| //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the X86-specific support for the FastISel class. Much |
| // of the target-specific code is generated by tablegen in the file |
| // X86GenFastISel.inc, which is #included here. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86CallingConv.h" |
| #include "X86InstrBuilder.h" |
| #include "X86InstrInfo.h" |
| #include "X86MachineFunctionInfo.h" |
| #include "X86RegisterInfo.h" |
| #include "X86Subtarget.h" |
| #include "X86TargetMachine.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/CodeGen/FastISel.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Target/TargetOptions.h" |
| using namespace llvm; |
| |
| namespace { |
| |
| class X86FastISel final : public FastISel { |
| /// Subtarget - Keep a pointer to the X86Subtarget around so that we can |
| /// make the right decision when generating code for different targets. |
| const X86Subtarget *Subtarget; |
| |
| /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 |
| /// floating point ops. |
| /// When SSE is available, use it for f32 operations. |
| /// When SSE2 is available, use it for f64 operations. |
| bool X86ScalarSSEf64; |
| bool X86ScalarSSEf32; |
| |
| public: |
| explicit X86FastISel(FunctionLoweringInfo &funcInfo, |
| const TargetLibraryInfo *libInfo) |
| : FastISel(funcInfo, libInfo) { |
| Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>(); |
| X86ScalarSSEf64 = Subtarget->hasSSE2(); |
| X86ScalarSSEf32 = Subtarget->hasSSE1(); |
| } |
| |
| bool fastSelectInstruction(const Instruction *I) override; |
| |
| /// The specified machine instr operand is a vreg, and that |
| /// vreg is being provided by the specified load instruction. If possible, |
| /// try to fold the load as an operand to the instruction, returning true if |
| /// possible. |
| bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, |
| const LoadInst *LI) override; |
| |
| bool fastLowerArguments() override; |
| bool fastLowerCall(CallLoweringInfo &CLI) override; |
| bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; |
| |
| #include "X86GenFastISel.inc" |
| |
| private: |
| bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, |
| const DebugLoc &DL); |
| |
| bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO, |
| unsigned &ResultReg, unsigned Alignment = 1); |
| |
| bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, |
| MachineMemOperand *MMO = nullptr, bool Aligned = false); |
| bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, |
| X86AddressMode &AM, |
| MachineMemOperand *MMO = nullptr, bool Aligned = false); |
| |
| bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, |
| unsigned &ResultReg); |
| |
| bool X86SelectAddress(const Value *V, X86AddressMode &AM); |
| bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); |
| |
| bool X86SelectLoad(const Instruction *I); |
| |
| bool X86SelectStore(const Instruction *I); |
| |
| bool X86SelectRet(const Instruction *I); |
| |
| bool X86SelectCmp(const Instruction *I); |
| |
| bool X86SelectZExt(const Instruction *I); |
| |
| bool X86SelectSExt(const Instruction *I); |
| |
| bool X86SelectBranch(const Instruction *I); |
| |
| bool X86SelectShift(const Instruction *I); |
| |
| bool X86SelectDivRem(const Instruction *I); |
| |
| bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); |
| |
| bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); |
| |
| bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); |
| |
| bool X86SelectSelect(const Instruction *I); |
| |
| bool X86SelectTrunc(const Instruction *I); |
| |
| bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc, |
| const TargetRegisterClass *RC); |
| |
| bool X86SelectFPExt(const Instruction *I); |
| bool X86SelectFPTrunc(const Instruction *I); |
| bool X86SelectSIToFP(const Instruction *I); |
| bool X86SelectUIToFP(const Instruction *I); |
| bool X86SelectIntToFP(const Instruction *I, bool IsSigned); |
| |
| const X86InstrInfo *getInstrInfo() const { |
| return Subtarget->getInstrInfo(); |
| } |
| const X86TargetMachine *getTargetMachine() const { |
| return static_cast<const X86TargetMachine *>(&TM); |
| } |
| |
| bool handleConstantAddresses(const Value *V, X86AddressMode &AM); |
