| //===- AMDGPUPerfHintAnalysis.cpp - analysis of functions memory traffic --===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// \brief Analyzes if a function potentially memory bound and if a kernel |
| /// kernel may benefit from limiting number of waves to reduce cache thrashing. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "AMDGPU.h" |
| #include "AMDGPUPerfHintAnalysis.h" |
| #include "Utils/AMDGPUBaseInfo.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/ValueMap.h" |
| #include "llvm/Support/CommandLine.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "amdgpu-perf-hint" |
| |
| static cl::opt<unsigned> |
| MemBoundThresh("amdgpu-membound-threshold", cl::init(50), cl::Hidden, |
| cl::desc("Function mem bound threshold in %")); |
| |
| static cl::opt<unsigned> |
| LimitWaveThresh("amdgpu-limit-wave-threshold", cl::init(50), cl::Hidden, |
| cl::desc("Kernel limit wave threshold in %")); |
| |
| static cl::opt<unsigned> |
| IAWeight("amdgpu-indirect-access-weight", cl::init(1000), cl::Hidden, |
| cl::desc("Indirect access memory instruction weight")); |
| |
| static cl::opt<unsigned> |
| LSWeight("amdgpu-large-stride-weight", cl::init(1000), cl::Hidden, |
| cl::desc("Large stride memory access weight")); |
| |
| static cl::opt<unsigned> |
| LargeStrideThresh("amdgpu-large-stride-threshold", cl::init(64), cl::Hidden, |
| cl::desc("Large stride memory access threshold")); |
| |
| STATISTIC(NumMemBound, "Number of functions marked as memory bound"); |
| STATISTIC(NumLimitWave, "Number of functions marked as needing limit wave"); |
| |
| char llvm::AMDGPUPerfHintAnalysis::ID = 0; |
| char &llvm::AMDGPUPerfHintAnalysisID = AMDGPUPerfHintAnalysis::ID; |
| |
| INITIALIZE_PASS(AMDGPUPerfHintAnalysis, DEBUG_TYPE, |
| "Analysis if a function is memory bound", true, true) |
| |
| namespace { |
| |
| struct AMDGPUPerfHint { |
| friend AMDGPUPerfHintAnalysis; |
| |
| public: |
| AMDGPUPerfHint(AMDGPUPerfHintAnalysis::FuncInfoMap &FIM_, |
| const TargetLowering *TLI_) |
| : FIM(FIM_), DL(nullptr), TLI(TLI_) {} |
| |
| void runOnFunction(Function &F); |
| |
| private: |
| struct MemAccessInfo { |
| const Value *V; |
| const Value *Base; |
| int64_t Offset; |
| MemAccessInfo() : V(nullptr), Base(nullptr), Offset(0) {} |
| bool isLargeStride(MemAccessInfo &Reference) const; |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| Printable print() const { |
| return Printable([this](raw_ostream &OS) { |
| OS << "Value: " << *V << '\n' |
| << "Base: " << *Base << " Offset: " << Offset << '\n'; |
| }); |
| } |
| #endif |
| }; |
| |
| MemAccessInfo makeMemAccessInfo(Instruction *) const; |
| |
| MemAccessInfo LastAccess; // Last memory access info |
| |
| AMDGPUPerfHintAnalysis::FuncInfoMap &FIM; |
| |
| const DataLayout *DL; |
| |
| AMDGPUAS AS; |
| |
| const TargetLowering *TLI; |
| |
| void visit(const Function &F); |
| static bool isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &F); |
| static bool needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &F); |
| |
| bool isIndirectAccess(const Instruction *Inst) const; |
| |
| /// Check if the instruction is large stride. |
| /// The purpose is to identify memory access pattern like: |
| /// x = a[i]; |
| /// y = a[i+1000]; |
| /// z = a[i+2000]; |
| /// In the above example, the second and third memory access will be marked |
| /// large stride memory access. |
| bool isLargeStride(const Instruction *Inst); |
| |
| bool isGlobalAddr(const Value *V) const; |
| bool isLocalAddr(const Value *V) const; |
| bool isConstantAddr(const Value *V) const; |
| }; |
| |
| static const Value *getMemoryInstrPtr(const Instruction *Inst) { |
| if (auto LI = dyn_cast<LoadInst>(Inst)) { |
| return LI->getPointerOperand(); |
| } |
| if (auto SI = dyn_cast<StoreInst>(Inst)) { |
| return SI->getPointerOperand(); |
| } |
| if (auto AI = dyn_cast<AtomicCmpXchgInst>(Inst)) { |
