| #include "llvm/DerivedTypes.h" | 
 | #include "llvm/ExecutionEngine/ExecutionEngine.h" | 
 | #include "llvm/ExecutionEngine/JIT.h" | 
 | #include "llvm/LLVMContext.h" | 
 | #include "llvm/Module.h" | 
 | #include "llvm/PassManager.h" | 
 | #include "llvm/Analysis/Verifier.h" | 
 | #include "llvm/Analysis/Passes.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Transforms/Scalar.h" | 
 | #include "llvm/Support/IRBuilder.h" | 
 | #include "llvm/Support/TargetSelect.h" | 
 | #include <cstdio> | 
 | #include <string> | 
 | #include <map> | 
 | #include <vector> | 
 | using namespace llvm; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Lexer | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one | 
 | // of these for known things. | 
 | enum Token { | 
 |   tok_eof = -1, | 
 |  | 
 |   // commands | 
 |   tok_def = -2, tok_extern = -3, | 
 |  | 
 |   // primary | 
 |   tok_identifier = -4, tok_number = -5, | 
 |    | 
 |   // control | 
 |   tok_if = -6, tok_then = -7, tok_else = -8, | 
 |   tok_for = -9, tok_in = -10, | 
 |    | 
 |   // operators | 
 |   tok_binary = -11, tok_unary = -12, | 
 |    | 
 |   // var definition | 
 |   tok_var = -13 | 
 | }; | 
 |  | 
 | static std::string IdentifierStr;  // Filled in if tok_identifier | 
 | static double NumVal;              // Filled in if tok_number | 
 |  | 
 | /// gettok - Return the next token from standard input. | 
 | static int gettok() { | 
 |   static int LastChar = ' '; | 
 |  | 
 |   // Skip any whitespace. | 
 |   while (isspace(LastChar)) | 
 |     LastChar = getchar(); | 
 |  | 
 |   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* | 
 |     IdentifierStr = LastChar; | 
 |     while (isalnum((LastChar = getchar()))) | 
 |       IdentifierStr += LastChar; | 
 |  | 
 |     if (IdentifierStr == "def") return tok_def; | 
 |     if (IdentifierStr == "extern") return tok_extern; | 
 |     if (IdentifierStr == "if") return tok_if; | 
 |     if (IdentifierStr == "then") return tok_then; | 
 |     if (IdentifierStr == "else") return tok_else; | 
 |     if (IdentifierStr == "for") return tok_for; | 
 |     if (IdentifierStr == "in") return tok_in; | 
 |     if (IdentifierStr == "binary") return tok_binary; | 
 |     if (IdentifierStr == "unary") return tok_unary; | 
 |     if (IdentifierStr == "var") return tok_var; | 
 |     return tok_identifier; | 
 |   } | 
 |  | 
 |   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+ | 
 |     std::string NumStr; | 
 |     do { | 
 |       NumStr += LastChar; | 
 |       LastChar = getchar(); | 
 |     } while (isdigit(LastChar) || LastChar == '.'); | 
 |  | 
 |     NumVal = strtod(NumStr.c_str(), 0); | 
 |     return tok_number; | 
 |   } | 
 |  | 
 |   if (LastChar == '#') { | 
 |     // Comment until end of line. | 
 |     do LastChar = getchar(); | 
 |     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); | 
 |      | 
 |     if (LastChar != EOF) | 
 |       return gettok(); | 
 |   } | 
 |    | 
 |   // Check for end of file.  Don't eat the EOF. | 
 |   if (LastChar == EOF) | 
 |     return tok_eof; | 
 |  | 
 |   // Otherwise, just return the character as its ascii value. | 
 |   int ThisChar = LastChar; | 
 |   LastChar = getchar(); | 
 |   return ThisChar; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Abstract Syntax Tree (aka Parse Tree) | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// ExprAST - Base class for all expression nodes. | 
 | class ExprAST { | 
 | public: | 
 |   virtual ~ExprAST() {} | 
 |   virtual Value *Codegen() = 0; | 
 | }; | 
 |  | 
 | /// NumberExprAST - Expression class for numeric literals like "1.0". | 
 | class NumberExprAST : public ExprAST { | 
 |   double Val; | 
 | public: | 
 |   NumberExprAST(double val) : Val(val) {} | 
 |   virtual Value *Codegen(); | 
 | }; | 
 |  | 
 | /// VariableExprAST - Expression class for referencing a variable, like "a". | 
 | class VariableExprAST : public ExprAST { | 
 |   std::string Name; | 
 | public: | 
 |   VariableExprAST(const std::string &name) : Name(name) {} | 
 |   const std::string &getName() const { return Name; } | 
 |   virtual Value *Codegen(); | 
 | }; | 
 |  | 
 | /// UnaryExprAST - Expression class for a unary operator. | 
 | class UnaryExprAST : public ExprAST { | 
 |   char Opcode; | 
 |   ExprAST *Operand; | 
 | public: | 
 |   UnaryExprAST(char opcode, ExprAST *operand)  | 
 |     : Opcode(opcode), Operand(operand) {} | 
 |   virtual Value *Codegen(); | 
 | }; | 
 |  | 
 | /// BinaryExprAST - Expression class for a binary operator. | 
 | class BinaryExprAST : public ExprAST { | 
 |   char Op; | 
 |   ExprAST *LHS, *RHS; | 
 | public: | 
 |   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)  | 
 |     : Op(op), LHS(lhs), RHS(rhs) {} | 
 |   virtual Value *Codegen(); | 
 | }; | 
 |  | 
