| MI->RemoveOperand(Src1Idx); |
| mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Try to fold an instruction into a simpler one |
| static bool tryFoldInst(const SIInstrInfo *TII, |
| MachineInstr *MI) { |
| unsigned Opc = MI->getOpcode(); |
| |
| if (Opc == AMDGPU::V_CNDMASK_B32_e32 || |
| Opc == AMDGPU::V_CNDMASK_B32_e64 || |
| Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { |
| const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); |
| const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); |
| if (Src1->isIdenticalTo(*Src0)) { |
| LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); |
| int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); |
| if (Src2Idx != -1) |
| MI->RemoveOperand(Src2Idx); |
| MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); |
| mutateCopyOp(*MI, TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY |
| : getMovOpc(false))); |
| LLVM_DEBUG(dbgs() << *MI << '\n'); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| void SIFoldOperands::foldInstOperand(MachineInstr &MI, |
| MachineOperand &OpToFold) const { |
| // We need mutate the operands of new mov instructions to add implicit |
| // uses of EXEC, but adding them invalidates the use_iterator, so defer |
| // this. |
| SmallVector<MachineInstr *, 4> CopiesToReplace; |
| SmallVector<FoldCandidate, 4> FoldList; |
| MachineOperand &Dst = MI.getOperand(0); |
| |
| bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); |
| if (FoldingImm) { |
| unsigned NumLiteralUses = 0; |
| MachineOperand *NonInlineUse = nullptr; |
| int NonInlineUseOpNo = -1; |
| |
| MachineRegisterInfo::use_iterator NextUse; |
| for (MachineRegisterInfo::use_iterator |
| Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); |
| Use != E; Use = NextUse) { |
| NextUse = std::next(Use); |
| MachineInstr *UseMI = Use->getParent(); |
| unsigned OpNo = Use.getOperandNo(); |
| |
| // Folding the immediate may reveal operations that can be constant |
| // folded or replaced with a copy. This can happen for example after |
| // frame indices are lowered to constants or from splitting 64-bit |
| // constants. |
| // |
| // We may also encounter cases where one or both operands are |
| // immediates materialized into a register, which would ordinarily not |
| // be folded due to multiple uses or operand constraints. |
| |
| if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { |
| LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); |
| |
| // Some constant folding cases change the same immediate's use to a new |
| // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user |
| // again. The same constant folded instruction could also have a second |
| // use operand. |
| NextUse = MRI->use_begin(Dst.getReg()); |
| FoldList.clear(); |
| continue; |
| } |
| |
| // Try to fold any inline immediate uses, and then only fold other |
| // constants if they have one use. |
| // |
| // The legality of the inline immediate must be checked based on the use |
| // operand, not the defining instruction, because 32-bit instructions |
| // with 32-bit inline immediate sources may be used to materialize |
| // constants used in 16-bit operands. |
| // |
| // e.g. it is unsafe to fold: |
| // s_mov_b32 s0, 1.0 // materializes 0x3f800000 |
| // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 |
| |
| // Folding immediates with more than one use will increase program size. |
| // FIXME: This will also reduce register usage, which may be better |
| // in some cases. A better heuristic is needed. |
| if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { |
| foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); |
| } else { |
| if (++NumLiteralUses == 1) { |
| NonInlineUse = &*Use; |
| NonInlineUseOpNo = OpNo; |
| } |
| } |
| } |
| |
| if (NumLiteralUses == 1) { |
| MachineInstr *UseMI = NonInlineUse->getParent(); |
| foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); |
| } |
| } else { |
| // Folding register. |
| for (MachineRegisterInfo::use_iterator |
| Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); |
| Use != E; ++Use) { |
| MachineInstr *UseMI = Use->getParent(); |
| |
| foldOperand(OpToFold, UseMI, Use.getOperandNo(), |
| FoldList, CopiesToReplace); |
| } |
| } |
| |
| MachineFunction *MF = MI.getParent()->getParent(); |
| // Make sure we add EXEC uses to any new v_mov instructions created. |
| for (MachineInstr *Copy : CopiesToReplace) |
| Copy->addImplicitDefUseOperands(*MF); |
| |
