| //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the pass that finds instructions that can be |
| // re-written as LEA instructions in order to reduce pipeline delays. |
| // When optimizing for size it replaces suitable LEAs with INC or DEC. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "X86Subtarget.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/TargetSchedule.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| namespace llvm { |
| void initializeFixupLEAPassPass(PassRegistry &); |
| } |
| |
| #define FIXUPLEA_DESC "X86 LEA Fixup" |
| #define FIXUPLEA_NAME "x86-fixup-LEAs" |
| |
| #define DEBUG_TYPE FIXUPLEA_NAME |
| |
| STATISTIC(NumLEAs, "Number of LEA instructions created"); |
| |
| namespace { |
| class FixupLEAPass : public MachineFunctionPass { |
| enum RegUsageState { RU_NotUsed, RU_Write, RU_Read }; |
| |
| /// Loop over all of the instructions in the basic block |
| /// replacing applicable instructions with LEA instructions, |
| /// where appropriate. |
| bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI); |
| |
| |
| /// Given a machine register, look for the instruction |
| /// which writes it in the current basic block. If found, |
| /// try to replace it with an equivalent LEA instruction. |
| /// If replacement succeeds, then also process the newly created |
| /// instruction. |
| void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I, |
| MachineFunction::iterator MFI); |
| |
| /// Given a memory access or LEA instruction |
| /// whose address mode uses a base and/or index register, look for |
| /// an opportunity to replace the instruction which sets the base or index |
| /// register with an equivalent LEA instruction. |
| void processInstruction(MachineBasicBlock::iterator &I, |
| MachineFunction::iterator MFI); |
| |
| /// Given a LEA instruction which is unprofitable |
| /// on Silvermont try to replace it with an equivalent ADD instruction |
| void processInstructionForSLM(MachineBasicBlock::iterator &I, |
| MachineFunction::iterator MFI); |
| |
| |
| /// Given a LEA instruction which is unprofitable |
| /// on SNB+ try to replace it with other instructions. |
| /// According to Intel's Optimization Reference Manual: |
| /// " For LEA instructions with three source operands and some specific |
| /// situations, instruction latency has increased to 3 cycles, and must |
| /// dispatch via port 1: |
| /// - LEA that has all three source operands: base, index, and offset |
| /// - LEA that uses base and index registers where the base is EBP, RBP, |
| /// or R13 |
| /// - LEA that uses RIP relative addressing mode |
| /// - LEA that uses 16-bit addressing mode " |
| /// This function currently handles the first 2 cases only. |
| MachineInstr *processInstrForSlow3OpLEA(MachineInstr &MI, |
| MachineFunction::iterator MFI); |
| |
| /// Look for LEAs that add 1 to reg or subtract 1 from reg |
| /// and convert them to INC or DEC respectively. |
| bool fixupIncDec(MachineBasicBlock::iterator &I, |
| MachineFunction::iterator MFI) const; |
| |
| /// Determine if an instruction references a machine register |
| /// and, if so, whether it reads or writes the register. |
| RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I); |
| |
| /// Step backwards through a basic block, looking |
| /// for an instruction which writes a register within |