| |
| unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT); |
| unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT); |
| unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT); |
| unsigned fastMaterializeConstant(const Constant *C) override; |
| |
| unsigned fastMaterializeAlloca(const AllocaInst *C) override; |
| |
| unsigned fastMaterializeFloatZero(const ConstantFP *CF) override; |
| |
| /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is |
| /// computed in an SSE register, not on the X87 floating point stack. |
| bool isScalarFPTypeInSSEReg(EVT VT) const { |
| return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 |
| (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 |
| } |
| |
| bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); |
| |
| bool IsMemcpySmall(uint64_t Len); |
| |
| bool TryEmitSmallMemcpy(X86AddressMode DestAM, |
| X86AddressMode SrcAM, uint64_t Len); |
| |
| bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, |
| const Value *Cond); |
| |
| const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB, |
| X86AddressMode &AM); |
| |
| unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, unsigned Op0, |
| bool Op0IsKill, unsigned Op1, bool Op1IsKill, |
| unsigned Op2, bool Op2IsKill, unsigned Op3, |
| bool Op3IsKill); |
| }; |
| |
| } // end anonymous namespace. |
| |
| static std::pair<unsigned, bool> |
| getX86SSEConditionCode(CmpInst::Predicate Predicate) { |
| unsigned CC; |
| bool NeedSwap = false; |
| |
| // SSE Condition code mapping: |
| // 0 - EQ |
| // 1 - LT |
| // 2 - LE |
| // 3 - UNORD |
| // 4 - NEQ |
| // 5 - NLT |
| // 6 - NLE |
| // 7 - ORD |
| switch (Predicate) { |
| default: llvm_unreachable("Unexpected predicate"); |
| case CmpInst::FCMP_OEQ: CC = 0; break; |
| case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH; |
| case CmpInst::FCMP_OLT: CC = 1; break; |
| case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH; |
| case CmpInst::FCMP_OLE: CC = 2; break; |
| case CmpInst::FCMP_UNO: CC = 3; break; |
| case CmpInst::FCMP_UNE: CC = 4; break; |
| case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH; |
| case CmpInst::FCMP_UGE: CC = 5; break; |
| case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH; |
| case CmpInst::FCMP_UGT: CC = 6; break; |
| case CmpInst::FCMP_ORD: CC = 7; break; |
| case CmpInst::FCMP_UEQ: CC = 8; break; |
| case CmpInst::FCMP_ONE: CC = 12; break; |
| } |
| |
| return std::make_pair(CC, NeedSwap); |
| } |
| |
| /// Adds a complex addressing mode to the given machine instr builder. |
| /// Note, this will constrain the index register. If its not possible to |
| /// constrain the given index register, then a new one will be created. The |
| /// IndexReg field of the addressing mode will be updated to match in this case. |
| const MachineInstrBuilder & |
| X86FastISel::addFullAddress(const MachineInstrBuilder &MIB, |
| X86AddressMode &AM) { |
| // First constrain the index register. It needs to be a GR64_NOSP. |
| AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg, |
| MIB->getNumOperands() + |
| X86::AddrIndexReg); |
| return ::addFullAddress(MIB, AM); |
| } |
| |
| /// Check if it is possible to fold the condition from the XALU intrinsic |
| /// into the user. The condition code will only be updated on success. |
| bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, |
| const Value *Cond) { |
| if (!isa<ExtractValueInst>(Cond)) |
| return false; |
| |
| const auto *EV = cast<ExtractValueInst>(Cond); |
| if (!isa<IntrinsicInst>(EV->getAggregateOperand())) |
| return false; |
| |
| const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand()); |
| MVT RetVT; |
| const Function *Callee = II->getCalledFunction(); |
| Type *RetTy = |
| cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U); |
| if (!isTypeLegal(RetTy, RetVT)) |
| return false; |
| |
| if (RetVT != MVT::i32 && RetVT != MVT::i64) |
| return false; |
| |
| X86::CondCode TmpCC; |
| switch (II->getIntrinsicID()) { |
| default: return false; |
| case Intrinsic::sadd_with_overflow: |
| case Intrinsic::ssub_with_overflow: |
| case Intrinsic::smul_with_overflow: |
| case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; |
