| //===- ScalarEvolutionNormalization.cpp - See below -------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements utilities for working with "normalized" expressions. |
| // See the comments at the top of ScalarEvolutionNormalization.h for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/ScalarEvolutionNormalization.h" |
| using namespace llvm; |
| |
| /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression |
| /// and now we need to decide whether the user should use the preinc or post-inc |
| /// value. If this user should use the post-inc version of the IV, return true. |
| /// |
| /// Choosing wrong here can break dominance properties (if we choose to use the |
| /// post-inc value when we cannot) or it can end up adding extra live-ranges to |
| /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we |
| /// should use the post-inc value). |
| static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand, |
| const Loop *L, DominatorTree *DT) { |
| // If the user is in the loop, use the preinc value. |
| if (L->contains(User)) return false; |
| |
| BasicBlock *LatchBlock = L->getLoopLatch(); |
| if (!LatchBlock) |
| return false; |
| |
| // Ok, the user is outside of the loop. If it is dominated by the latch |
| // block, use the post-inc value. |
| if (DT->dominates(LatchBlock, User->getParent())) |
| return true; |
| |
| // There is one case we have to be careful of: PHI nodes. These little guys |
| // can live in blocks that are not dominated by the latch block, but (since |
| // their uses occur in the predecessor block, not the block the PHI lives in) |
| // should still use the post-inc value. Check for this case now. |
| PHINode *PN = dyn_cast<PHINode>(User); |
| if (!PN || !Operand) return false; // not a phi, not dominated by latch block. |
| |
| // Look at all of the uses of Operand by the PHI node. If any use corresponds |
| // to a block that is not dominated by the latch block, give up and use the |
| // preincremented value. |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (PN->getIncomingValue(i) == Operand && |
| !DT->dominates(LatchBlock, PN->getIncomingBlock(i))) |
| return false; |
| |
| // Okay, all uses of Operand by PN are in predecessor blocks that really are |
| // dominated by the latch block. Use the post-incremented value. |
| return true; |
| } |
| |
| namespace { |
| |
| /// Hold the state used during post-inc expression transformation, including a |
| /// map of transformed expressions. |
| class PostIncTransform { |
| TransformKind Kind; |
| PostIncLoopSet &Loops; |
| ScalarEvolution &SE; |
| DominatorTree &DT; |
| |
| DenseMap<const SCEV*, const SCEV*> Transformed; |
| |
| public: |
| PostIncTransform(TransformKind kind, PostIncLoopSet &loops, |
| ScalarEvolution &se, DominatorTree &dt): |
| Kind(kind), Loops(loops), SE(se), DT(dt) {} |
| |
| const SCEV *TransformSubExpr(const SCEV *S, Instruction *User, |
| Value *OperandValToReplace); |
| |
| protected: |
| const SCEV *TransformImpl(const SCEV *S, Instruction *User, |
| Value *OperandValToReplace); |
| }; |
| |
| } // namespace |
| |
| /// Implement post-inc transformation for all valid expression types. |
| const SCEV *PostIncTransform:: |
| TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) { |
| |
| if (const SCEVCastExpr *X = dyn_cast<SCEVCastExpr>(S)) { |
| const SCEV *O = X->getOperand(); |
| const SCEV *N = TransformSubExpr(O, User, OperandValToReplace); |
| if (O != N) |
| switch (S->getSCEVType()) { |
| case scZeroExtend: return SE.getZeroExtendExpr(N, S->getType()); |
| case scSignExtend: return SE.getSignExtendExpr(N, S->getType()); |
| case scTruncate: return SE.getTruncateExpr(N, S->getType()); |
| default: llvm_unreachable("Unexpected SCEVCastExpr kind!"); |
| } |
| return S; |
| } |
| |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| // An addrec. This is the interesting part. |
| SmallVector<const SCEV *, 8> Operands; |
| const Loop *L = AR->getLoop(); |
| // The addrec conceptually uses its operands at loop entry. |