| for (FoldCandidate &Fold : FoldList) { |
| if (updateOperand(Fold, *TRI)) { |
| // Clear kill flags. |
| if (Fold.isReg()) { |
| assert(Fold.OpToFold && Fold.OpToFold->isReg()); |
| // FIXME: Probably shouldn't bother trying to fold if not an |
| // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR |
| // copies. |
| MRI->clearKillFlags(Fold.OpToFold->getReg()); |
| } |
| LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " |
| << static_cast<int>(Fold.UseOpNo) << " of " |
| << *Fold.UseMI << '\n'); |
| tryFoldInst(TII, Fold.UseMI); |
| } else if (Fold.isCommuted()) { |
| // Restoring instruction's original operand order if fold has failed. |
| TII->commuteInstruction(*Fold.UseMI, false); |
| } |
| } |
| } |
| |
| // Clamp patterns are canonically selected to v_max_* instructions, so only |
| // handle them. |
| const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { |
| unsigned Op = MI.getOpcode(); |
| switch (Op) { |
| case AMDGPU::V_MAX_F32_e64: |
| case AMDGPU::V_MAX_F16_e64: |
| case AMDGPU::V_MAX_F64: |
| case AMDGPU::V_PK_MAX_F16: { |
| if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) |
| return nullptr; |
| |
| // Make sure sources are identical. |
| const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); |
| const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); |
| if (!Src0->isReg() || !Src1->isReg() || |
| Src0->getReg() != Src1->getReg() || |
| Src0->getSubReg() != Src1->getSubReg() || |
| Src0->getSubReg() != AMDGPU::NoSubRegister) |
| return nullptr; |
| |
| // Can't fold up if we have modifiers. |
| if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) |
| return nullptr; |
| |
| unsigned Src0Mods |
| = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); |
| unsigned Src1Mods |
| = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); |
| |
| // Having a 0 op_sel_hi would require swizzling the output in the source |
| // instruction, which we can't do. |
| unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 : 0; |
| if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) |
| return nullptr; |
| return Src0; |
| } |
| default: |
| return nullptr; |
| } |
| } |
| |
| // We obviously have multiple uses in a clamp since the register is used twice |
| // in the same instruction. |
| static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { |
| int Count = 0; |
| for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); |
| I != E; ++I) { |
| if (++Count > 1) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. |
| bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { |
| const MachineOperand *ClampSrc = isClamp(MI); |
| if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) |
| return false; |
| |
| MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); |
| |
| // The type of clamp must be compatible. |
| if (TII->getClampMask(*Def) != TII->getClampMask(MI)) |
| return false; |
| |
| MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); |
| if (!DefClamp) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def |
| << '\n'); |
| |
| // Clamp is applied after omod, so it is OK if omod is set. |
| DefClamp->setImm(1); |
| MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| static int getOModValue(unsigned Opc, int64_t Val) { |
| switch (Opc) { |
| case AMDGPU::V_MUL_F32_e64: { |
| switch (static_cast<uint32_t>(Val)) { |
| case 0x3f000000: // 0.5 |
| return SIOutMods::DIV2; |
| case 0x40000000: // 2.0 |
| return SIOutMods::MUL2; |
| case 0x40800000: // 4.0 |
| return SIOutMods::MUL4; |
| default: |
| return SIOutMods::NONE; |
| } |
| } |
| case AMDGPU::V_MUL_F16_e64: { |
| switch (static_cast<uint16_t>(Val)) { |
| case 0x3800: // 0.5 |
| return SIOutMods::DIV2; |
| case 0x4000: // 2.0 |
| return SIOutMods::MUL2; |
| case 0x4400: // 4.0 |
| return SIOutMods::MUL4; |
| default: |
| return SIOutMods::NONE; |
| } |
| } |
| default: |
| llvm_unreachable("invalid mul opcode"); |
| } |
| } |
| |
| // FIXME: Does this really not support denormals with f16? |
| // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not |
| // handled, so will anything other than that break? |
| std::pair<const MachineOperand *, int> |
| SIFoldOperands::isOMod(const MachineInstr &MI) const { |
| unsigned Op = MI.getOpcode(); |
| switch (Op) { |
| case AMDGPU::V_MUL_F32_e64: |
| case AMDGPU::V_MUL_F16_e64: { |
| // If output denormals are enabled, omod is ignored. |
| if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) || |
| (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals())) |
