blob: 34b8ab0b47f25341bb860b44b71b0c740680067c [file] [log] [blame]
//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the ScheduleDAGInstrs class, which implements re-scheduling
// of MachineInstrs.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sched-instrs"
#include "ScheduleDAGInstrs.h"
#include "llvm/Operator.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallSet.h"
using namespace llvm;
ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
const MachineLoopInfo &mli,
const MachineDominatorTree &mdt)
: ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
InstrItins(mf.getTarget().getInstrItineraryData()),
Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()),
LoopRegs(MLI, MDT), FirstDbgValue(0) {
DbgValues.clear();
}
/// Run - perform scheduling.
///
void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
MachineBasicBlock::iterator begin,
MachineBasicBlock::iterator end,
unsigned endcount) {
BB = bb;
Begin = begin;
InsertPosIndex = endcount;
ScheduleDAG::Run(bb, end);
}
/// getUnderlyingObjectFromInt - This is the function that does the work of
/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
static const Value *getUnderlyingObjectFromInt(const Value *V) {
do {
if (const Operator *U = dyn_cast<Operator>(V)) {
// If we find a ptrtoint, we can transfer control back to the
// regular getUnderlyingObjectFromInt.
if (U->getOpcode() == Instruction::PtrToInt)
return U->getOperand(0);
// If we find an add of a constant or a multiplied value, it's
// likely that the other operand will lead us to the base
// object. We don't have to worry about the case where the
// object address is somehow being computed by the multiply,
// because our callers only care when the result is an
// identifibale object.
if (U->getOpcode() != Instruction::Add ||
(!isa<ConstantInt>(U->getOperand(1)) &&
Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
return V;
V = U->getOperand(0);
} else {
return V;
}
assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
} while (1);
}
/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
static const Value *getUnderlyingObject(const Value *V) {
// First just call Value::getUnderlyingObject to let it do what it does.
do {
V = GetUnderlyingObject(V);
// If it found an inttoptr, use special code to continue climing.
if (Operator::getOpcode(V) != Instruction::IntToPtr)
break;
const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
// If that succeeded in finding a pointer, continue the search.
if (!O->getType()->isPointerTy())
break;
V = O;
} while (1);
return V;
}
/// getUnderlyingObjectForInstr - If this machine instr has memory reference
/// information and it can be tracked to a normal reference to a known
/// object, return the Value for that object. Otherwise return null.
static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
const MachineFrameInfo *MFI,
bool &MayAlias) {
MayAlias = true;
if (!MI->hasOneMemOperand() ||
!(*MI->memoperands_begin())->getValue() ||
(*MI->memoperands_begin())->isVolatile())
return 0;
const Value *V = (*MI->memoperands_begin())->getValue();
if (!V)
return 0;
V = getUnderlyingObject(V);
if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
// For now, ignore PseudoSourceValues which may alias LLVM IR values
// because the code that uses this function has no way to cope with
// such aliases.
if (PSV->isAliased(MFI))
return 0;
MayAlias = PSV->mayAlias(MFI);
return V;
}
if (isIdentifiedObject(V))
return V;
return 0;
}
void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
LoopRegs.Deps.clear();
if (MachineLoop *ML = MLI.getLoopFor(BB))
if (BB == ML->getLoopLatch()) {
MachineBasicBlock *Header = ML->getHeader();
for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
E = Header->livein_end(); I != E; ++I)
LoopLiveInRegs.insert(*I);
LoopRegs.VisitLoop(ML);
}
}
/// AddSchedBarrierDeps - Add dependencies from instructions in the current
/// list of instructions being scheduled to scheduling barrier by adding
/// the exit SU to the register defs and use list. This is because we want to
/// make sure instructions which define registers that are either used by
/// the terminator or are live-out are properly scheduled. This is
/// especially important when the definition latency of the return value(s)
/// are too high to be hidden by the branch or when the liveout registers
/// used by instructions in the fallthrough block.
void ScheduleDAGInstrs::AddSchedBarrierDeps() {
MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
ExitSU.setInstr(ExitMI);
bool AllDepKnown = ExitMI &&
(ExitMI->getDesc().isCall() || ExitMI->getDesc().isBarrier());
if (ExitMI && AllDepKnown) {
// If it's a call or a barrier, add dependencies on the defs and uses of
// instruction.
for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = ExitMI->getOperand(i);
if (!MO.isReg() || MO.isDef()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
Uses[Reg].push_back(&ExitSU);
}
} else {
// For others, e.g. fallthrough, conditional branch, assume the exit
// uses all the registers that are livein to the successor blocks.