 | /// CallExprAST - Expression class for function calls. | 
 | class CallExprAST : public ExprAST { | 
 |   std::string Callee; | 
 |   std::vector<ExprAST*> Args; | 
 | public: | 
 |   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) | 
 |     : Callee(callee), Args(args) {} | 
 |   virtual Value *Codegen(); | 
 | }; | 
 |  | 
 | /// IfExprAST - Expression class for if/then/else. | 
 | class IfExprAST : public ExprAST { | 
 |   ExprAST *Cond, *Then, *Else; | 
 | public: | 
 |   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) | 
 |   : Cond(cond), Then(then), Else(_else) {} | 
 |   virtual Value *Codegen(); | 
 | }; | 
 |  | 
 | /// ForExprAST - Expression class for for/in. | 
 | class ForExprAST : public ExprAST { | 
 |   std::string VarName; | 
 |   ExprAST *Start, *End, *Step, *Body; | 
 | public: | 
 |   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, | 
 |              ExprAST *step, ExprAST *body) | 
 |     : VarName(varname), Start(start), End(end), Step(step), Body(body) {} | 
 |   virtual Value *Codegen(); | 
 | }; | 
 |  | 
 | /// VarExprAST - Expression class for var/in | 
 | class VarExprAST : public ExprAST { | 
 |   std::vector<std::pair<std::string, ExprAST*> > VarNames; | 
 |   ExprAST *Body; | 
 | public: | 
 |   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, | 
 |              ExprAST *body) | 
 |   : VarNames(varnames), Body(body) {} | 
 |    | 
 |   virtual Value *Codegen(); | 
 | }; | 
 |  | 
 | /// PrototypeAST - This class represents the "prototype" for a function, | 
 | /// which captures its argument names as well as if it is an operator. | 
 | class PrototypeAST { | 
 |   std::string Name; | 
 |   std::vector<std::string> Args; | 
 |   bool isOperator; | 
 |   unsigned Precedence;  // Precedence if a binary op. | 
 | public: | 
 |   PrototypeAST(const std::string &name, const std::vector<std::string> &args, | 
 |                bool isoperator = false, unsigned prec = 0) | 
 |   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} | 
 |    | 
 |   bool isUnaryOp() const { return isOperator && Args.size() == 1; } | 
 |   bool isBinaryOp() const { return isOperator && Args.size() == 2; } | 
 |    | 
 |   char getOperatorName() const { | 
 |     assert(isUnaryOp() || isBinaryOp()); | 
 |     return Name[Name.size()-1]; | 
 |   } | 
 |    | 
 |   unsigned getBinaryPrecedence() const { return Precedence; } | 
 |    | 
 |   Function *Codegen(); | 
 |    | 
 |   void CreateArgumentAllocas(Function *F); | 
 | }; | 
 |  | 
 | /// FunctionAST - This class represents a function definition itself. | 
 | class FunctionAST { | 
 |   PrototypeAST *Proto; | 
 |   ExprAST *Body; | 
 | public: | 
 |   FunctionAST(PrototypeAST *proto, ExprAST *body) | 
 |     : Proto(proto), Body(body) {} | 
 |    | 
 |   Function *Codegen(); | 
 | }; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Parser | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current | 
 | /// token the parser is looking at.  getNextToken reads another token from the | 
 | /// lexer and updates CurTok with its results. | 
 | static int CurTok; | 
 | static int getNextToken() { | 
 |   return CurTok = gettok(); | 
 | } | 
 |  | 
 | /// BinopPrecedence - This holds the precedence for each binary operator that is | 
 | /// defined. | 
 | static std::map<char, int> BinopPrecedence; | 
 |  | 
 | /// GetTokPrecedence - Get the precedence of the pending binary operator token. | 
 | static int GetTokPrecedence() { | 
 |   if (!isascii(CurTok)) | 
 |     return -1; | 
 |    | 
 |   // Make sure it's a declared binop. | 
 |   int TokPrec = BinopPrecedence[CurTok]; | 
 |   if (TokPrec <= 0) return -1; | 
 |   return TokPrec; | 
 | } | 
 |  | 
 | /// Error* - These are little helper functions for error handling. | 
 | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} | 
 | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } | 
 | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } | 
 |  | 
 | static ExprAST *ParseExpression(); | 
 |  | 
 | /// identifierexpr | 
 | ///   ::= identifier | 
 | ///   ::= identifier '(' expression* ')' | 
 | static ExprAST *ParseIdentifierExpr() { | 
 |   std::string IdName = IdentifierStr; | 
 |    | 
 |   getNextToken();  // eat identifier. | 
 |    | 
 |   if (CurTok != '(') // Simple variable ref. | 
 |     return new VariableExprAST(IdName); | 
 |    | 
 |   // Call. | 
 |   getNextToken();  // eat ( | 
 |   std::vector<ExprAST*> Args; | 
 |   if (CurTok != ')') { | 
 |     while (1) { | 
 |       ExprAST *Arg = ParseExpression(); | 
 |       if (!Arg) return 0; | 
 |       Args.push_back(Arg); | 
 |  | 
 |       if (CurTok == ')') break; | 
 |  | 
 |       if (CurTok != ',') | 
 |         return Error("Expected ')' or ',' in argument list"); | 
 |       getNextToken(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Eat the ')'. | 