| } |
| |
| // Check if both instructions are in the same basic block. |
| if (II->getParent() != I->getParent()) |
| return false; |
| |
| // Make sure nothing is in the way |
| BasicBlock::const_iterator Start(I); |
| BasicBlock::const_iterator End(II); |
| for (auto Itr = std::prev(Start); Itr != End; --Itr) { |
| // We only expect extractvalue instructions between the intrinsic and the |
| // instruction to be selected. |
| if (!isa<ExtractValueInst>(Itr)) |
| return false; |
| |
| // Check that the extractvalue operand comes from the intrinsic. |
| const auto *EVI = cast<ExtractValueInst>(Itr); |
| if (EVI->getAggregateOperand() != II) |
| return false; |
| } |
| |
| CC = TmpCC; |
| return true; |
| } |
| |
| bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { |
| EVT evt = TLI.getValueType(DL, Ty, /*HandleUnknown=*/true); |
| if (evt == MVT::Other || !evt.isSimple()) |
| // Unhandled type. Halt "fast" selection and bail. |
| return false; |
| |
| VT = evt.getSimpleVT(); |
| // For now, require SSE/SSE2 for performing floating-point operations, |
| // since x87 requires additional work. |
| if (VT == MVT::f64 && !X86ScalarSSEf64) |
| return false; |
| if (VT == MVT::f32 && !X86ScalarSSEf32) |
| return false; |
| // Similarly, no f80 support yet. |
| if (VT == MVT::f80) |
| return false; |
| // We only handle legal types. For example, on x86-32 the instruction |
| // selector contains all of the 64-bit instructions from x86-64, |
| // under the assumption that i64 won't be used if the target doesn't |
| // support it. |
| return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); |
| } |
| |
| #include "X86GenCallingConv.inc" |
| |
| /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. |
| /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. |
| /// Return true and the result register by reference if it is possible. |
| bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM, |
| MachineMemOperand *MMO, unsigned &ResultReg, |
| unsigned Alignment) { |
| bool HasSSE41 = Subtarget->hasSSE41(); |
| bool HasAVX = Subtarget->hasAVX(); |
| bool HasAVX2 = Subtarget->hasAVX2(); |
| bool HasAVX512 = Subtarget->hasAVX512(); |
| bool HasVLX = Subtarget->hasVLX(); |
| bool IsNonTemporal = MMO && MMO->isNonTemporal(); |
| |
| // Get opcode and regclass of the output for the given load instruction. |
| unsigned Opc = 0; |
| const TargetRegisterClass *RC = nullptr; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| Opc = X86::MOV8rm; |
| RC = &X86::GR8RegClass; |
| break; |
| case MVT::i16: |
| Opc = X86::MOV16rm; |
| RC = &X86::GR16RegClass; |
| break; |
| case MVT::i32: |
| Opc = X86::MOV32rm; |
| RC = &X86::GR32RegClass; |
| break; |
| case MVT::i64: |
| // Must be in x86-64 mode. |
| Opc = X86::MOV64rm; |
| RC = &X86::GR64RegClass; |
| break; |
| case MVT::f32: |
| if (X86ScalarSSEf32) { |
| Opc = HasAVX512 ? X86::VMOVSSZrm : HasAVX ? X86::VMOVSSrm : X86::MOVSSrm; |
| RC = HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass; |
| } else { |
| Opc = X86::LD_Fp32m; |
| RC = &X86::RFP32RegClass; |
| } |
| break; |
| case MVT::f64: |
| if (X86ScalarSSEf64) { |
| Opc = HasAVX512 ? X86::VMOVSDZrm : HasAVX ? X86::VMOVSDrm : X86::MOVSDrm; |
| RC = HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass; |
| } else { |
| Opc = X86::LD_Fp64m; |
| RC = &X86::RFP64RegClass; |
| } |
| break; |
| case MVT::f80: |
| // No f80 support yet. |
| return false; |
| case MVT::v4f32: |
| if (IsNonTemporal && Alignment >= 16 && HasSSE41) |
| Opc = HasVLX ? X86::VMOVNTDQAZ128rm : |
| HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; |
| else if (Alignment >= 16) |
| Opc = HasVLX ? X86::VMOVAPSZ128rm : |
| HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm; |
| else |
| Opc = HasVLX ? X86::VMOVUPSZ128rm : |
| HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm; |
| RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass; |
| break; |
| case MVT::v2f64: |
| if (IsNonTemporal && Alignment >= 16 && HasSSE41) |
| Opc = HasVLX ? X86::VMOVNTDQAZ128rm : |
| HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; |
| else if (Alignment >= 16) |
| Opc = HasVLX ? X86::VMOVAPDZ128rm : |
| HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm; |
| else |
| Opc = HasVLX ? X86::VMOVUPDZ128rm : |
| HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm; |
| RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass; |
| break; |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v8i16: |
| case MVT::v16i8: |
| if (IsNonTemporal && Alignment >= 16) |
| Opc = HasVLX ? X86::VMOVNTDQAZ128rm : |
| HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; |
| else if (Alignment >= 16) |
| Opc = HasVLX ? X86::VMOVDQA64Z128rm : |
| HasAVX ? X86::VMOVDQArm : X86::MOVDQArm; |
| else |
| Opc = HasVLX ? X86::VMOVDQU64Z128rm : |
| HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm; |
| RC = HasVLX ? &X86::VR128XRegClass : &X86::VR128RegClass; |
| break; |
| case MVT::v8f32: |
| assert(HasAVX); |
| if (IsNonTemporal && Alignment >= 32 && HasAVX2) |
| Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; |
| else if (IsNonTemporal && Alignment >= 16) |
| return false; // Force split for X86::VMOVNTDQArm |
| else if (Alignment >= 32) |
| Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm; |
| else |
| Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm; |
| RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass; |
| break; |
| case MVT::v4f64: |
| assert(HasAVX); |
| if (IsNonTemporal && Alignment >= 32 && HasAVX2) |
| Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; |
| else if (IsNonTemporal && Alignment >= 16) |
| return false; // Force split for X86::VMOVNTDQArm |
| else if (Alignment >= 32) |
| Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm; |
| else |
| Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm; |
| RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass; |
| break; |
| case MVT::v8i32: |
| case MVT::v4i64: |
| case MVT::v16i16: |
| case MVT::v32i8: |
| assert(HasAVX); |
| if (IsNonTemporal && Alignment >= 32 && HasAVX2) |
| Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; |
| else if (IsNonTemporal && Alignment >= 16) |
| return false; // Force split for X86::VMOVNTDQArm |
| else if (Alignment >= 32) |
| Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm; |
| else |
| Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm; |
| RC = HasVLX ? &X86::VR256XRegClass : &X86::VR256RegClass; |
| break; |
| case MVT::v16f32: |
| assert(HasAVX512); |
| if (IsNonTemporal && Alignment >= 64) |
| Opc = X86::VMOVNTDQAZrm; |
| else |
| Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm; |
| RC = &X86::VR512RegClass; |
| break; |
| case MVT::v8f64: |
| assert(HasAVX512); |
| if (IsNonTemporal && Alignment >= 64) |
| Opc = X86::VMOVNTDQAZrm; |
| else |
| Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm; |
| RC = &X86::VR512RegClass; |
| break; |
| case MVT::v8i64: |
| case MVT::v16i32: |
| case MVT::v32i16: |
| case MVT::v64i8: |
| assert(HasAVX512); |
| // Note: There are a lot more choices based on type with AVX-512, but |
| // there's really no advantage when the load isn't masked. |
| if (IsNonTemporal && Alignment >= 64) |
| Opc = X86::VMOVNTDQAZrm; |
| else |
| Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm; |
| RC = &X86::VR512RegClass; |
| break; |
| } |
| |
| ResultReg = createResultReg(RC); |
| MachineInstrBuilder MIB = |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); |
| addFullAddress(MIB, AM); |
| if (MMO) |
| MIB->addMemOperand(*FuncInfo.MF, MMO); |
| return true; |
| } |
| |
| /// X86FastEmitStore - Emit a machine instruction to store a value Val of |
| /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr |
| /// and a displacement offset, or a GlobalAddress, |
| /// i.e. V. Return true if it is possible. |
| bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, |
| X86AddressMode &AM, |
| MachineMemOperand *MMO, bool Aligned) { |
| bool HasSSE1 = Subtarget->hasSSE1(); |
| bool HasSSE2 = Subtarget->hasSSE2(); |
| bool HasSSE4A = Subtarget->hasSSE4A(); |
| bool HasAVX = Subtarget->hasAVX(); |
| bool HasAVX512 = Subtarget->hasAVX512(); |
| bool HasVLX = Subtarget->hasVLX(); |
| bool IsNonTemporal = MMO && MMO->isNonTemporal(); |
| |
| // Get opcode and regclass of the output for the given store instruction. |
| unsigned Opc = 0; |
| switch (VT.getSimpleVT().SimpleTy) { |