| /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles. |
| MachineBasicBlock::iterator searchBackwards(MachineOperand &p, |
| MachineBasicBlock::iterator &I, |
| MachineFunction::iterator MFI); |
| |
| /// if an instruction can be converted to an |
| /// equivalent LEA, insert the new instruction into the basic block |
| /// and return a pointer to it. Otherwise, return zero. |
| MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI, |
| MachineBasicBlock::iterator &MBBI) const; |
| |
| public: |
| static char ID; |
| |
| StringRef getPassName() const override { return FIXUPLEA_DESC; } |
| |
| FixupLEAPass() : MachineFunctionPass(ID) { |
| initializeFixupLEAPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| /// Loop over all of the basic blocks, |
| /// replacing instructions by equivalent LEA instructions |
| /// if needed and when possible. |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| // This pass runs after regalloc and doesn't support VReg operands. |
| MachineFunctionProperties getRequiredProperties() const override { |
| return MachineFunctionProperties().set( |
| MachineFunctionProperties::Property::NoVRegs); |
| } |
| |
| private: |
| TargetSchedModel TSM; |
| MachineFunction *MF; |
| const X86InstrInfo *TII; // Machine instruction info. |
| bool OptIncDec; |
| bool OptLEA; |
| }; |
| } |
| |
| char FixupLEAPass::ID = 0; |
| |
| INITIALIZE_PASS(FixupLEAPass, FIXUPLEA_NAME, FIXUPLEA_DESC, false, false) |
| |
| MachineInstr * |
| FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI, |
| MachineBasicBlock::iterator &MBBI) const { |
| MachineInstr &MI = *MBBI; |
| switch (MI.getOpcode()) { |
| case X86::MOV32rr: |
| case X86::MOV64rr: { |
| const MachineOperand &Src = MI.getOperand(1); |
| const MachineOperand &Dest = MI.getOperand(0); |
| MachineInstr *NewMI = |
| BuildMI(*MF, MI.getDebugLoc(), |
| TII->get(MI.getOpcode() == X86::MOV32rr ? X86::LEA32r |
| : X86::LEA64r)) |
| .add(Dest) |
| .add(Src) |
| .addImm(1) |
| .addReg(0) |
| .addImm(0) |
| .addReg(0); |
| MFI->insert(MBBI, NewMI); // Insert the new inst |
| return NewMI; |
| } |
| case X86::ADD64ri32: |
| case X86::ADD64ri8: |
| case X86::ADD64ri32_DB: |
| case X86::ADD64ri8_DB: |
| case X86::ADD32ri: |
| case X86::ADD32ri8: |
| case X86::ADD32ri_DB: |
| case X86::ADD32ri8_DB: |
| case X86::ADD16ri: |
| case X86::ADD16ri8: |
| case X86::ADD16ri_DB: |
| case X86::ADD16ri8_DB: |
| if (!MI.getOperand(2).isImm()) { |
| // convertToThreeAddress will call getImm() |
| // which requires isImm() to be true |
| return nullptr; |
| } |
| break; |
| case X86::ADD16rr: |
| case X86::ADD16rr_DB: |
| if (MI.getOperand(1).getReg() != MI.getOperand(2).getReg()) { |
| // if src1 != src2, then convertToThreeAddress will |
| // need to create a Virtual register, which we cannot do |
| // after register allocation. |
| return nullptr; |
| } |
| } |
| return TII->convertToThreeAddress(MFI, MI, nullptr); |
| } |
| |
| FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); } |
| |
| bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) { |
| if (skipFunction(Func.getFunction())) |
| return false; |
| |
| MF = &Func; |
| const X86Subtarget &ST = Func.getSubtarget<X86Subtarget>(); |
| OptIncDec = !ST.slowIncDec() || Func.getFunction().optForMinSize(); |
| OptLEA = ST.LEAusesAG() || ST.slowLEA() || ST.slow3OpsLEA(); |
| |
| if (!OptLEA && !OptIncDec) |