| return AI->getPointerOperand(); |
| } |
| if (auto AI = dyn_cast<AtomicRMWInst>(Inst)) { |
| return AI->getPointerOperand(); |
| } |
| if (auto MI = dyn_cast<AnyMemIntrinsic>(Inst)) { |
| return MI->getRawDest(); |
| } |
| |
| return nullptr; |
| } |
| |
| bool AMDGPUPerfHint::isIndirectAccess(const Instruction *Inst) const { |
| LLVM_DEBUG(dbgs() << "[isIndirectAccess] " << *Inst << '\n'); |
| SmallSet<const Value *, 32> WorkSet; |
| SmallSet<const Value *, 32> Visited; |
| if (const Value *MO = getMemoryInstrPtr(Inst)) { |
| if (isGlobalAddr(MO)) |
| WorkSet.insert(MO); |
| } |
| |
| while (!WorkSet.empty()) { |
| const Value *V = *WorkSet.begin(); |
| WorkSet.erase(*WorkSet.begin()); |
| if (!Visited.insert(V).second) |
| continue; |
| LLVM_DEBUG(dbgs() << " check: " << *V << '\n'); |
| |
| if (auto LD = dyn_cast<LoadInst>(V)) { |
| auto M = LD->getPointerOperand(); |
| if (isGlobalAddr(M) || isLocalAddr(M) || isConstantAddr(M)) { |
| LLVM_DEBUG(dbgs() << " is IA\n"); |
| return true; |
| } |
| continue; |
| } |
| |
| if (auto GEP = dyn_cast<GetElementPtrInst>(V)) { |
| auto P = GEP->getPointerOperand(); |
| WorkSet.insert(P); |
| for (unsigned I = 1, E = GEP->getNumIndices() + 1; I != E; ++I) |
| WorkSet.insert(GEP->getOperand(I)); |
| continue; |
| } |
| |
| if (auto U = dyn_cast<UnaryInstruction>(V)) { |
| WorkSet.insert(U->getOperand(0)); |
| continue; |
| } |
| |
| if (auto BO = dyn_cast<BinaryOperator>(V)) { |
| WorkSet.insert(BO->getOperand(0)); |
| WorkSet.insert(BO->getOperand(1)); |
| continue; |
| } |
| |
| if (auto S = dyn_cast<SelectInst>(V)) { |
| WorkSet.insert(S->getFalseValue()); |
| WorkSet.insert(S->getTrueValue()); |
| continue; |
| } |
| |
| if (auto E = dyn_cast<ExtractElementInst>(V)) { |
| WorkSet.insert(E->getVectorOperand()); |
| continue; |
| } |
| |
| LLVM_DEBUG(dbgs() << " dropped\n"); |
| } |
| |
| LLVM_DEBUG(dbgs() << " is not IA\n"); |
| return false; |
| } |
| |
| void AMDGPUPerfHint::visit(const Function &F) { |
| auto FIP = FIM.insert(std::make_pair(&F, AMDGPUPerfHintAnalysis::FuncInfo())); |
| if (!FIP.second) |
| return; |
| |
| AMDGPUPerfHintAnalysis::FuncInfo &FI = FIP.first->second; |
| |
| LLVM_DEBUG(dbgs() << "[AMDGPUPerfHint] process " << F.getName() << '\n'); |
| |
| for (auto &B : F) { |
| LastAccess = MemAccessInfo(); |
| for (auto &I : B) { |
| if (getMemoryInstrPtr(&I)) { |
| if (isIndirectAccess(&I)) |
| ++FI.IAMInstCount; |
| if (isLargeStride(&I)) |
| ++FI.LSMInstCount; |
| ++FI.MemInstCount; |
| ++FI.InstCount; |
| continue; |
| } |
| CallSite CS(const_cast<Instruction *>(&I)); |
| if (CS) { |
| Function *Callee = CS.getCalledFunction(); |
| if (!Callee || Callee->isDeclaration()) { |
| ++FI.InstCount; |
| continue; |
| } |
| if (&F == Callee) // Handle immediate recursion |
| continue; |
| |
| visit(*Callee); |
| auto Loc = FIM.find(Callee); |
| |
| assert(Loc != FIM.end() && "No func info"); |
| FI.MemInstCount += Loc->second.MemInstCount; |
| FI.InstCount += Loc->second.InstCount; |
| FI.IAMInstCount += Loc->second.IAMInstCount; |
| FI.LSMInstCount += Loc->second.LSMInstCount; |
| } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { |
| TargetLoweringBase::AddrMode AM; |
| auto *Ptr = GetPointerBaseWithConstantOffset(GEP, AM.BaseOffs, *DL); |
| AM.BaseGV = dyn_cast_or_null<GlobalValue>(const_cast<Value *>(Ptr)); |
| AM.HasBaseReg = !AM.BaseGV; |
| if (TLI->isLegalAddressingMode(*DL, AM, GEP->getResultElementType(), |
| GEP->getPointerAddressSpace())) |
| // Offset will likely be folded into load or store |
| continue; |
| ++FI.InstCount; |
| } else { |
| ++FI.InstCount; |
| } |
| } |
| } |
| } |
| |
| void AMDGPUPerfHint::runOnFunction(Function &F) { |
| if (FIM.find(&F) != FIM.end()) |
| return; |
| |
| const Module &M = *F.getParent(); |
| DL = &M.getDataLayout(); |
| AS = AMDGPU::getAMDGPUAS(M); |
| |
| visit(F); |
| auto Loc = FIM.find(&F); |
| |
| assert(Loc != FIM.end() && "No func info"); |
