| //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the ScheduleDAGInstrs class, which implements re-scheduling |
| // of MachineInstrs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "sched-instrs" |
| #include "ScheduleDAGInstrs.h" |
| #include "llvm/Operator.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/MC/MCInstrItineraries.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetSubtargetInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/SmallSet.h" |
| using namespace llvm; |
| |
| ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, |
| const MachineLoopInfo &mli, |
| const MachineDominatorTree &mdt) |
| : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), |
| InstrItins(mf.getTarget().getInstrItineraryData()), |
| Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()), |
| LoopRegs(MLI, MDT), FirstDbgValue(0) { |
| DbgValues.clear(); |
| } |
| |
| /// Run - perform scheduling. |
| /// |
| void ScheduleDAGInstrs::Run(MachineBasicBlock *bb, |
| MachineBasicBlock::iterator begin, |
| MachineBasicBlock::iterator end, |
| unsigned endcount) { |
| BB = bb; |
| Begin = begin; |
| InsertPosIndex = endcount; |
| |
| ScheduleDAG::Run(bb, end); |
| } |
| |
| /// getUnderlyingObjectFromInt - This is the function that does the work of |
| /// looking through basic ptrtoint+arithmetic+inttoptr sequences. |
| static const Value *getUnderlyingObjectFromInt(const Value *V) { |
| do { |
| if (const Operator *U = dyn_cast<Operator>(V)) { |
| // If we find a ptrtoint, we can transfer control back to the |
| // regular getUnderlyingObjectFromInt. |
| if (U->getOpcode() == Instruction::PtrToInt) |
| return U->getOperand(0); |
| // If we find an add of a constant or a multiplied value, it's |
| // likely that the other operand will lead us to the base |
| // object. We don't have to worry about the case where the |
| // object address is somehow being computed by the multiply, |
| // because our callers only care when the result is an |
| // identifibale object. |
| if (U->getOpcode() != Instruction::Add || |
| (!isa<ConstantInt>(U->getOperand(1)) && |
| Operator::getOpcode(U->getOperand(1)) != Instruction::Mul)) |
| return V; |
| V = U->getOperand(0); |
| } else { |
| return V; |
| } |
| assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); |
| } while (1); |
| } |
| |
| /// getUnderlyingObject - This is a wrapper around GetUnderlyingObject |
| /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. |
| static const Value *getUnderlyingObject(const Value *V) { |
| // First just call Value::getUnderlyingObject to let it do what it does. |
| do { |
| V = GetUnderlyingObject(V); |
| // If it found an inttoptr, use special code to continue climing. |
| if (Operator::getOpcode(V) != Instruction::IntToPtr) |
| break; |
| const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); |
| // If that succeeded in finding a pointer, continue the search. |
| if (!O->getType()->isPointerTy()) |
| break; |
| V = O; |
| } while (1); |
| return V; |
| } |
| |
| /// getUnderlyingObjectForInstr - If this machine instr has memory reference |
| /// information and it can be tracked to a normal reference to a known |
| /// object, return the Value for that object. Otherwise return null. |
| static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI, |
| const MachineFrameInfo *MFI, |
| bool &MayAlias) { |
| MayAlias = true; |
| if (!MI->hasOneMemOperand() || |
| !(*MI->memoperands_begin())->getValue() || |
| (*MI->memoperands_begin())->isVolatile()) |
| return 0; |
| |
| const Value *V = (*MI->memoperands_begin())->getValue(); |
| if (!V) |
| return 0; |
| |
| V = getUnderlyingObject(V); |
| if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { |
| // For now, ignore PseudoSourceValues which may alias LLVM IR values |
| // because the code that uses this function has no way to cope with |
| // such aliases. |
| if (PSV->isAliased(MFI)) |
| return 0; |
| |
| MayAlias = PSV->mayAlias(MFI); |
| return V; |
| } |
| |
| if (isIdentifiedObject(V)) |
| return V; |
| |
| return 0; |
| } |
| |
| void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) { |
| LoopRegs.Deps.clear(); |
| if (MachineLoop *ML = MLI.getLoopFor(BB)) |
| if (BB == ML->getLoopLatch()) { |