SmallSet<unsigned, 8> Seen;
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
SE = BB->succ_end(); SI != SE; ++SI)
for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
E = (*SI)->livein_end(); I != E; ++I) {
unsigned Reg = *I;
if (Seen.insert(Reg))
Uses[Reg].push_back(&ExitSU);
}
}
}
void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
// We'll be allocating one SUnit for each instruction, plus one for
// the region exit node.
SUnits.reserve(BB->size());
// We build scheduling units by walking a block's instruction list from bottom
// to top.
// Remember where a generic side-effecting instruction is as we procede.
SUnit *BarrierChain = 0, *AliasChain = 0;
// Memory references to specific known memory locations are tracked
// so that they can be given more precise dependencies. We track
// separately the known memory locations that may alias and those
// that are known not to alias
std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
// Check to see if the scheduler cares about latencies.
bool UnitLatencies = ForceUnitLatencies();
// Ask the target if address-backscheduling is desirable, and if so how much.
const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
// Remove any stale debug info; sometimes BuildSchedGraph is called again
// without emitting the info from the previous call.
DbgValues.clear();
FirstDbgValue = NULL;
// Model data dependencies between instructions being scheduled and the
// ExitSU.
AddSchedBarrierDeps();
for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs");
}
// Walk the list of instructions, from bottom moving up.
MachineInstr *PrevMI = NULL;
for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
MII != MIE; --MII) {
MachineInstr *MI = prior(MII);
if (MI && PrevMI) {
DbgValues.push_back(std::make_pair(PrevMI, MI));
PrevMI = NULL;
}
if (MI->isDebugValue()) {
PrevMI = MI;
continue;
}
const MCInstrDesc &MCID = MI->getDesc();
assert(!MCID.isTerminator() && !MI->isLabel() &&
"Cannot schedule terminators or labels!");
// Create the SUnit for this MI.
SUnit *SU = NewSUnit(MI);
SU->isCall = MCID.isCall();
SU->isCommutable = MCID.isCommutable();
// Assign the Latency field of SU using target-provided information.
if (UnitLatencies)
SU->Latency = 1;
else
ComputeLatency(SU);
// Add register-based dependencies (data, anti, and output).
for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
const MachineOperand &MO = MI->getOperand(j);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
std::vector<SUnit *> &UseList = Uses[Reg];
// Defs are push in the order they are visited and never reordered.
std::vector<SUnit *> &DefList = Defs[Reg];
// Optionally add output and anti dependencies. For anti
// dependencies we use a latency of 0 because for a multi-issue
// target we want to allow the defining instruction to issue
// in the same cycle as the using instruction.
// TODO: Using a latency of 1 here for output dependencies assumes
// there's no cost for reusing registers.
SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
SUnit *DefSU = DefList[i];
if (DefSU == &ExitSU)
continue;
if (DefSU != SU &&
(Kind != SDep::Output || !MO.isDead() ||
!DefSU->getInstr()->registerDefIsDead(Reg)))
DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
}
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
std::vector<SUnit *> &MemDefList = Defs[*Alias];
for (unsigned i = 0, e = MemDefList.size(); i != e; ++i) {
SUnit *DefSU = MemDefList[i];
if (DefSU == &ExitSU)
continue;
if (DefSU != SU &&
(Kind != SDep::Output || !MO.isDead() ||
!DefSU->getInstr()->registerDefIsDead(*Alias)))
DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
}
}
if (MO.isDef()) {
// Add any data dependencies.
unsigned DataLatency = SU->Latency;
for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
SUnit *UseSU = UseList[i];
if (UseSU == SU)
continue;
unsigned LDataLatency = DataLatency;
// Optionally add in a special extra latency for nodes that
// feed addresses.
// TODO: Do this for register aliases too.
// TODO: Perhaps we should get rid of
// SpecialAddressLatency and just move this into
// adjustSchedDependency for the targets that care about it.
if (SpecialAddressLatency != 0 && !UnitLatencies &&
UseSU != &ExitSU) {
MachineInstr *UseMI = UseSU->getInstr();
const MCInstrDesc &UseMCID = UseMI->getDesc();
int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
if (RegUseIndex >= 0 &&
(UseMCID.mayLoad() || UseMCID.mayStore()) &&
(unsigned)RegUseIndex < UseMCID.getNumOperands() &&
UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
LDataLatency += SpecialAddressLatency;
}
// Adjust the dependence latency using operand def/use
// information (if any), and then allow the target to
// perform its own adjustments.
const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
if (!UnitLatencies) {
ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
}
UseSU->addPred(dep);
}
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
std::vector<SUnit *> &UseList = Uses[*Alias];
for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
SUnit *UseSU = UseList[i];
if (UseSU == SU)
continue;
const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
if (!UnitLatencies) {
ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
}
UseSU->addPred(dep);
}
}
// If a def is going to wrap back around to the top of the loop,
// backschedule it.