 |   getNextToken(); | 
 |    | 
 |   return new CallExprAST(IdName, Args); | 
 | } | 
 |  | 
 | /// numberexpr ::= number | 
 | static ExprAST *ParseNumberExpr() { | 
 |   ExprAST *Result = new NumberExprAST(NumVal); | 
 |   getNextToken(); // consume the number | 
 |   return Result; | 
 | } | 
 |  | 
 | /// parenexpr ::= '(' expression ')' | 
 | static ExprAST *ParseParenExpr() { | 
 |   getNextToken();  // eat (. | 
 |   ExprAST *V = ParseExpression(); | 
 |   if (!V) return 0; | 
 |    | 
 |   if (CurTok != ')') | 
 |     return Error("expected ')'"); | 
 |   getNextToken();  // eat ). | 
 |   return V; | 
 | } | 
 |  | 
 | /// ifexpr ::= 'if' expression 'then' expression 'else' expression | 
 | static ExprAST *ParseIfExpr() { | 
 |   getNextToken();  // eat the if. | 
 |    | 
 |   // condition. | 
 |   ExprAST *Cond = ParseExpression(); | 
 |   if (!Cond) return 0; | 
 |    | 
 |   if (CurTok != tok_then) | 
 |     return Error("expected then"); | 
 |   getNextToken();  // eat the then | 
 |    | 
 |   ExprAST *Then = ParseExpression(); | 
 |   if (Then == 0) return 0; | 
 |    | 
 |   if (CurTok != tok_else) | 
 |     return Error("expected else"); | 
 |    | 
 |   getNextToken(); | 
 |    | 
 |   ExprAST *Else = ParseExpression(); | 
 |   if (!Else) return 0; | 
 |    | 
 |   return new IfExprAST(Cond, Then, Else); | 
 | } | 
 |  | 
 | /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression | 
 | static ExprAST *ParseForExpr() { | 
 |   getNextToken();  // eat the for. | 
 |  | 
 |   if (CurTok != tok_identifier) | 
 |     return Error("expected identifier after for"); | 
 |    | 
 |   std::string IdName = IdentifierStr; | 
 |   getNextToken();  // eat identifier. | 
 |    | 
 |   if (CurTok != '=') | 
 |     return Error("expected '=' after for"); | 
 |   getNextToken();  // eat '='. | 
 |    | 
 |    | 
 |   ExprAST *Start = ParseExpression(); | 
 |   if (Start == 0) return 0; | 
 |   if (CurTok != ',') | 
 |     return Error("expected ',' after for start value"); | 
 |   getNextToken(); | 
 |    | 
 |   ExprAST *End = ParseExpression(); | 
 |   if (End == 0) return 0; | 
 |    | 
 |   // The step value is optional. | 
 |   ExprAST *Step = 0; | 
 |   if (CurTok == ',') { | 
 |     getNextToken(); | 
 |     Step = ParseExpression(); | 
 |     if (Step == 0) return 0; | 
 |   } | 
 |    | 
 |   if (CurTok != tok_in) | 
 |     return Error("expected 'in' after for"); | 
 |   getNextToken();  // eat 'in'. | 
 |    | 
 |   ExprAST *Body = ParseExpression(); | 
 |   if (Body == 0) return 0; | 
 |  | 
 |   return new ForExprAST(IdName, Start, End, Step, Body); | 
 | } | 
 |  | 
 | /// varexpr ::= 'var' identifier ('=' expression)?  | 
 | //                    (',' identifier ('=' expression)?)* 'in' expression | 
 | static ExprAST *ParseVarExpr() { | 
 |   getNextToken();  // eat the var. | 
 |  | 
 |   std::vector<std::pair<std::string, ExprAST*> > VarNames; | 
 |  | 
 |   // At least one variable name is required. | 
 |   if (CurTok != tok_identifier) | 
 |     return Error("expected identifier after var"); | 
 |    | 
 |   while (1) { | 
 |     std::string Name = IdentifierStr; | 
 |     getNextToken();  // eat identifier. | 
 |  | 
 |     // Read the optional initializer. | 
 |     ExprAST *Init = 0; | 
 |     if (CurTok == '=') { | 
 |       getNextToken(); // eat the '='. | 
 |        | 
 |       Init = ParseExpression(); | 
 |       if (Init == 0) return 0; | 
 |     } | 
 |      | 
 |     VarNames.push_back(std::make_pair(Name, Init)); | 
 |      | 
 |     // End of var list, exit loop. | 
 |     if (CurTok != ',') break; | 
 |     getNextToken(); // eat the ','. | 
 |      | 
 |     if (CurTok != tok_identifier) | 
 |       return Error("expected identifier list after var"); | 
 |   } | 
 |    | 
 |   // At this point, we have to have 'in'. | 
 |   if (CurTok != tok_in) | 
 |     return Error("expected 'in' keyword after 'var'"); | 
 |   getNextToken();  // eat 'in'. | 
 |    | 
 |   ExprAST *Body = ParseExpression(); | 
 |   if (Body == 0) return 0; | 
 |    | 
 |   return new VarExprAST(VarNames, Body); | 
 | } | 
 |  | 
 | /// primary | 
 | ///   ::= identifierexpr | 
 | ///   ::= numberexpr | 
 | ///   ::= parenexpr | 
 | ///   ::= ifexpr | 
 | ///   ::= forexpr | 
 | ///   ::= varexpr | 
 | static ExprAST *ParsePrimary() { | 
 |   switch (CurTok) { | 
 |   default: return Error("unknown token when expecting an expression"); | 
 |   case tok_identifier: return ParseIdentifierExpr(); | 
 |   case tok_number:     return ParseNumberExpr(); | 
 |   case '(':            return ParseParenExpr(); | 
 |   case tok_if:         return ParseIfExpr(); | 
 |   case tok_for:        return ParseForExpr(); | 
 |   case tok_var:        return ParseVarExpr(); | 
 |   } | 
 | } | 
 |  | 
 | /// unary | 
 | ///   ::= primary | 