| MachineBasicBlock *Header = ML->getHeader(); |
| for (MachineBasicBlock::livein_iterator I = Header->livein_begin(), |
| E = Header->livein_end(); I != E; ++I) |
| LoopLiveInRegs.insert(*I); |
| LoopRegs.VisitLoop(ML); |
| } |
| } |
| |
| /// AddSchedBarrierDeps - Add dependencies from instructions in the current |
| /// list of instructions being scheduled to scheduling barrier by adding |
| /// the exit SU to the register defs and use list. This is because we want to |
| /// make sure instructions which define registers that are either used by |
| /// the terminator or are live-out are properly scheduled. This is |
| /// especially important when the definition latency of the return value(s) |
| /// are too high to be hidden by the branch or when the liveout registers |
| /// used by instructions in the fallthrough block. |
| void ScheduleDAGInstrs::AddSchedBarrierDeps() { |
| MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0; |
| ExitSU.setInstr(ExitMI); |
| bool AllDepKnown = ExitMI && |
| (ExitMI->getDesc().isCall() || ExitMI->getDesc().isBarrier()); |
| if (ExitMI && AllDepKnown) { |
| // If it's a call or a barrier, add dependencies on the defs and uses of |
| // instruction. |
| for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = ExitMI->getOperand(i); |
| if (!MO.isReg() || MO.isDef()) continue; |
| unsigned Reg = MO.getReg(); |
| if (Reg == 0) continue; |
| |
| assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!"); |
| Uses[Reg].push_back(&ExitSU); |
| } |
| } else { |
| // For others, e.g. fallthrough, conditional branch, assume the exit |
| // uses all the registers that are livein to the successor blocks. |
| SmallSet<unsigned, 8> Seen; |
| for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), |
| SE = BB->succ_end(); SI != SE; ++SI) |
| for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), |
| E = (*SI)->livein_end(); I != E; ++I) { |
| unsigned Reg = *I; |
| if (Seen.insert(Reg)) |
| Uses[Reg].push_back(&ExitSU); |
| } |
| } |
| } |
| |
| void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) { |
| // We'll be allocating one SUnit for each instruction, plus one for |
| // the region exit node. |
| SUnits.reserve(BB->size()); |
| |
| // We build scheduling units by walking a block's instruction list from bottom |
| // to top. |
| |
| // Remember where a generic side-effecting instruction is as we procede. |
| SUnit *BarrierChain = 0, *AliasChain = 0; |
| |
| // Memory references to specific known memory locations are tracked |
| // so that they can be given more precise dependencies. We track |
| // separately the known memory locations that may alias and those |
| // that are known not to alias |
| std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs; |
| std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; |
| |
| // Check to see if the scheduler cares about latencies. |
| bool UnitLatencies = ForceUnitLatencies(); |
| |
| // Ask the target if address-backscheduling is desirable, and if so how much. |
| const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); |
| unsigned SpecialAddressLatency = ST.getSpecialAddressLatency(); |
| |
| // Remove any stale debug info; sometimes BuildSchedGraph is called again |
| // without emitting the info from the previous call. |
| DbgValues.clear(); |
| FirstDbgValue = NULL; |
| |
| // Model data dependencies between instructions being scheduled and the |
| // ExitSU. |
| AddSchedBarrierDeps(); |
| |
| for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) { |
| assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs"); |
| } |
| |
| // Walk the list of instructions, from bottom moving up. |
| MachineInstr *PrevMI = NULL; |
| for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin; |
| MII != MIE; --MII) { |
| MachineInstr *MI = prior(MII); |
| if (MI && PrevMI) { |
| DbgValues.push_back(std::make_pair(PrevMI, MI)); |
| PrevMI = NULL; |
| } |
| |
| if (MI->isDebugValue()) { |
| PrevMI = MI; |
| continue; |
| } |
| |
| const MCInstrDesc &MCID = MI->getDesc(); |
| assert(!MCID.isTerminator() && !MI->isLabel() && |
| "Cannot schedule terminators or labels!"); |
| // Create the SUnit for this MI. |
| SUnit *SU = NewSUnit(MI); |