| case MVT::f80: // No f80 support yet. |
| default: return false; |
| case MVT::i1: { |
| // Mask out all but lowest bit. |
| unsigned AndResult = createResultReg(&X86::GR8RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(X86::AND8ri), AndResult) |
| .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1); |
| ValReg = AndResult; |
| LLVM_FALLTHROUGH; // handle i1 as i8. |
| } |
| case MVT::i8: Opc = X86::MOV8mr; break; |
| case MVT::i16: Opc = X86::MOV16mr; break; |
| case MVT::i32: |
| Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr; |
| break; |
| case MVT::i64: |
| // Must be in x86-64 mode. |
| Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr; |
| break; |
| case MVT::f32: |
| if (X86ScalarSSEf32) { |
| if (IsNonTemporal && HasSSE4A) |
| Opc = X86::MOVNTSS; |
| else |
| Opc = HasAVX512 ? X86::VMOVSSZmr : |
| HasAVX ? X86::VMOVSSmr : X86::MOVSSmr; |
| } else |
| Opc = X86::ST_Fp32m; |
| break; |
| case MVT::f64: |
| if (X86ScalarSSEf32) { |
| if (IsNonTemporal && HasSSE4A) |
| Opc = X86::MOVNTSD; |
| else |
| Opc = HasAVX512 ? X86::VMOVSDZmr : |
| HasAVX ? X86::VMOVSDmr : X86::MOVSDmr; |
| } else |
| Opc = X86::ST_Fp64m; |
| break; |
| case MVT::x86mmx: |
| Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr; |
| break; |
| case MVT::v4f32: |
| if (Aligned) { |
| if (IsNonTemporal) |
| Opc = HasVLX ? X86::VMOVNTPSZ128mr : |
| HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr; |
| else |
| Opc = HasVLX ? X86::VMOVAPSZ128mr : |
| HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr; |
| } else |
| Opc = HasVLX ? X86::VMOVUPSZ128mr : |
| HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr; |
| break; |
| case MVT::v2f64: |
| if (Aligned) { |
| if (IsNonTemporal) |
| Opc = HasVLX ? X86::VMOVNTPDZ128mr : |
| HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr; |
| else |
| Opc = HasVLX ? X86::VMOVAPDZ128mr : |
| HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr; |
| } else |
| Opc = HasVLX ? X86::VMOVUPDZ128mr : |
| HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr; |
| break; |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v8i16: |
| case MVT::v16i8: |
| if (Aligned) { |
| if (IsNonTemporal) |
| Opc = HasVLX ? X86::VMOVNTDQZ128mr : |
| HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr; |
| else |
| Opc = HasVLX ? X86::VMOVDQA64Z128mr : |
| HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr; |
| } else |
| Opc = HasVLX ? X86::VMOVDQU64Z128mr : |
| HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr; |
| break; |
| case MVT::v8f32: |
| assert(HasAVX); |
| if (Aligned) { |
| if (IsNonTemporal) |
| Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr; |
| else |
| Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr; |
| } else |
| Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr; |
| break; |
| case MVT::v4f64: |
| assert(HasAVX); |
| if (Aligned) { |
| if (IsNonTemporal) |
| Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr; |
| else |
| Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr; |
| } else |
| Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr; |
| break; |
| case MVT::v8i32: |
| case MVT::v4i64: |
| case MVT::v16i16: |
| case MVT::v32i8: |
| assert(HasAVX); |
| if (Aligned) { |
| if (IsNonTemporal) |
| Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr; |
| else |
| Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr; |
| } else |
| Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr; |
| break; |
| case MVT::v16f32: |
| assert(HasAVX512); |
| if (Aligned) |
| Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr; |
| else |
| Opc = X86::VMOVUPSZmr; |
| break; |
| case MVT::v8f64: |
| assert(HasAVX512); |
| if (Aligned) { |
| Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr; |
| } else |
| Opc = X86::VMOVUPDZmr; |
| break; |
| case MVT::v8i64: |
| case MVT::v16i32: |
| case MVT::v32i16: |
| case MVT::v64i8: |
| assert(HasAVX512); |
| // Note: There are a lot more choices based on type with AVX-512, but |
| // there's really no advantage when the store isn't masked. |
| if (Aligned) |
| Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr; |
| else |
| Opc = X86::VMOVDQU64Zmr; |
| break; |
| } |
| |