| LLVM_DEBUG(dbgs() << F.getName() << " MemInst: " << Loc->second.MemInstCount |
| << '\n' |
| << " IAMInst: " << Loc->second.IAMInstCount << '\n' |
| << " LSMInst: " << Loc->second.LSMInstCount << '\n' |
| << " TotalInst: " << Loc->second.InstCount << '\n'); |
| |
| auto &FI = Loc->second; |
| |
| if (isMemBound(FI)) { |
| LLVM_DEBUG(dbgs() << F.getName() << " is memory bound\n"); |
| NumMemBound++; |
| } |
| |
| if (AMDGPU::isEntryFunctionCC(F.getCallingConv()) && needLimitWave(FI)) { |
| LLVM_DEBUG(dbgs() << F.getName() << " needs limit wave\n"); |
| NumLimitWave++; |
| } |
| } |
| |
| bool AMDGPUPerfHint::isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &FI) { |
| return FI.MemInstCount * 100 / FI.InstCount > MemBoundThresh; |
| } |
| |
| bool AMDGPUPerfHint::needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &FI) { |
| return ((FI.MemInstCount + FI.IAMInstCount * IAWeight + |
| FI.LSMInstCount * LSWeight) * |
| 100 / FI.InstCount) > LimitWaveThresh; |
| } |
| |
| bool AMDGPUPerfHint::isGlobalAddr(const Value *V) const { |
| if (auto PT = dyn_cast<PointerType>(V->getType())) { |
| unsigned As = PT->getAddressSpace(); |
| // Flat likely points to global too. |
| return As == AS.GLOBAL_ADDRESS || As == AS.FLAT_ADDRESS; |
| } |
| return false; |
| } |
| |
| bool AMDGPUPerfHint::isLocalAddr(const Value *V) const { |
| if (auto PT = dyn_cast<PointerType>(V->getType())) |
| return PT->getAddressSpace() == AS.LOCAL_ADDRESS; |
| return false; |
| } |
| |
| bool AMDGPUPerfHint::isLargeStride(const Instruction *Inst) { |
| LLVM_DEBUG(dbgs() << "[isLargeStride] " << *Inst << '\n'); |
| |
| MemAccessInfo MAI = makeMemAccessInfo(const_cast<Instruction *>(Inst)); |
| bool IsLargeStride = MAI.isLargeStride(LastAccess); |
| if (MAI.Base) |
| LastAccess = std::move(MAI); |
| |
| return IsLargeStride; |
| } |
| |
| AMDGPUPerfHint::MemAccessInfo |
| AMDGPUPerfHint::makeMemAccessInfo(Instruction *Inst) const { |
| MemAccessInfo MAI; |
| const Value *MO = getMemoryInstrPtr(Inst); |
| |
| LLVM_DEBUG(dbgs() << "[isLargeStride] MO: " << *MO << '\n'); |
| // Do not treat local-addr memory access as large stride. |
| if (isLocalAddr(MO)) |
| return MAI; |
| |
| MAI.V = MO; |
| MAI.Base = GetPointerBaseWithConstantOffset(MO, MAI.Offset, *DL); |
| return MAI; |
| } |
| |
| bool AMDGPUPerfHint::isConstantAddr(const Value *V) const { |
| if (auto PT = dyn_cast<PointerType>(V->getType())) { |
| unsigned As = PT->getAddressSpace(); |
| return As == AS.CONSTANT_ADDRESS || As == AS.CONSTANT_ADDRESS_32BIT; |
| } |
| return false; |
| } |
| |
| bool AMDGPUPerfHint::MemAccessInfo::isLargeStride( |
| MemAccessInfo &Reference) const { |
| |
| if (!Base || !Reference.Base || Base != Reference.Base) |
| return false; |
| |
| uint64_t Diff = Offset > Reference.Offset ? Offset - Reference.Offset |
| : Reference.Offset - Offset; |
| bool Result = Diff > LargeStrideThresh; |
| LLVM_DEBUG(dbgs() << "[isLargeStride compare]\n" |
| << print() << "<=>\n" |
| << Reference.print() << "Result:" << Result << '\n'); |
| return Result; |
| } |
| } // namespace |
| |
| bool AMDGPUPerfHintAnalysis::runOnFunction(Function &F) { |
| auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); |
| if (!TPC) |
| return false; |
| |
| const TargetMachine &TM = TPC->getTM<TargetMachine>(); |
| const TargetSubtargetInfo *ST = TM.getSubtargetImpl(F); |
| |
| AMDGPUPerfHint Analyzer(FIM, ST->getTargetLowering()); |
| Analyzer.runOnFunction(F); |
| return false; |
| } |
| |
| bool AMDGPUPerfHintAnalysis::isMemoryBound(const Function *F) const { |
| auto FI = FIM.find(F); |
| if (FI == FIM.end()) |
| return false; |
| |
| return AMDGPUPerfHint::isMemBound(FI->second); |
| } |
| |
| bool AMDGPUPerfHintAnalysis::needsWaveLimiter(const Function *F) const { |
| auto FI = FIM.find(F); |
| if (FI == FIM.end()) |
| return false; |
| |
| return AMDGPUPerfHint::needLimitWave(FI->second); |
| } |