| SU->isCall = MCID.isCall(); |
| SU->isCommutable = MCID.isCommutable(); |
| |
| // Assign the Latency field of SU using target-provided information. |
| if (UnitLatencies) |
| SU->Latency = 1; |
| else |
| ComputeLatency(SU); |
| |
| // Add register-based dependencies (data, anti, and output). |
| for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { |
| const MachineOperand &MO = MI->getOperand(j); |
| if (!MO.isReg()) continue; |
| unsigned Reg = MO.getReg(); |
| if (Reg == 0) continue; |
| |
| assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!"); |
| |
| std::vector<SUnit *> &UseList = Uses[Reg]; |
| // Defs are push in the order they are visited and never reordered. |
| std::vector<SUnit *> &DefList = Defs[Reg]; |
| // Optionally add output and anti dependencies. For anti |
| // dependencies we use a latency of 0 because for a multi-issue |
| // target we want to allow the defining instruction to issue |
| // in the same cycle as the using instruction. |
| // TODO: Using a latency of 1 here for output dependencies assumes |
| // there's no cost for reusing registers. |
| SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; |
| unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1; |
| for (unsigned i = 0, e = DefList.size(); i != e; ++i) { |
| SUnit *DefSU = DefList[i]; |
| if (DefSU == &ExitSU) |
| continue; |
| if (DefSU != SU && |
| (Kind != SDep::Output || !MO.isDead() || |
| !DefSU->getInstr()->registerDefIsDead(Reg))) |
| DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg)); |
| } |
| for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { |
| std::vector<SUnit *> &MemDefList = Defs[*Alias]; |
| for (unsigned i = 0, e = MemDefList.size(); i != e; ++i) { |
| SUnit *DefSU = MemDefList[i]; |
| if (DefSU == &ExitSU) |
| continue; |
| if (DefSU != SU && |
| (Kind != SDep::Output || !MO.isDead() || |
| !DefSU->getInstr()->registerDefIsDead(*Alias))) |
| DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias)); |
| } |
| } |
| |
| if (MO.isDef()) { |
| // Add any data dependencies. |
| unsigned DataLatency = SU->Latency; |
| for (unsigned i = 0, e = UseList.size(); i != e; ++i) { |
| SUnit *UseSU = UseList[i]; |
| if (UseSU == SU) |
| continue; |
| unsigned LDataLatency = DataLatency; |
| // Optionally add in a special extra latency for nodes that |
| // feed addresses. |
| // TODO: Do this for register aliases too. |
| // TODO: Perhaps we should get rid of |
| // SpecialAddressLatency and just move this into |
| // adjustSchedDependency for the targets that care about it. |
| if (SpecialAddressLatency != 0 && !UnitLatencies && |
| UseSU != &ExitSU) { |
| MachineInstr *UseMI = UseSU->getInstr(); |
| const MCInstrDesc &UseMCID = UseMI->getDesc(); |
| int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg); |
| assert(RegUseIndex >= 0 && "UseMI doesn's use register!"); |
| if (RegUseIndex >= 0 && |
| (UseMCID.mayLoad() || UseMCID.mayStore()) && |
| (unsigned)RegUseIndex < UseMCID.getNumOperands() && |
| UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass()) |
| LDataLatency += SpecialAddressLatency; |
| } |
| // Adjust the dependence latency using operand def/use |
| // information (if any), and then allow the target to |
| // perform its own adjustments. |
| const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg); |
| if (!UnitLatencies) { |
| ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep)); |
| ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep)); |
| } |
| UseSU->addPred(dep); |
| } |
| for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { |
| std::vector<SUnit *> &UseList = Uses[*Alias]; |
| for (unsigned i = 0, e = UseList.size(); i != e; ++i) { |
| SUnit *UseSU = UseList[i]; |
| if (UseSU == SU) |
| continue; |
| const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias); |
| if (!UnitLatencies) { |
| ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep)); |
| ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep)); |
| } |
| UseSU->addPred(dep); |
| } |
| } |
| |
| // If a def is going to wrap back around to the top of the loop, |
| // backschedule it. |
| if (!UnitLatencies && DefList.empty()) { |
| LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg); |