| return false; |
| |
| TSM.init(&Func.getSubtarget()); |
| TII = ST.getInstrInfo(); |
| |
| LLVM_DEBUG(dbgs() << "Start X86FixupLEAs\n";); |
| // Process all basic blocks. |
| for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I) |
| processBasicBlock(Func, I); |
| LLVM_DEBUG(dbgs() << "End X86FixupLEAs\n";); |
| |
| return true; |
| } |
| |
| FixupLEAPass::RegUsageState |
| FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) { |
| RegUsageState RegUsage = RU_NotUsed; |
| MachineInstr &MI = *I; |
| |
| for (unsigned int i = 0; i < MI.getNumOperands(); ++i) { |
| MachineOperand &opnd = MI.getOperand(i); |
| if (opnd.isReg() && opnd.getReg() == p.getReg()) { |
| if (opnd.isDef()) |
| return RU_Write; |
| RegUsage = RU_Read; |
| } |
| } |
| return RegUsage; |
| } |
| |
| /// getPreviousInstr - Given a reference to an instruction in a basic |
| /// block, return a reference to the previous instruction in the block, |
| /// wrapping around to the last instruction of the block if the block |
| /// branches to itself. |
| static inline bool getPreviousInstr(MachineBasicBlock::iterator &I, |
| MachineFunction::iterator MFI) { |
| if (I == MFI->begin()) { |
| if (MFI->isPredecessor(&*MFI)) { |
| I = --MFI->end(); |
| return true; |
| } else |
| return false; |
| } |
| --I; |
| return true; |
| } |
| |
| MachineBasicBlock::iterator |
| FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I, |
| MachineFunction::iterator MFI) { |
| int InstrDistance = 1; |
| MachineBasicBlock::iterator CurInst; |
| static const int INSTR_DISTANCE_THRESHOLD = 5; |
| |
| CurInst = I; |
| bool Found; |
| Found = getPreviousInstr(CurInst, MFI); |
| while (Found && I != CurInst) { |
| if (CurInst->isCall() || CurInst->isInlineAsm()) |
| break; |
| if (InstrDistance > INSTR_DISTANCE_THRESHOLD) |
| break; // too far back to make a difference |
| if (usesRegister(p, CurInst) == RU_Write) { |
| return CurInst; |
| } |
| InstrDistance += TSM.computeInstrLatency(&*CurInst); |
| Found = getPreviousInstr(CurInst, MFI); |
| } |
| return MachineBasicBlock::iterator(); |
| } |
| |
| static inline bool isLEA(const int Opcode) { |
| return Opcode == X86::LEA16r || Opcode == X86::LEA32r || |
| Opcode == X86::LEA64r || Opcode == X86::LEA64_32r; |
| } |
| |
| static inline bool isInefficientLEAReg(unsigned int Reg) { |
| return Reg == X86::EBP || Reg == X86::RBP || Reg == X86::R13; |
| } |
| |
| static inline bool isRegOperand(const MachineOperand &Op) { |
| return Op.isReg() && Op.getReg() != X86::NoRegister; |
| } |
| /// hasIneffecientLEARegs - LEA that uses base and index registers |
| /// where the base is EBP, RBP, or R13 |
| // TODO: use a variant scheduling class to model the latency profile |
| // of LEA instructions, and implement this logic as a scheduling predicate. |
| static inline bool hasInefficientLEABaseReg(const MachineOperand &Base, |
| const MachineOperand &Index) { |
| return Base.isReg() && isInefficientLEAReg(Base.getReg()) && |
| isRegOperand(Index); |
| } |
| |
| static inline bool hasLEAOffset(const MachineOperand &Offset) { |
| return (Offset.isImm() && Offset.getImm() != 0) || Offset.isGlobal(); |
| } |
| |
| static inline int getADDrrFromLEA(int LEAOpcode) { |
| switch (LEAOpcode) { |
| default: |
| llvm_unreachable("Unexpected LEA instruction"); |
| case X86::LEA16r: |
| return X86::ADD16rr; |
| case X86::LEA32r: |