 | ///   ::= '!' unary | 
 | static ExprAST *ParseUnary() { | 
 |   // If the current token is not an operator, it must be a primary expr. | 
 |   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') | 
 |     return ParsePrimary(); | 
 |    | 
 |   // If this is a unary operator, read it. | 
 |   int Opc = CurTok; | 
 |   getNextToken(); | 
 |   if (ExprAST *Operand = ParseUnary()) | 
 |     return new UnaryExprAST(Opc, Operand); | 
 |   return 0; | 
 | } | 
 |  | 
 | /// binoprhs | 
 | ///   ::= ('+' unary)* | 
 | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { | 
 |   // If this is a binop, find its precedence. | 
 |   while (1) { | 
 |     int TokPrec = GetTokPrecedence(); | 
 |      | 
 |     // If this is a binop that binds at least as tightly as the current binop, | 
 |     // consume it, otherwise we are done. | 
 |     if (TokPrec < ExprPrec) | 
 |       return LHS; | 
 |      | 
 |     // Okay, we know this is a binop. | 
 |     int BinOp = CurTok; | 
 |     getNextToken();  // eat binop | 
 |      | 
 |     // Parse the unary expression after the binary operator. | 
 |     ExprAST *RHS = ParseUnary(); | 
 |     if (!RHS) return 0; | 
 |      | 
 |     // If BinOp binds less tightly with RHS than the operator after RHS, let | 
 |     // the pending operator take RHS as its LHS. | 
 |     int NextPrec = GetTokPrecedence(); | 
 |     if (TokPrec < NextPrec) { | 
 |       RHS = ParseBinOpRHS(TokPrec+1, RHS); | 
 |       if (RHS == 0) return 0; | 
 |     } | 
 |      | 
 |     // Merge LHS/RHS. | 
 |     LHS = new BinaryExprAST(BinOp, LHS, RHS); | 
 |   } | 
 | } | 
 |  | 
 | /// expression | 
 | ///   ::= unary binoprhs | 
 | /// | 
 | static ExprAST *ParseExpression() { | 
 |   ExprAST *LHS = ParseUnary(); | 
 |   if (!LHS) return 0; | 
 |    | 
 |   return ParseBinOpRHS(0, LHS); | 
 | } | 
 |  | 
 | /// prototype | 
 | ///   ::= id '(' id* ')' | 
 | ///   ::= binary LETTER number? (id, id) | 
 | ///   ::= unary LETTER (id) | 
 | static PrototypeAST *ParsePrototype() { | 
 |   std::string FnName; | 
 |    | 
 |   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. | 
 |   unsigned BinaryPrecedence = 30; | 
 |    | 
 |   switch (CurTok) { | 
 |   default: | 
 |     return ErrorP("Expected function name in prototype"); | 
 |   case tok_identifier: | 
 |     FnName = IdentifierStr; | 
 |     Kind = 0; | 
 |     getNextToken(); | 
 |     break; | 
 |   case tok_unary: | 
 |     getNextToken(); | 
 |     if (!isascii(CurTok)) | 
 |       return ErrorP("Expected unary operator"); | 
 |     FnName = "unary"; | 
 |     FnName += (char)CurTok; | 
 |     Kind = 1; | 
 |     getNextToken(); | 
 |     break; | 
 |   case tok_binary: | 
 |     getNextToken(); | 
 |     if (!isascii(CurTok)) | 
 |       return ErrorP("Expected binary operator"); | 
 |     FnName = "binary"; | 
 |     FnName += (char)CurTok; | 
 |     Kind = 2; | 
 |     getNextToken(); | 
 |      | 
 |     // Read the precedence if present. | 
 |     if (CurTok == tok_number) { | 
 |       if (NumVal < 1 || NumVal > 100) | 
 |         return ErrorP("Invalid precedecnce: must be 1..100"); | 
 |       BinaryPrecedence = (unsigned)NumVal; | 
 |       getNextToken(); | 
 |     } | 
 |     break; | 
 |   } | 
 |    | 
 |   if (CurTok != '(') | 
 |     return ErrorP("Expected '(' in prototype"); | 
 |    | 
 |   std::vector<std::string> ArgNames; | 
 |   while (getNextToken() == tok_identifier) | 
 |     ArgNames.push_back(IdentifierStr); | 
 |   if (CurTok != ')') | 
 |     return ErrorP("Expected ')' in prototype"); | 
 |    | 
 |   // success. | 
 |   getNextToken();  // eat ')'. | 
 |    | 
 |   // Verify right number of names for operator. | 
 |   if (Kind && ArgNames.size() != Kind) | 
 |     return ErrorP("Invalid number of operands for operator"); | 
 |    | 
 |   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); | 
 | } | 
 |  | 
 | /// definition ::= 'def' prototype expression | 
 | static FunctionAST *ParseDefinition() { | 
 |   getNextToken();  // eat def. | 
 |   PrototypeAST *Proto = ParsePrototype(); | 
 |   if (Proto == 0) return 0; | 
 |  | 
 |   if (ExprAST *E = ParseExpression()) | 
 |     return new FunctionAST(Proto, E); | 
 |   return 0; | 
 | } | 
 |  | 
 | /// toplevelexpr ::= expression | 
 | static FunctionAST *ParseTopLevelExpr() { | 
 |   if (ExprAST *E = ParseExpression()) { | 
 |     // Make an anonymous proto. | 
 |     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); | 
 |     return new FunctionAST(Proto, E); | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | /// external ::= 'extern' prototype | 
 | static PrototypeAST *ParseExtern() { | 
 |   getNextToken();  // eat extern. | 
 |   return ParsePrototype(); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Code Generation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static Module *TheModule; | 