| if (I != LoopRegs.Deps.end()) { |
| const MachineOperand *UseMO = I->second.first; |
| unsigned Count = I->second.second; |
| const MachineInstr *UseMI = UseMO->getParent(); |
| unsigned UseMOIdx = UseMO - &UseMI->getOperand(0); |
| const MCInstrDesc &UseMCID = UseMI->getDesc(); |
| // TODO: If we knew the total depth of the region here, we could |
| // handle the case where the whole loop is inside the region but |
| // is large enough that the isScheduleHigh trick isn't needed. |
| if (UseMOIdx < UseMCID.getNumOperands()) { |
| // Currently, we only support scheduling regions consisting of |
| // single basic blocks. Check to see if the instruction is in |
| // the same region by checking to see if it has the same parent. |
| if (UseMI->getParent() != MI->getParent()) { |
| unsigned Latency = SU->Latency; |
| if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) |
| Latency += SpecialAddressLatency; |
| // This is a wild guess as to the portion of the latency which |
| // will be overlapped by work done outside the current |
| // scheduling region. |
| Latency -= std::min(Latency, Count); |
| // Add the artificial edge. |
| ExitSU.addPred(SDep(SU, SDep::Order, Latency, |
| /*Reg=*/0, /*isNormalMemory=*/false, |
| /*isMustAlias=*/false, |
| /*isArtificial=*/true)); |
| } else if (SpecialAddressLatency > 0 && |
| UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) { |
| // The entire loop body is within the current scheduling region |
| // and the latency of this operation is assumed to be greater |
| // than the latency of the loop. |
| // TODO: Recursively mark data-edge predecessors as |
| // isScheduleHigh too. |
| SU->isScheduleHigh = true; |
| } |
| } |
| LoopRegs.Deps.erase(I); |
| } |
| } |
| |
| UseList.clear(); |
| if (!MO.isDead()) |
| DefList.clear(); |
| |
| // Calls will not be reordered because of chain dependencies (see |
| // below). Since call operands are dead, calls may continue to be added |
| // to the DefList making dependence checking quadratic in the size of |
| // the block. Instead, we leave only one call at the back of the |
| // DefList. |
| if (SU->isCall) { |
| while (!DefList.empty() && DefList.back()->isCall) |
| DefList.pop_back(); |
| } |
| DefList.push_back(SU); |
| } else { |
| UseList.push_back(SU); |
| } |
| } |
| |
| // Add chain dependencies. |
| // Chain dependencies used to enforce memory order should have |
| // latency of 0 (except for true dependency of Store followed by |
| // aliased Load... we estimate that with a single cycle of latency |
| // assuming the hardware will bypass) |
| // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable |
| // after stack slots are lowered to actual addresses. |
| // TODO: Use an AliasAnalysis and do real alias-analysis queries, and |
| // produce more precise dependence information. |
| #define STORE_LOAD_LATENCY 1 |
| unsigned TrueMemOrderLatency = 0; |
| if (MCID.isCall() || MI->hasUnmodeledSideEffects() || |
| (MI->hasVolatileMemoryRef() && |
| (!MCID.mayLoad() || !MI->isInvariantLoad(AA)))) { |
| // Be conservative with these and add dependencies on all memory |
| // references, even those that are known to not alias. |
| for (std::map<const Value *, SUnit *>::iterator I = |
| NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { |
| I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); |
| } |
| for (std::map<const Value *, std::vector<SUnit *> >::iterator I = |
| NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { |
| for (unsigned i = 0, e = I->second.size(); i != e; ++i) |
| I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); |
| } |
| NonAliasMemDefs.clear(); |
| NonAliasMemUses.clear(); |
| // Add SU to the barrier chain. |
| if (BarrierChain) |
| BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); |
| BarrierChain = SU; |
| |
| // fall-through |
| new_alias_chain: |
| // Chain all possibly aliasing memory references though SU. |
| if (AliasChain) |
| AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); |
| AliasChain = SU; |
| for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) |
| PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); |
| for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(), |