| return X86::ADD32rr; |
| case X86::LEA64_32r: |
| case X86::LEA64r: |
| return X86::ADD64rr; |
| } |
| } |
| |
| static inline int getADDriFromLEA(int LEAOpcode, const MachineOperand &Offset) { |
| bool IsInt8 = Offset.isImm() && isInt<8>(Offset.getImm()); |
| switch (LEAOpcode) { |
| default: |
| llvm_unreachable("Unexpected LEA instruction"); |
| case X86::LEA16r: |
| return IsInt8 ? X86::ADD16ri8 : X86::ADD16ri; |
| case X86::LEA32r: |
| case X86::LEA64_32r: |
| return IsInt8 ? X86::ADD32ri8 : X86::ADD32ri; |
| case X86::LEA64r: |
| return IsInt8 ? X86::ADD64ri8 : X86::ADD64ri32; |
| } |
| } |
| |
| /// isLEASimpleIncOrDec - Does this LEA have one these forms: |
| /// lea %reg, 1(%reg) |
| /// lea %reg, -1(%reg) |
| static inline bool isLEASimpleIncOrDec(MachineInstr &LEA) { |
| unsigned SrcReg = LEA.getOperand(1 + X86::AddrBaseReg).getReg(); |
| unsigned DstReg = LEA.getOperand(0).getReg(); |
| unsigned AddrDispOp = 1 + X86::AddrDisp; |
| return SrcReg == DstReg && |
| LEA.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && |
| LEA.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 && |
| LEA.getOperand(AddrDispOp).isImm() && |
| (LEA.getOperand(AddrDispOp).getImm() == 1 || |
| LEA.getOperand(AddrDispOp).getImm() == -1); |
| } |
| |
| bool FixupLEAPass::fixupIncDec(MachineBasicBlock::iterator &I, |
| MachineFunction::iterator MFI) const { |
| MachineInstr &MI = *I; |
| int Opcode = MI.getOpcode(); |
| if (!isLEA(Opcode)) |
| return false; |
| |
| if (isLEASimpleIncOrDec(MI) && TII->isSafeToClobberEFLAGS(*MFI, I)) { |
| int NewOpcode; |
| bool isINC = MI.getOperand(4).getImm() == 1; |
| switch (Opcode) { |
| case X86::LEA16r: |
| NewOpcode = isINC ? X86::INC16r : X86::DEC16r; |
| break; |
| case X86::LEA32r: |
| case X86::LEA64_32r: |
| NewOpcode = isINC ? X86::INC32r : X86::DEC32r; |
| break; |
| case X86::LEA64r: |
| NewOpcode = isINC ? X86::INC64r : X86::DEC64r; |
| break; |
| } |
| |
| MachineInstr *NewMI = |
| BuildMI(*MFI, I, MI.getDebugLoc(), TII->get(NewOpcode)) |
| .add(MI.getOperand(0)) |
| .add(MI.getOperand(1)); |
| MFI->erase(I); |
| I = static_cast<MachineBasicBlock::iterator>(NewMI); |
| return true; |
| } |
| return false; |
| } |
| |
| void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I, |
| MachineFunction::iterator MFI) { |
| // Process a load, store, or LEA instruction. |
| MachineInstr &MI = *I; |
| const MCInstrDesc &Desc = MI.getDesc(); |
| int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags); |
| if (AddrOffset >= 0) { |
| AddrOffset += X86II::getOperandBias(Desc); |
| MachineOperand &p = MI.getOperand(AddrOffset + X86::AddrBaseReg); |
| if (p.isReg() && p.getReg() != X86::ESP) { |
| seekLEAFixup(p, I, MFI); |
| } |
| MachineOperand &q = MI.getOperand(AddrOffset + X86::AddrIndexReg); |
| if (q.isReg() && q.getReg() != X86::ESP) { |
| seekLEAFixup(q, I, MFI); |
| } |
| } |
| } |
| |
| void FixupLEAPass::seekLEAFixup(MachineOperand &p, |
| MachineBasicBlock::iterator &I, |
| MachineFunction::iterator MFI) { |
| MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI); |
| if (MBI != MachineBasicBlock::iterator()) { |
| MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI); |
| if (NewMI) { |
| ++NumLEAs; |
| LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump();); |
| // now to replace with an equivalent LEA... |
| LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump();); |
| MFI->erase(MBI); |
| MachineBasicBlock::iterator J = |
| static_cast<MachineBasicBlock::iterator>(NewMI); |
| processInstruction(J, MFI); |
| } |
| } |
| } |
| |
| void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I, |
| MachineFunction::iterator MFI) { |
| MachineInstr &MI = *I; |
| const int Opcode = MI.getOpcode(); |
| if (!isLEA(Opcode)) |
| return; |
| if (MI.getOperand(5).getReg() != 0 || !MI.getOperand(4).isImm() || |
| !TII->isSafeToClobberEFLAGS(*MFI, I)) |
| return; |
| const unsigned DstR = MI.getOperand(0).getReg(); |
| const unsigned SrcR1 = MI.getOperand(1).getReg(); |
| const unsigned SrcR2 = MI.getOperand(3).getReg(); |
| if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR)) |
| return; |
| if (MI.getOperand(2).getImm() > 1) |
| return; |
| LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump();); |
| LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";); |
| MachineInstr *NewMI = nullptr; |
| // Make ADD instruction for two registers writing to LEA's destination |
| if (SrcR1 != 0 && SrcR2 != 0) { |
| const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(Opcode)); |
| const MachineOperand &Src = MI.getOperand(SrcR1 == DstR ? 3 : 1); |
| NewMI = |
| BuildMI(*MFI, I, MI.getDebugLoc(), ADDrr, DstR).addReg(DstR).add(Src); |
| LLVM_DEBUG(NewMI->dump();); |
| } |
| // Make ADD instruction for immediate |
| if (MI.getOperand(4).getImm() != 0) { |
| const MCInstrDesc &ADDri = |
| TII->get(getADDriFromLEA(Opcode, MI.getOperand(4))); |
| const MachineOperand &SrcR = MI.getOperand(SrcR1 == DstR ? 1 : 3); |
| NewMI = BuildMI(*MFI, I, MI.getDebugLoc(), ADDri, DstR) |
| .add(SrcR) |
| .addImm(MI.getOperand(4).getImm()); |
| LLVM_DEBUG(NewMI->dump();); |
| } |
| if (NewMI) { |
| MFI->erase(I); |
| I = NewMI; |
| } |
| } |
| |
| MachineInstr * |
| FixupLEAPass::processInstrForSlow3OpLEA(MachineInstr &MI, |
| MachineFunction::iterator MFI) { |
| |
| const int LEAOpcode = MI.getOpcode(); |
| if (!isLEA(LEAOpcode)) |
| return nullptr; |
| |
| const MachineOperand &Dst = MI.getOperand(0); |
| const MachineOperand &Base = MI.getOperand(1); |
| const MachineOperand &Scale = MI.getOperand(2); |
| const MachineOperand &Index = MI.getOperand(3); |
| const MachineOperand &Offset = MI.getOperand(4); |
| const MachineOperand &Segment = MI.getOperand(5); |
| |
| if (!(TII->isThreeOperandsLEA(MI) || |
| hasInefficientLEABaseReg(Base, Index)) || |
| !TII->isSafeToClobberEFLAGS(*MFI, MI) || |
| Segment.getReg() != X86::NoRegister) |
| return nullptr; |
| |
| unsigned int DstR = Dst.getReg(); |
| unsigned int BaseR = Base.getReg(); |
| unsigned int IndexR = Index.getReg(); |
| unsigned SSDstR = |
| (LEAOpcode == X86::LEA64_32r) ? getX86SubSuperRegister(DstR, 64) : DstR; |
| bool IsScale1 = Scale.getImm() == 1; |
| bool IsInefficientBase = isInefficientLEAReg(BaseR); |
| bool IsInefficientIndex = isInefficientLEAReg(IndexR); |
| |
| // Skip these cases since it takes more than 2 instructions |
| // to replace the LEA instruction. |
| if (IsInefficientBase && SSDstR == BaseR && !IsScale1) |
| return nullptr; |
| if (LEAOpcode == X86::LEA64_32r && IsInefficientBase && |
| (IsInefficientIndex || !IsScale1)) |
| return nullptr; |
| |
| const DebugLoc DL = MI.getDebugLoc(); |
| const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(LEAOpcode)); |