if (!UnitLatencies && DefList.empty()) {
LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
if (I != LoopRegs.Deps.end()) {
const MachineOperand *UseMO = I->second.first;
unsigned Count = I->second.second;
const MachineInstr *UseMI = UseMO->getParent();
unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
const MCInstrDesc &UseMCID = UseMI->getDesc();
// TODO: If we knew the total depth of the region here, we could
// handle the case where the whole loop is inside the region but
// is large enough that the isScheduleHigh trick isn't needed.
if (UseMOIdx < UseMCID.getNumOperands()) {
// Currently, we only support scheduling regions consisting of
// single basic blocks. Check to see if the instruction is in
// the same region by checking to see if it has the same parent.
if (UseMI->getParent() != MI->getParent()) {
unsigned Latency = SU->Latency;
if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
Latency += SpecialAddressLatency;
// This is a wild guess as to the portion of the latency which
// will be overlapped by work done outside the current
// scheduling region.
Latency -= std::min(Latency, Count);
// Add the artificial edge.
ExitSU.addPred(SDep(SU, SDep::Order, Latency,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false,
/*isArtificial=*/true));
} else if (SpecialAddressLatency > 0 &&
UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
// The entire loop body is within the current scheduling region
// and the latency of this operation is assumed to be greater
// than the latency of the loop.
// TODO: Recursively mark data-edge predecessors as
// isScheduleHigh too.
SU->isScheduleHigh = true;
}
}
LoopRegs.Deps.erase(I);
}
}
UseList.clear();
if (!MO.isDead())
DefList.clear();
// Calls will not be reordered because of chain dependencies (see
// below). Since call operands are dead, calls may continue to be added
// to the DefList making dependence checking quadratic in the size of
// the block. Instead, we leave only one call at the back of the
// DefList.
if (SU->isCall) {
while (!DefList.empty() && DefList.back()->isCall)
DefList.pop_back();
}
DefList.push_back(SU);
} else {
UseList.push_back(SU);
}
}
// Add chain dependencies.
// Chain dependencies used to enforce memory order should have
// latency of 0 (except for true dependency of Store followed by
// aliased Load... we estimate that with a single cycle of latency
// assuming the hardware will bypass)
// Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
// after stack slots are lowered to actual addresses.
// TODO: Use an AliasAnalysis and do real alias-analysis queries, and
// produce more precise dependence information.
#define STORE_LOAD_LATENCY 1
unsigned TrueMemOrderLatency = 0;
if (MCID.isCall() || MI->hasUnmodeledSideEffects() ||
(MI->hasVolatileMemoryRef() &&
(!MCID.mayLoad() || !MI->isInvariantLoad(AA)))) {
// Be conservative with these and add dependencies on all memory
// references, even those that are known to not alias.
for (std::map<const Value *, SUnit *>::iterator I =
NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
}
for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
for (unsigned i = 0, e = I->second.size(); i != e; ++i)
I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
}
NonAliasMemDefs.clear();
NonAliasMemUses.clear();
// Add SU to the barrier chain.
if (BarrierChain)
BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
BarrierChain = SU;
// fall-through
new_alias_chain:
// Chain all possibly aliasing memory references though SU.
if (AliasChain)
AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
AliasChain = SU;
for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
E = AliasMemDefs.end(); I != E; ++I) {
I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
}
for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
for (unsigned i = 0, e = I->second.size(); i != e; ++i)
I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
}
PendingLoads.clear();
AliasMemDefs.clear();
AliasMemUses.clear();
} else if (MCID.mayStore()) {
bool MayAlias = true;
TrueMemOrderLatency = STORE_LOAD_LATENCY;
if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
// A store to a specific PseudoSourceValue. Add precise dependencies.
// Record the def in MemDefs, first adding a dep if there is
// an existing def.
std::map<const Value *, SUnit *>::iterator I =
((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
std::map<const Value *, SUnit *>::iterator IE =
((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
if (I != IE) {
I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
/*isNormalMemory=*/true));
I->second = SU;
} else {
if (MayAlias)
AliasMemDefs[V] = SU;
else
NonAliasMemDefs[V] = SU;
}
// Handle the uses in MemUses, if there are any.
std::map<const Value *, std::vector<SUnit *> >::iterator J =
((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
std::map<const Value *, std::vector<SUnit *> >::iterator JE =
((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
if (J != JE) {
for (unsigned i = 0, e = J->second.size(); i != e; ++i)
J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
/*Reg=*/0, /*isNormalMemory=*/true));
J->second.clear();
}
if (MayAlias) {
// Add dependencies from all the PendingLoads, i.e. loads
// with no underlying object.
for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
// Add dependence on alias chain, if needed.
if (AliasChain)
AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
}
// Add dependence on barrier chain, if needed.
if (BarrierChain)
BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
} else {
// Treat all other stores conservatively.
goto new_alias_chain;
}
if (!ExitSU.isPred(SU))
// Push store's up a bit to avoid them getting in between cmp
// and branches.