 | static IRBuilder<> Builder(getGlobalContext()); | 
 | static std::map<std::string, AllocaInst*> NamedValues; | 
 | static FunctionPassManager *TheFPM; | 
 |  | 
 | Value *ErrorV(const char *Str) { Error(Str); return 0; } | 
 |  | 
 | /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of | 
 | /// the function.  This is used for mutable variables etc. | 
 | static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, | 
 |                                           const std::string &VarName) { | 
 |   IRBuilder<> TmpB(&TheFunction->getEntryBlock(), | 
 |                  TheFunction->getEntryBlock().begin()); | 
 |   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0, | 
 |                            VarName.c_str()); | 
 | } | 
 |  | 
 | Value *NumberExprAST::Codegen() { | 
 |   return ConstantFP::get(getGlobalContext(), APFloat(Val)); | 
 | } | 
 |  | 
 | Value *VariableExprAST::Codegen() { | 
 |   // Look this variable up in the function. | 
 |   Value *V = NamedValues[Name]; | 
 |   if (V == 0) return ErrorV("Unknown variable name"); | 
 |  | 
 |   // Load the value. | 
 |   return Builder.CreateLoad(V, Name.c_str()); | 
 | } | 
 |  | 
 | Value *UnaryExprAST::Codegen() { | 
 |   Value *OperandV = Operand->Codegen(); | 
 |   if (OperandV == 0) return 0; | 
 |    | 
 |   Function *F = TheModule->getFunction(std::string("unary")+Opcode); | 
 |   if (F == 0) | 
 |     return ErrorV("Unknown unary operator"); | 
 |    | 
 |   return Builder.CreateCall(F, OperandV, "unop"); | 
 | } | 
 |  | 
 | Value *BinaryExprAST::Codegen() { | 
 |   // Special case '=' because we don't want to emit the LHS as an expression. | 
 |   if (Op == '=') { | 
 |     // Assignment requires the LHS to be an identifier. | 
 |     VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS); | 
 |     if (!LHSE) | 
 |       return ErrorV("destination of '=' must be a variable"); | 
 |     // Codegen the RHS. | 
 |     Value *Val = RHS->Codegen(); | 
 |     if (Val == 0) return 0; | 
 |  | 
 |     // Look up the name. | 
 |     Value *Variable = NamedValues[LHSE->getName()]; | 
 |     if (Variable == 0) return ErrorV("Unknown variable name"); | 
 |  | 
 |     Builder.CreateStore(Val, Variable); | 
 |     return Val; | 
 |   } | 
 |    | 
 |   Value *L = LHS->Codegen(); | 
 |   Value *R = RHS->Codegen(); | 
 |   if (L == 0 || R == 0) return 0; | 
 |    | 
 |   switch (Op) { | 
 |   case '+': return Builder.CreateFAdd(L, R, "addtmp"); | 
 |   case '-': return Builder.CreateFSub(L, R, "subtmp"); | 
 |   case '*': return Builder.CreateFMul(L, R, "multmp");     | 
 |   case '<': | 
 |     L = Builder.CreateFCmpULT(L, R, "cmptmp"); | 
 |     // Convert bool 0/1 to double 0.0 or 1.0 | 
 |     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), | 
 |                                 "booltmp"); | 
 |   default: break; | 
 |   } | 
 |    | 
 |   // If it wasn't a builtin binary operator, it must be a user defined one. Emit | 
 |   // a call to it. | 
 |   Function *F = TheModule->getFunction(std::string("binary")+Op); | 
 |   assert(F && "binary operator not found!"); | 
 |    | 
 |   Value *Ops[] = { L, R }; | 
 |   return Builder.CreateCall(F, Ops, "binop"); | 
 | } | 
 |  | 
 | Value *CallExprAST::Codegen() { | 
 |   // Look up the name in the global module table. | 
 |   Function *CalleeF = TheModule->getFunction(Callee); | 
 |   if (CalleeF == 0) | 
 |     return ErrorV("Unknown function referenced"); | 
 |    | 
 |   // If argument mismatch error. | 
 |   if (CalleeF->arg_size() != Args.size()) | 
 |     return ErrorV("Incorrect # arguments passed"); | 
 |  | 
 |   std::vector<Value*> ArgsV; | 
 |   for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
 |     ArgsV.push_back(Args[i]->Codegen()); | 
 |     if (ArgsV.back() == 0) return 0; | 
 |   } | 
 |    | 
 |   return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); | 
 | } | 
 |  | 
 | Value *IfExprAST::Codegen() { | 
 |   Value *CondV = Cond->Codegen(); | 
 |   if (CondV == 0) return 0; | 
 |    | 
 |   // Convert condition to a bool by comparing equal to 0.0. | 
 |   CondV = Builder.CreateFCmpONE(CondV,  | 
 |                               ConstantFP::get(getGlobalContext(), APFloat(0.0)), | 
 |                                 "ifcond"); | 
 |    | 
 |   Function *TheFunction = Builder.GetInsertBlock()->getParent(); | 
 |    | 
 |   // Create blocks for the then and else cases.  Insert the 'then' block at the | 
 |   // end of the function. | 
 |   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); | 
 |   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); | 
 |   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); | 
 |    | 
 |   Builder.CreateCondBr(CondV, ThenBB, ElseBB); | 
 |    | 
 |   // Emit then value. | 
 |   Builder.SetInsertPoint(ThenBB); | 