| E = AliasMemDefs.end(); I != E; ++I) { |
| I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); |
| } |
| for (std::map<const Value *, std::vector<SUnit *> >::iterator I = |
| AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { |
| for (unsigned i = 0, e = I->second.size(); i != e; ++i) |
| I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); |
| } |
| PendingLoads.clear(); |
| AliasMemDefs.clear(); |
| AliasMemUses.clear(); |
| } else if (MCID.mayStore()) { |
| bool MayAlias = true; |
| TrueMemOrderLatency = STORE_LOAD_LATENCY; |
| if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { |
| // A store to a specific PseudoSourceValue. Add precise dependencies. |
| // Record the def in MemDefs, first adding a dep if there is |
| // an existing def. |
| std::map<const Value *, SUnit *>::iterator I = |
| ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); |
| std::map<const Value *, SUnit *>::iterator IE = |
| ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); |
| if (I != IE) { |
| I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0, |
| /*isNormalMemory=*/true)); |
| I->second = SU; |
| } else { |
| if (MayAlias) |
| AliasMemDefs[V] = SU; |
| else |
| NonAliasMemDefs[V] = SU; |
| } |
| // Handle the uses in MemUses, if there are any. |
| std::map<const Value *, std::vector<SUnit *> >::iterator J = |
| ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); |
| std::map<const Value *, std::vector<SUnit *> >::iterator JE = |
| ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); |
| if (J != JE) { |
| for (unsigned i = 0, e = J->second.size(); i != e; ++i) |
| J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency, |
| /*Reg=*/0, /*isNormalMemory=*/true)); |
| J->second.clear(); |
| } |
| if (MayAlias) { |
| // Add dependencies from all the PendingLoads, i.e. loads |
| // with no underlying object. |
| for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) |
| PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); |
| // Add dependence on alias chain, if needed. |
| if (AliasChain) |
| AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); |
| } |
| // Add dependence on barrier chain, if needed. |
| if (BarrierChain) |
| BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); |
| } else { |
| // Treat all other stores conservatively. |
| goto new_alias_chain; |
| } |
| |
| if (!ExitSU.isPred(SU)) |
| // Push store's up a bit to avoid them getting in between cmp |
| // and branches. |
| ExitSU.addPred(SDep(SU, SDep::Order, 0, |
| /*Reg=*/0, /*isNormalMemory=*/false, |
| /*isMustAlias=*/false, |
| /*isArtificial=*/true)); |
| } else if (MCID.mayLoad()) { |
| bool MayAlias = true; |
| TrueMemOrderLatency = 0; |
| if (MI->isInvariantLoad(AA)) { |
| // Invariant load, no chain dependencies needed! |
| } else { |
| if (const Value *V = |
| getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { |
| // A load from a specific PseudoSourceValue. Add precise dependencies. |
| std::map<const Value *, SUnit *>::iterator I = |
| ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); |
| std::map<const Value *, SUnit *>::iterator IE = |
| ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); |
| if (I != IE) |
| I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0, |
| /*isNormalMemory=*/true)); |
| if (MayAlias) |
| AliasMemUses[V].push_back(SU); |
| else |
| NonAliasMemUses[V].push_back(SU); |
| } else { |
| // A load with no underlying object. Depend on all |
| // potentially aliasing stores. |
| for (std::map<const Value *, SUnit *>::iterator I = |
| AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) |
| I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); |
| |
| PendingLoads.push_back(SU); |
| MayAlias = true; |
| } |
| |
| // Add dependencies on alias and barrier chains, if needed. |
| if (MayAlias && AliasChain) |
| AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); |
| if (BarrierChain) |
| BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); |
| } |
| } |
| } |
| if (PrevMI) |
| FirstDbgValue = PrevMI; |
| |
| for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) { |
| Defs[i].clear(); |
| Uses[i].clear(); |
| } |
| PendingLoads.clear(); |
| } |
| |
| void ScheduleDAGInstrs::FinishBlock() { |