ExitSU.addPred(SDep(SU, SDep::Order, 0,
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false,
/*isArtificial=*/true));
} else if (MCID.mayLoad()) {
bool MayAlias = true;
TrueMemOrderLatency = 0;
if (MI->isInvariantLoad(AA)) {
// Invariant load, no chain dependencies needed!
} else {
if (const Value *V =
getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
// A load from a specific PseudoSourceValue. Add precise dependencies.
std::map<const Value *, SUnit *>::iterator I =
((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
std::map<const Value *, SUnit *>::iterator IE =
((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
if (I != IE)
I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
/*isNormalMemory=*/true));
if (MayAlias)
AliasMemUses[V].push_back(SU);
else
NonAliasMemUses[V].push_back(SU);
} else {
// A load with no underlying object. Depend on all
// potentially aliasing stores.
for (std::map<const Value *, SUnit *>::iterator I =
AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
PendingLoads.push_back(SU);
MayAlias = true;
}
// Add dependencies on alias and barrier chains, if needed.
if (MayAlias && AliasChain)
AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
if (BarrierChain)
BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
}
}
}
if (PrevMI)
FirstDbgValue = PrevMI;
for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
Defs[i].clear();
Uses[i].clear();
}
PendingLoads.clear();
}
void ScheduleDAGInstrs::FinishBlock() {
// Nothing to do.
}
void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
// Compute the latency for the node.
if (!InstrItins || InstrItins->isEmpty()) {
SU->Latency = 1;
// Simplistic target-independent heuristic: assume that loads take
// extra time.
if (SU->getInstr()->getDesc().mayLoad())
SU->Latency += 2;
} else {
SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
}
}
void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
SDep& dep) const {
if (!InstrItins || InstrItins->isEmpty())
return;
// For a data dependency with a known register...
if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
return;
const unsigned Reg = dep.getReg();
// ... find the definition of the register in the defining
// instruction
MachineInstr *DefMI = Def->getInstr();
int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
if (DefIdx != -1) {
const MachineOperand &MO = DefMI->getOperand(DefIdx);
if (MO.isReg() && MO.isImplicit() &&
DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
// This is an implicit def, getOperandLatency() won't return the correct
// latency. e.g.
// %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
// %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
// What we want is to compute latency between def of %D6/%D7 and use of
// %Q3 instead.
DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
}
MachineInstr *UseMI = Use->getInstr();
// For all uses of the register, calculate the maxmimum latency
int Latency = -1;
if (UseMI) {
for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = UseMI->getOperand(i);
if (!MO.isReg() || !MO.isUse())
continue;
unsigned MOReg = MO.getReg();
if (MOReg != Reg)
continue;
int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
UseMI, i);
Latency = std::max(Latency, UseCycle);
}
} else {
// UseMI is null, then it must be a scheduling barrier.
if (!InstrItins || InstrItins->isEmpty())
return;
unsigned DefClass = DefMI->getDesc().getSchedClass();
Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
}
// If we found a latency, then replace the existing dependence latency.
if (Latency >= 0)
dep.setLatency(Latency);
}
}
void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
SU->getInstr()->dump();
}
std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
std::string s;
raw_string_ostream oss(s);
if (SU == &EntrySU)
oss << "<entry>";
else if (SU == &ExitSU)
oss << "<exit>";
else
SU->getInstr()->print(oss);
return oss.str();
}
// EmitSchedule - Emit the machine code in scheduled order.
MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
// For MachineInstr-based scheduling, we're rescheduling the instructions in
// the block, so start by removing them from the block.
while (Begin != InsertPos) {
MachineBasicBlock::iterator I = Begin;
++Begin;
BB->remove(I);
}
// If first instruction was a DBG_VALUE then put it back.
if (FirstDbgValue)
BB->insert(InsertPos, FirstDbgValue);
// Then re-insert them according to the given schedule.
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
if (SUnit *SU = Sequence[i])
BB->insert(InsertPos, SU->getInstr());
else
// Null SUnit* is a noop.
EmitNoop();
}
// Update the Begin iterator, as the first instruction in the block
// may have been scheduled later.
if (!Sequence.empty())
Begin = Sequence[0]->getInstr();
// Reinsert any remaining debug_values.
for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
MachineInstr *DbgValue = P.first;
MachineInstr *OrigPrivMI = P.second;
BB->insertAfter(OrigPrivMI, DbgValue);
}
DbgValues.clear();
FirstDbgValue = NULL;
return BB;
}