 |    | 
 |   Value *ThenV = Then->Codegen(); | 
 |   if (ThenV == 0) return 0; | 
 |    | 
 |   Builder.CreateBr(MergeBB); | 
 |   // Codegen of 'Then' can change the current block, update ThenBB for the PHI. | 
 |   ThenBB = Builder.GetInsertBlock(); | 
 |    | 
 |   // Emit else block. | 
 |   TheFunction->getBasicBlockList().push_back(ElseBB); | 
 |   Builder.SetInsertPoint(ElseBB); | 
 |    | 
 |   Value *ElseV = Else->Codegen(); | 
 |   if (ElseV == 0) return 0; | 
 |    | 
 |   Builder.CreateBr(MergeBB); | 
 |   // Codegen of 'Else' can change the current block, update ElseBB for the PHI. | 
 |   ElseBB = Builder.GetInsertBlock(); | 
 |    | 
 |   // Emit merge block. | 
 |   TheFunction->getBasicBlockList().push_back(MergeBB); | 
 |   Builder.SetInsertPoint(MergeBB); | 
 |   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, | 
 |                                   "iftmp"); | 
 |    | 
 |   PN->addIncoming(ThenV, ThenBB); | 
 |   PN->addIncoming(ElseV, ElseBB); | 
 |   return PN; | 
 | } | 
 |  | 
 | Value *ForExprAST::Codegen() { | 
 |   // Output this as: | 
 |   //   var = alloca double | 
 |   //   ... | 
 |   //   start = startexpr | 
 |   //   store start -> var | 
 |   //   goto loop | 
 |   // loop:  | 
 |   //   ... | 
 |   //   bodyexpr | 
 |   //   ... | 
 |   // loopend: | 
 |   //   step = stepexpr | 
 |   //   endcond = endexpr | 
 |   // | 
 |   //   curvar = load var | 
 |   //   nextvar = curvar + step | 
 |   //   store nextvar -> var | 
 |   //   br endcond, loop, endloop | 
 |   // outloop: | 
 |    | 
 |   Function *TheFunction = Builder.GetInsertBlock()->getParent(); | 
 |  | 
 |   // Create an alloca for the variable in the entry block. | 
 |   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); | 
 |    | 
 |   // Emit the start code first, without 'variable' in scope. | 
 |   Value *StartVal = Start->Codegen(); | 
 |   if (StartVal == 0) return 0; | 
 |    | 
 |   // Store the value into the alloca. | 
 |   Builder.CreateStore(StartVal, Alloca); | 
 |    | 
 |   // Make the new basic block for the loop header, inserting after current | 
 |   // block. | 
 |   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); | 
 |    | 
 |   // Insert an explicit fall through from the current block to the LoopBB. | 
 |   Builder.CreateBr(LoopBB); | 
 |  | 
 |   // Start insertion in LoopBB. | 
 |   Builder.SetInsertPoint(LoopBB); | 
 |    | 
 |   // Within the loop, the variable is defined equal to the PHI node.  If it | 
 |   // shadows an existing variable, we have to restore it, so save it now. | 
 |   AllocaInst *OldVal = NamedValues[VarName]; | 
 |   NamedValues[VarName] = Alloca; | 
 |    | 
 |   // Emit the body of the loop.  This, like any other expr, can change the | 
 |   // current BB.  Note that we ignore the value computed by the body, but don't | 
 |   // allow an error. | 
 |   if (Body->Codegen() == 0) | 
 |     return 0; | 
 |    | 
 |   // Emit the step value. | 
 |   Value *StepVal; | 
 |   if (Step) { | 
 |     StepVal = Step->Codegen(); | 
 |     if (StepVal == 0) return 0; | 
 |   } else { | 
 |     // If not specified, use 1.0. | 
 |     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); | 
 |   } | 
 |    | 
 |   // Compute the end condition. | 
 |   Value *EndCond = End->Codegen(); | 
 |   if (EndCond == 0) return EndCond; | 
 |    | 
 |   // Reload, increment, and restore the alloca.  This handles the case where | 
 |   // the body of the loop mutates the variable. | 
 |   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); | 
 |   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); | 
 |   Builder.CreateStore(NextVar, Alloca); | 
 |    | 
 |   // Convert condition to a bool by comparing equal to 0.0. | 
 |   EndCond = Builder.CreateFCmpONE(EndCond,  | 
 |                               ConstantFP::get(getGlobalContext(), APFloat(0.0)), | 
 |                                   "loopcond"); | 
 |    | 
 |   // Create the "after loop" block and insert it. | 
 |   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); | 
 |    | 
 |   // Insert the conditional branch into the end of LoopEndBB. | 
 |   Builder.CreateCondBr(EndCond, LoopBB, AfterBB); | 
 |    | 
 |   // Any new code will be inserted in AfterBB. | 
 |   Builder.SetInsertPoint(AfterBB); | 
 |    | 
 |   // Restore the unshadowed variable. | 
 |   if (OldVal) | 
 |     NamedValues[VarName] = OldVal; | 
 |   else | 
 |     NamedValues.erase(VarName); | 
 |  | 
 |    | 
 |   // for expr always returns 0.0. | 
 |   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); | 
 | } | 
 |  | 
 | Value *VarExprAST::Codegen() { | 
 |   std::vector<AllocaInst *> OldBindings; | 
 |    | 
 |   Function *TheFunction = Builder.GetInsertBlock()->getParent(); | 
 |  | 
 |   // Register all variables and emit their initializer. | 