| Instruction *LUser = L->getHeader()->begin(); |
| // Transform each operand. |
| for (SCEVNAryExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); |
| I != E; ++I) { |
| Operands.push_back(TransformSubExpr(*I, LUser, 0)); |
| } |
| // Conservatively use AnyWrap until/unless we need FlagNW. |
| const SCEV *Result = SE.getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); |
| switch (Kind) { |
| default: llvm_unreachable("Unexpected transform name!"); |
| case NormalizeAutodetect: |
| if (IVUseShouldUsePostIncValue(User, OperandValToReplace, L, &DT)) { |
| const SCEV *TransformedStep = |
| TransformSubExpr(AR->getStepRecurrence(SE), |
| User, OperandValToReplace); |
| Result = SE.getMinusSCEV(Result, TransformedStep); |
| Loops.insert(L); |
| } |
| #if 0 |
| // This assert is conceptually correct, but ScalarEvolution currently |
| // sometimes fails to canonicalize two equal SCEVs to exactly the same |
| // form. It's possibly a pessimization when this happens, but it isn't a |
| // correctness problem, so disable this assert for now. |
| assert(S == TransformSubExpr(Result, User, OperandValToReplace) && |
| "SCEV normalization is not invertible!"); |
| #endif |
| break; |
| case Normalize: |
| if (Loops.count(L)) { |
| const SCEV *TransformedStep = |
| TransformSubExpr(AR->getStepRecurrence(SE), |
| User, OperandValToReplace); |
| Result = SE.getMinusSCEV(Result, TransformedStep); |
| } |
| #if 0 |
| // See the comment on the assert above. |
| assert(S == TransformSubExpr(Result, User, OperandValToReplace) && |
| "SCEV normalization is not invertible!"); |
| #endif |
| break; |
| case Denormalize: |
| if (Loops.count(L)) |
| Result = cast<SCEVAddRecExpr>(Result)->getPostIncExpr(SE); |
| break; |
| } |
| return Result; |
| } |
| |
| if (const SCEVNAryExpr *X = dyn_cast<SCEVNAryExpr>(S)) { |
| SmallVector<const SCEV *, 8> Operands; |
| bool Changed = false; |
| // Transform each operand. |
| for (SCEVNAryExpr::op_iterator I = X->op_begin(), E = X->op_end(); |
| I != E; ++I) { |
| const SCEV *O = *I; |
| const SCEV *N = TransformSubExpr(O, User, OperandValToReplace); |
| Changed |= N != O; |
| Operands.push_back(N); |
| } |
| // If any operand actually changed, return a transformed result. |
| if (Changed) |
| switch (S->getSCEVType()) { |
| case scAddExpr: return SE.getAddExpr(Operands); |
| case scMulExpr: return SE.getMulExpr(Operands); |
| case scSMaxExpr: return SE.getSMaxExpr(Operands); |
| case scUMaxExpr: return SE.getUMaxExpr(Operands); |
| default: llvm_unreachable("Unexpected SCEVNAryExpr kind!"); |
| } |
| return S; |
| } |
| |
| if (const SCEVUDivExpr *X = dyn_cast<SCEVUDivExpr>(S)) { |
| const SCEV *LO = X->getLHS(); |
| const SCEV *RO = X->getRHS(); |
| const SCEV *LN = TransformSubExpr(LO, User, OperandValToReplace); |
| const SCEV *RN = TransformSubExpr(RO, User, OperandValToReplace); |
| if (LO != LN || RO != RN) |
| return SE.getUDivExpr(LN, RN); |
| return S; |
| } |
| |
| llvm_unreachable("Unexpected SCEV kind!"); |
| return 0; |
| } |
| |
| /// Manage recursive transformation across an expression DAG. Revisiting |
| /// expressions would lead to exponential recursion. |
| const SCEV *PostIncTransform:: |
| TransformSubExpr(const SCEV *S, Instruction *User, Value *OperandValToReplace) { |
| |
| if (isa<SCEVConstant>(S) || isa<SCEVUnknown>(S)) |
| return S; |
| |
| const SCEV *Result = Transformed.lookup(S); |
| if (Result) |
| return Result; |
| |
| Result = TransformImpl(S, User, OperandValToReplace); |
| Transformed[S] = Result; |
| return Result; |
| } |
| |
| /// Top level driver for transforming an expression DAG into its requested |
| /// post-inc form (either "Normalized" or "Denormalized". |
| const SCEV *llvm::TransformForPostIncUse(TransformKind Kind, |
| const SCEV *S, |
| Instruction *User, |
| Value *OperandValToReplace, |
| PostIncLoopSet &Loops, |
| ScalarEvolution &SE, |
| DominatorTree &DT) { |
| PostIncTransform Transform(Kind, Loops, SE, DT); |
| return Transform.TransformSubExpr(S, User, OperandValToReplace); |
| } |