| const MCInstrDesc &Desc = TII.get(Opc); |
| // Some of the instructions in the previous switch use FR128 instead |
| // of FR32 for ValReg. Make sure the register we feed the instruction |
| // matches its register class constraints. |
| // Note: This is fine to do a copy from FR32 to FR128, this is the |
| // same registers behind the scene and actually why it did not trigger |
| // any bugs before. |
| ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1); |
| MachineInstrBuilder MIB = |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc); |
| addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill)); |
| if (MMO) |
| MIB->addMemOperand(*FuncInfo.MF, MMO); |
| |
| return true; |
| } |
| |
| bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, |
| X86AddressMode &AM, |
| MachineMemOperand *MMO, bool Aligned) { |
| // Handle 'null' like i32/i64 0. |
| if (isa<ConstantPointerNull>(Val)) |
| Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); |
| |
| // If this is a store of a simple constant, fold the constant into the store. |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { |
| unsigned Opc = 0; |
| bool Signed = true; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: break; |
| case MVT::i1: |
| Signed = false; |
| LLVM_FALLTHROUGH; // Handle as i8. |
| case MVT::i8: Opc = X86::MOV8mi; break; |
| case MVT::i16: Opc = X86::MOV16mi; break; |
| case MVT::i32: Opc = X86::MOV32mi; break; |
| case MVT::i64: |
| // Must be a 32-bit sign extended value. |
| if (isInt<32>(CI->getSExtValue())) |
| Opc = X86::MOV64mi32; |
| break; |
| } |
| |
| if (Opc) { |
| MachineInstrBuilder MIB = |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); |
| addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() |
| : CI->getZExtValue()); |
| if (MMO) |
| MIB->addMemOperand(*FuncInfo.MF, MMO); |
| return true; |
| } |
| } |
| |
| unsigned ValReg = getRegForValue(Val); |
| if (ValReg == 0) |
| return false; |
| |
| bool ValKill = hasTrivialKill(Val); |
| return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned); |
| } |
| |
| /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of |
| /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. |
| /// ISD::SIGN_EXTEND). |
| bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, |
| unsigned Src, EVT SrcVT, |
| unsigned &ResultReg) { |
| unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, |
| Src, /*TODO: Kill=*/false); |
| if (RR == 0) |
| return false; |
| |
| ResultReg = RR; |
| return true; |
| } |
| |
| bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { |
| // Handle constant address. |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| // Can't handle alternate code models yet. |
| if (TM.getCodeModel() != CodeModel::Small) |
| return false; |
| |
| // Can't handle TLS yet. |
| if (GV->isThreadLocal()) |
| return false; |
| |
| // Can't handle !absolute_symbol references yet. |
| if (GV->isAbsoluteSymbolRef()) |
| return false; |
| |
| // RIP-relative addresses can't have additional register operands, so if |
| // we've already folded stuff into the addressing mode, just force the |
| // global value into its own register, which we can use as the basereg. |
| if (!Subtarget->isPICStyleRIPRel() || |
| (AM.Base.Reg == 0 && AM.IndexReg == 0)) { |
| // Okay, we've committed to selecting this global. Set up the address. |
| AM.GV = GV; |
| |
| // Allow the subtarget to classify the global. |
| unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); |
| |
| // If this reference is relative to the pic base, set it now. |
| if (isGlobalRelativeToPICBase(GVFlags)) { |
| // FIXME: How do we know Base.Reg is free?? |
| AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); |
| } |
| |
| // Unless the ABI requires an extra load, return a direct reference to |
| // the global. |
| if (!isGlobalStubReference(GVFlags)) { |
| if (Subtarget->isPICStyleRIPRel()) { |
| // Use rip-relative addressing if we can. Above we verified that the |
| // base and index registers are unused. |
| assert(AM.Base.Reg == 0 && AM.IndexReg == 0); |
| AM.Base.Reg = X86::RIP; |
| } |
| AM.GVOpFlags = GVFlags; |
| return true; |
| } |
| |
| // Ok, we need to do a load from a stub. If we've already loaded from |