 |   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { | 
 |     const std::string &VarName = VarNames[i].first; | 
 |     ExprAST *Init = VarNames[i].second; | 
 |      | 
 |     // Emit the initializer before adding the variable to scope, this prevents | 
 |     // the initializer from referencing the variable itself, and permits stuff | 
 |     // like this: | 
 |     //  var a = 1 in | 
 |     //    var a = a in ...   # refers to outer 'a'. | 
 |     Value *InitVal; | 
 |     if (Init) { | 
 |       InitVal = Init->Codegen(); | 
 |       if (InitVal == 0) return 0; | 
 |     } else { // If not specified, use 0.0. | 
 |       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0)); | 
 |     } | 
 |      | 
 |     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); | 
 |     Builder.CreateStore(InitVal, Alloca); | 
 |  | 
 |     // Remember the old variable binding so that we can restore the binding when | 
 |     // we unrecurse. | 
 |     OldBindings.push_back(NamedValues[VarName]); | 
 |      | 
 |     // Remember this binding. | 
 |     NamedValues[VarName] = Alloca; | 
 |   } | 
 |    | 
 |   // Codegen the body, now that all vars are in scope. | 
 |   Value *BodyVal = Body->Codegen(); | 
 |   if (BodyVal == 0) return 0; | 
 |    | 
 |   // Pop all our variables from scope. | 
 |   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) | 
 |     NamedValues[VarNames[i].first] = OldBindings[i]; | 
 |  | 
 |   // Return the body computation. | 
 |   return BodyVal; | 
 | } | 
 |  | 
 | Function *PrototypeAST::Codegen() { | 
 |   // Make the function type:  double(double,double) etc. | 
 |   std::vector<Type*> Doubles(Args.size(),  | 
 |                              Type::getDoubleTy(getGlobalContext())); | 
 |   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), | 
 |                                        Doubles, false); | 
 |    | 
 |   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); | 
 |    | 
 |   // If F conflicted, there was already something named 'Name'.  If it has a | 
 |   // body, don't allow redefinition or reextern. | 
 |   if (F->getName() != Name) { | 
 |     // Delete the one we just made and get the existing one. | 
 |     F->eraseFromParent(); | 
 |     F = TheModule->getFunction(Name); | 
 |      | 
 |     // If F already has a body, reject this. | 
 |     if (!F->empty()) { | 
 |       ErrorF("redefinition of function"); | 
 |       return 0; | 
 |     } | 
 |      | 
 |     // If F took a different number of args, reject. | 
 |     if (F->arg_size() != Args.size()) { | 
 |       ErrorF("redefinition of function with different # args"); | 
 |       return 0; | 
 |     } | 
 |   } | 
 |    | 
 |   // Set names for all arguments. | 
 |   unsigned Idx = 0; | 
 |   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); | 
 |        ++AI, ++Idx) | 
 |     AI->setName(Args[Idx]); | 
 |      | 
 |   return F; | 
 | } | 
 |  | 
 | /// CreateArgumentAllocas - Create an alloca for each argument and register the | 
 | /// argument in the symbol table so that references to it will succeed. | 
 | void PrototypeAST::CreateArgumentAllocas(Function *F) { | 
 |   Function::arg_iterator AI = F->arg_begin(); | 
 |   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { | 
 |     // Create an alloca for this variable. | 
 |     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); | 
 |  | 
 |     // Store the initial value into the alloca. | 
 |     Builder.CreateStore(AI, Alloca); | 
 |  | 
 |     // Add arguments to variable symbol table. | 
 |     NamedValues[Args[Idx]] = Alloca; | 
 |   } | 
 | } | 
 |  | 
 | Function *FunctionAST::Codegen() { | 
 |   NamedValues.clear(); | 
 |    | 
 |   Function *TheFunction = Proto->Codegen(); | 
 |   if (TheFunction == 0) | 
 |     return 0; | 
 |    | 
 |   // If this is an operator, install it. | 
 |   if (Proto->isBinaryOp()) | 
 |     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); | 
 |    | 
 |   // Create a new basic block to start insertion into. | 
 |   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); | 
 |   Builder.SetInsertPoint(BB); | 
 |    | 
 |   // Add all arguments to the symbol table and create their allocas. | 
 |   Proto->CreateArgumentAllocas(TheFunction); | 
 |  | 
 |   if (Value *RetVal = Body->Codegen()) { | 
 |     // Finish off the function. | 
 |     Builder.CreateRet(RetVal); | 
 |  | 
 |     // Validate the generated code, checking for consistency. | 
 |     verifyFunction(*TheFunction); | 
 |  | 
 |     // Optimize the function. | 
 |     TheFPM->run(*TheFunction); | 
 |      | 
 |     return TheFunction; | 
 |   } | 
 |    | 
 |   // Error reading body, remove function. | 
 |   TheFunction->eraseFromParent(); | 
 |  | 
 |   if (Proto->isBinaryOp()) | 
 |     BinopPrecedence.erase(Proto->getOperatorName()); | 