| return std::make_pair(nullptr, SIOutMods::NONE); |
| |
| const MachineOperand *RegOp = nullptr; |
| const MachineOperand *ImmOp = nullptr; |
| const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); |
| const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); |
| if (Src0->isImm()) { |
| ImmOp = Src0; |
| RegOp = Src1; |
| } else if (Src1->isImm()) { |
| ImmOp = Src1; |
| RegOp = Src0; |
| } else |
| return std::make_pair(nullptr, SIOutMods::NONE); |
| |
| int OMod = getOModValue(Op, ImmOp->getImm()); |
| if (OMod == SIOutMods::NONE || |
| TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || |
| TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || |
| TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || |
| TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) |
| return std::make_pair(nullptr, SIOutMods::NONE); |
| |
| return std::make_pair(RegOp, OMod); |
| } |
| case AMDGPU::V_ADD_F32_e64: |
| case AMDGPU::V_ADD_F16_e64: { |
| // If output denormals are enabled, omod is ignored. |
| if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) || |
| (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals())) |
| return std::make_pair(nullptr, SIOutMods::NONE); |
| |
| // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x |
| const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); |
| const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); |
| |
| if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && |
| Src0->getSubReg() == Src1->getSubReg() && |
| !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && |
| !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && |
| !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && |
| !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) |
| return std::make_pair(Src0, SIOutMods::MUL2); |
| |
| return std::make_pair(nullptr, SIOutMods::NONE); |
| } |
| default: |
| return std::make_pair(nullptr, SIOutMods::NONE); |
| } |
| } |
| |
| // FIXME: Does this need to check IEEE bit on function? |
| bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { |
| const MachineOperand *RegOp; |
| int OMod; |
| std::tie(RegOp, OMod) = isOMod(MI); |
| if (OMod == SIOutMods::NONE || !RegOp->isReg() || |
| RegOp->getSubReg() != AMDGPU::NoSubRegister || |
| !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) |
| return false; |
| |
| MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); |
| MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); |
| if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) |
| return false; |
| |
| // Clamp is applied after omod. If the source already has clamp set, don't |
| // fold it. |
| if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); |
| |
| DefOMod->setImm(OMod); |
| MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| |
| MRI = &MF.getRegInfo(); |
| ST = &MF.getSubtarget<GCNSubtarget>(); |
| TII = ST->getInstrInfo(); |
| TRI = &TII->getRegisterInfo(); |
| |
| const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| // omod is ignored by hardware if IEEE bit is enabled. omod also does not |
| // correctly handle signed zeros. |
| // |
| // TODO: Check nsz on instructions when fast math flags are preserved to MI |
| // level. |
| bool IsIEEEMode = ST->enableIEEEBit(MF) || !MFI->hasNoSignedZerosFPMath(); |
| |
| for (MachineBasicBlock *MBB : depth_first(&MF)) { |
| MachineBasicBlock::iterator I, Next; |
| for (I = MBB->begin(); I != MBB->end(); I = Next) { |
| Next = std::next(I); |
| MachineInstr &MI = *I; |
| |
| tryFoldInst(TII, &MI); |
| |
| if (!TII->isFoldableCopy(MI)) { |
| if (IsIEEEMode || !tryFoldOMod(MI)) |
| tryFoldClamp(MI); |
| continue; |
| } |
| |
| MachineOperand &OpToFold = MI.getOperand(1); |
| bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); |
| |
| // FIXME: We could also be folding things like TargetIndexes. |
| if (!FoldingImm && !OpToFold.isReg()) |
| continue; |
| |
| if (OpToFold.isReg() && |
| !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg())) |
| continue; |
| |
| // Prevent folding operands backwards in the function. For example, |
| // the COPY opcode must not be replaced by 1 in this example: |
| // |
| // %3 = COPY %vgpr0; VGPR_32:%3 |
| // ... |
| // %vgpr0 = V_MOV_B32_e32 1, implicit %exec |
| MachineOperand &Dst = MI.getOperand(0); |
| if (Dst.isReg() && |
| !TargetRegisterInfo::isVirtualRegister(Dst.getReg())) |
| continue; |
| |
| foldInstOperand(MI, OpToFold); |
| } |
| } |
| return false; |
| } |