| // Nothing to do. |
| } |
| |
| void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) { |
| // Compute the latency for the node. |
| if (!InstrItins || InstrItins->isEmpty()) { |
| SU->Latency = 1; |
| |
| // Simplistic target-independent heuristic: assume that loads take |
| // extra time. |
| if (SU->getInstr()->getDesc().mayLoad()) |
| SU->Latency += 2; |
| } else { |
| SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr()); |
| } |
| } |
| |
| void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use, |
| SDep& dep) const { |
| if (!InstrItins || InstrItins->isEmpty()) |
| return; |
| |
| // For a data dependency with a known register... |
| if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0)) |
| return; |
| |
| const unsigned Reg = dep.getReg(); |
| |
| // ... find the definition of the register in the defining |
| // instruction |
| MachineInstr *DefMI = Def->getInstr(); |
| int DefIdx = DefMI->findRegisterDefOperandIdx(Reg); |
| if (DefIdx != -1) { |
| const MachineOperand &MO = DefMI->getOperand(DefIdx); |
| if (MO.isReg() && MO.isImplicit() && |
| DefIdx >= (int)DefMI->getDesc().getNumOperands()) { |
| // This is an implicit def, getOperandLatency() won't return the correct |
| // latency. e.g. |
| // %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def> |
| // %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ... |
| // What we want is to compute latency between def of %D6/%D7 and use of |
| // %Q3 instead. |
| DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI); |
| } |
| MachineInstr *UseMI = Use->getInstr(); |
| // For all uses of the register, calculate the maxmimum latency |
| int Latency = -1; |
| if (UseMI) { |
| for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = UseMI->getOperand(i); |
| if (!MO.isReg() || !MO.isUse()) |
| continue; |
| unsigned MOReg = MO.getReg(); |
| if (MOReg != Reg) |
| continue; |
| |
| int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx, |
| UseMI, i); |
| Latency = std::max(Latency, UseCycle); |
| } |
| } else { |
| // UseMI is null, then it must be a scheduling barrier. |
| if (!InstrItins || InstrItins->isEmpty()) |
| return; |
| unsigned DefClass = DefMI->getDesc().getSchedClass(); |
| Latency = InstrItins->getOperandCycle(DefClass, DefIdx); |
| } |
| |
| // If we found a latency, then replace the existing dependence latency. |
| if (Latency >= 0) |
| dep.setLatency(Latency); |
| } |
| } |
| |
| void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { |
| SU->getInstr()->dump(); |
| } |
| |
| std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { |
| std::string s; |
| raw_string_ostream oss(s); |
| if (SU == &EntrySU) |
| oss << "<entry>"; |
| else if (SU == &ExitSU) |
| oss << "<exit>"; |
| else |
| SU->getInstr()->print(oss); |
| return oss.str(); |
| } |
| |
| // EmitSchedule - Emit the machine code in scheduled order. |
| MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() { |
| // For MachineInstr-based scheduling, we're rescheduling the instructions in |
| // the block, so start by removing them from the block. |
| while (Begin != InsertPos) { |
| MachineBasicBlock::iterator I = Begin; |
| ++Begin; |
| BB->remove(I); |
| } |
| |
| // If first instruction was a DBG_VALUE then put it back. |
| if (FirstDbgValue) |
| BB->insert(InsertPos, FirstDbgValue); |
| |
| // Then re-insert them according to the given schedule. |
| for (unsigned i = 0, e = Sequence.size(); i != e; i++) { |
| if (SUnit *SU = Sequence[i]) |
| BB->insert(InsertPos, SU->getInstr()); |
| else |
| // Null SUnit* is a noop. |
| EmitNoop(); |
| } |
| |
| // Update the Begin iterator, as the first instruction in the block |
| // may have been scheduled later. |
| if (!Sequence.empty()) |
| Begin = Sequence[0]->getInstr(); |
| |
| // Reinsert any remaining debug_values. |
| for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator |
| DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { |
| std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); |
| MachineInstr *DbgValue = P.first; |
| MachineInstr *OrigPrivMI = P.second; |
| BB->insertAfter(OrigPrivMI, DbgValue); |
| } |
| DbgValues.clear(); |
| FirstDbgValue = NULL; |
| return BB; |
| } |