 |   return 0; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Top-Level parsing and JIT Driver | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static ExecutionEngine *TheExecutionEngine; | 
 |  | 
 | static void HandleDefinition() { | 
 |   if (FunctionAST *F = ParseDefinition()) { | 
 |     if (Function *LF = F->Codegen()) { | 
 |       fprintf(stderr, "Read function definition:"); | 
 |       LF->dump(); | 
 |     } | 
 |   } else { | 
 |     // Skip token for error recovery. | 
 |     getNextToken(); | 
 |   } | 
 | } | 
 |  | 
 | static void HandleExtern() { | 
 |   if (PrototypeAST *P = ParseExtern()) { | 
 |     if (Function *F = P->Codegen()) { | 
 |       fprintf(stderr, "Read extern: "); | 
 |       F->dump(); | 
 |     } | 
 |   } else { | 
 |     // Skip token for error recovery. | 
 |     getNextToken(); | 
 |   } | 
 | } | 
 |  | 
 | static void HandleTopLevelExpression() { | 
 |   // Evaluate a top-level expression into an anonymous function. | 
 |   if (FunctionAST *F = ParseTopLevelExpr()) { | 
 |     if (Function *LF = F->Codegen()) { | 
 |       // JIT the function, returning a function pointer. | 
 |       void *FPtr = TheExecutionEngine->getPointerToFunction(LF); | 
 |        | 
 |       // Cast it to the right type (takes no arguments, returns a double) so we | 
 |       // can call it as a native function. | 
 |       double (*FP)() = (double (*)())(intptr_t)FPtr; | 
 |       fprintf(stderr, "Evaluated to %f\n", FP()); | 
 |     } | 
 |   } else { | 
 |     // Skip token for error recovery. | 
 |     getNextToken(); | 
 |   } | 
 | } | 
 |  | 
 | /// top ::= definition | external | expression | ';' | 
 | static void MainLoop() { | 
 |   while (1) { | 
 |     fprintf(stderr, "ready> "); | 
 |     switch (CurTok) { | 
 |     case tok_eof:    return; | 
 |     case ';':        getNextToken(); break;  // ignore top-level semicolons. | 
 |     case tok_def:    HandleDefinition(); break; | 
 |     case tok_extern: HandleExtern(); break; | 
 |     default:         HandleTopLevelExpression(); break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // "Library" functions that can be "extern'd" from user code. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// putchard - putchar that takes a double and returns 0. | 
 | extern "C"  | 
 | double putchard(double X) { | 
 |   putchar((char)X); | 
 |   return 0; | 
 | } | 
 |  | 
 | /// printd - printf that takes a double prints it as "%f\n", returning 0. | 
 | extern "C"  | 
 | double printd(double X) { | 
 |   printf("%f\n", X); | 
 |   return 0; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Main driver code. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | int main() { | 
 |   InitializeNativeTarget(); | 
 |   LLVMContext &Context = getGlobalContext(); | 
 |  | 
 |   // Install standard binary operators. | 
 |   // 1 is lowest precedence. | 
 |   BinopPrecedence['='] = 2; | 
 |   BinopPrecedence['<'] = 10; | 
 |   BinopPrecedence['+'] = 20; | 
 |   BinopPrecedence['-'] = 20; | 
 |   BinopPrecedence['*'] = 40;  // highest. | 
 |  | 
 |   // Prime the first token. | 
 |   fprintf(stderr, "ready> "); | 
 |   getNextToken(); | 
 |  | 
 |   // Make the module, which holds all the code. | 
 |   TheModule = new Module("my cool jit", Context); | 
 |  | 
 |   // Create the JIT.  This takes ownership of the module. | 
 |   std::string ErrStr; | 
 |   TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); | 
 |   if (!TheExecutionEngine) { | 
 |     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); | 
 |     exit(1); | 
 |   } | 
 |  | 
 |   FunctionPassManager OurFPM(TheModule); | 
 |  | 
 |   // Set up the optimizer pipeline.  Start with registering info about how the | 
 |   // target lays out data structures. | 
 |   OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); | 
 |   // Provide basic AliasAnalysis support for GVN. | 
 |   OurFPM.add(createBasicAliasAnalysisPass()); | 
 |   // Promote allocas to registers. | 
 |   OurFPM.add(createPromoteMemoryToRegisterPass()); | 
 |   // Do simple "peephole" optimizations and bit-twiddling optzns. | 
 |   OurFPM.add(createInstructionCombiningPass()); | 
 |   // Reassociate expressions. | 
 |   OurFPM.add(createReassociatePass()); | 
 |   // Eliminate Common SubExpressions. | 
 |   OurFPM.add(createGVNPass()); | 
 |   // Simplify the control flow graph (deleting unreachable blocks, etc). | 
 |   OurFPM.add(createCFGSimplificationPass()); | 
 |  | 
 |   OurFPM.doInitialization(); | 
 |  | 
 |   // Set the global so the code gen can use this. | 
 |   TheFPM = &OurFPM; | 
 |  | 
 |   // Run the main "interpreter loop" now. | 
 |   MainLoop(); | 
 |  | 
 |   TheFPM = 0; | 
 |  | 
 |   // Print out all of the generated code. | 
 |   TheModule->dump(); | 
 |  | 
 |   return 0; | 
 | } |