| const MCInstrDesc &ADDri = TII->get(getADDriFromLEA(LEAOpcode, Offset)); |
| |
| LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MI.dump();); |
| LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";); |
| |
| // First try to replace LEA with one or two (for the 3-op LEA case) |
| // add instructions: |
| // 1.lea (%base,%index,1), %base => add %index,%base |
| // 2.lea (%base,%index,1), %index => add %base,%index |
| if (IsScale1 && (DstR == BaseR || DstR == IndexR)) { |
| const MachineOperand &Src = DstR == BaseR ? Index : Base; |
| MachineInstr *NewMI = |
| BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Src); |
| LLVM_DEBUG(NewMI->dump();); |
| // Create ADD instruction for the Offset in case of 3-Ops LEA. |
| if (hasLEAOffset(Offset)) { |
| NewMI = BuildMI(*MFI, MI, DL, ADDri, DstR).addReg(DstR).add(Offset); |
| LLVM_DEBUG(NewMI->dump();); |
| } |
| return NewMI; |
| } |
| // If the base is inefficient try switching the index and base operands, |
| // otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction: |
| // lea offset(%base,%index,scale),%dst => |
| // lea (%base,%index,scale); add offset,%dst |
| if (!IsInefficientBase || (!IsInefficientIndex && IsScale1)) { |
| MachineInstr *NewMI = BuildMI(*MFI, MI, DL, TII->get(LEAOpcode)) |
| .add(Dst) |
| .add(IsInefficientBase ? Index : Base) |
| .add(Scale) |
| .add(IsInefficientBase ? Base : Index) |
| .addImm(0) |
| .add(Segment); |
| LLVM_DEBUG(NewMI->dump();); |
| // Create ADD instruction for the Offset in case of 3-Ops LEA. |
| if (hasLEAOffset(Offset)) { |
| NewMI = BuildMI(*MFI, MI, DL, ADDri, DstR).addReg(DstR).add(Offset); |
| LLVM_DEBUG(NewMI->dump();); |
| } |
| return NewMI; |
| } |
| // Handle the rest of the cases with inefficient base register: |
| assert(SSDstR != BaseR && "SSDstR == BaseR should be handled already!"); |
| assert(IsInefficientBase && "efficient base should be handled already!"); |
| |
| // lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst |
| if (IsScale1 && !hasLEAOffset(Offset)) { |
| bool BIK = Base.isKill() && BaseR != IndexR; |
| TII->copyPhysReg(*MFI, MI, DL, DstR, BaseR, BIK); |
| LLVM_DEBUG(MI.getPrevNode()->dump();); |
| |
| MachineInstr *NewMI = |
| BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Index); |
| LLVM_DEBUG(NewMI->dump();); |
| return NewMI; |
| } |
| // lea offset(%base,%index,scale), %dst => |
| // lea offset( ,%index,scale), %dst; add %base,%dst |
| MachineInstr *NewMI = BuildMI(*MFI, MI, DL, TII->get(LEAOpcode)) |
| .add(Dst) |
| .addReg(0) |
| .add(Scale) |
| .add(Index) |
| .add(Offset) |
| .add(Segment); |
| LLVM_DEBUG(NewMI->dump();); |
| |
| NewMI = BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Base); |
| LLVM_DEBUG(NewMI->dump();); |
| return NewMI; |
| } |
| |
| bool FixupLEAPass::processBasicBlock(MachineFunction &MF, |
| MachineFunction::iterator MFI) { |
| |
| for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) { |
| if (OptIncDec) |
| if (fixupIncDec(I, MFI)) |
| continue; |
| |
| if (OptLEA) { |
| if (MF.getSubtarget<X86Subtarget>().slowLEA()) |
| processInstructionForSLM(I, MFI); |
| |
| else { |
| if (MF.getSubtarget<X86Subtarget>().slow3OpsLEA()) { |
| if (auto *NewMI = processInstrForSlow3OpLEA(*I, MFI)) { |
| MFI->erase(I); |
| I = NewMI; |
| } |
| } else |
| processInstruction(I, MFI); |
| } |
| } |
| } |
| return false; |
| } |