| // this stub, reuse the loaded pointer, otherwise emit the load now. |
| DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V); |
| unsigned LoadReg; |
| if (I != LocalValueMap.end() && I->second != 0) { |
| LoadReg = I->second; |
| } else { |
| // Issue load from stub. |
| unsigned Opc = 0; |
| const TargetRegisterClass *RC = nullptr; |
| X86AddressMode StubAM; |
| StubAM.Base.Reg = AM.Base.Reg; |
| StubAM.GV = GV; |
| StubAM.GVOpFlags = GVFlags; |
| |
| // Prepare for inserting code in the local-value area. |
| SavePoint SaveInsertPt = enterLocalValueArea(); |
| |
| if (TLI.getPointerTy(DL) == MVT::i64) { |
| Opc = X86::MOV64rm; |
| RC = &X86::GR64RegClass; |
| |
| if (Subtarget->isPICStyleRIPRel()) |
| StubAM.Base.Reg = X86::RIP; |
| } else { |
| Opc = X86::MOV32rm; |
| RC = &X86::GR32RegClass; |
| } |
| |
| LoadReg = createResultReg(RC); |
| MachineInstrBuilder LoadMI = |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg); |
| addFullAddress(LoadMI, StubAM); |
| |
| // Ok, back to normal mode. |
| leaveLocalValueArea(SaveInsertPt); |
| |
| // Prevent loading GV stub multiple times in same MBB. |
| LocalValueMap[V] = LoadReg; |
| } |
| |
| // Now construct the final address. Note that the Disp, Scale, |
| // and Index values may already be set here. |
| AM.Base.Reg = LoadReg; |
| AM.GV = nullptr; |
| return true; |
| } |
| } |
| |
| // If all else fails, try to materialize the value in a register. |
| if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { |
| if (AM.Base.Reg == 0) { |
| AM.Base.Reg = getRegForValue(V); |
| return AM.Base.Reg != 0; |
| } |
| if (AM.IndexReg == 0) { |
| assert(AM.Scale == 1 && "Scale with no index!"); |
| AM.IndexReg = getRegForValue(V); |
| return AM.IndexReg != 0; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// X86SelectAddress - Attempt to fill in an address from the given value. |
| /// |
| bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { |
| SmallVector<const Value *, 32> GEPs; |
| redo_gep: |
| const User *U = nullptr; |
| unsigned Opcode = Instruction::UserOp1; |
| if (const Instruction *I = dyn_cast<Instruction>(V)) { |
| // Don't walk into other basic blocks; it's possible we haven't |
| // visited them yet, so the instructions may not yet be assigned |
| // virtual registers. |
| if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || |
| FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { |
| Opcode = I->getOpcode(); |
| U = I; |
| } |
| } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { |
| Opcode = C->getOpcode(); |
| U = C; |
| } |
| |
| if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) |
| if (Ty->getAddressSpace() > 255) |
| // Fast instruction selection doesn't support the special |
| // address spaces. |
| return false; |
| |
| switch (Opcode) { |
| default: break; |
| case Instruction::BitCast: |
| // Look past bitcasts. |
| return X86SelectAddress(U->getOperand(0), AM); |
| |
| case Instruction::IntToPtr: |
| // Look past no-op inttoptrs. |
| if (TLI.getValueType(DL, U->getOperand(0)->getType()) == |
| TLI.getPointerTy(DL)) |
| return X86SelectAddress(U->getOperand(0), AM); |
| break; |
| |
| case Instruction::PtrToInt: |
| // Look past no-op ptrtoints. |
| if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) |
| return X86SelectAddress(U->getOperand(0), AM); |
| break; |
| |
| case Instruction::Alloca: { |
| // Do static allocas. |
| const AllocaInst *A = cast<AllocaInst>(V); |
| DenseMap<const AllocaInst *, int>::iterator SI = |
| FuncInfo.StaticAllocaMap.find(A); |
| if (SI != FuncInfo.StaticAllocaMap.end()) { |
| AM.BaseType = X86AddressMode::FrameIndexBase; |
| AM.Base.FrameIndex = SI->second; |
| return true; |
| } |
| break; |
| } |
| |
| case Instruction::Add: { |
| // Adds of constants are common and easy enough. |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { |
| uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); |
| // They have to fit in the 32-bit signed displacement field though. |
| if (isInt<32>(Disp)) { |
| AM.Disp = (uint32_t)Disp; |
| return X86SelectAddress(U->getOperand(0), AM); |
| } |
| } |
| break; |
| } |
| |
| case Instruction::GetElementPtr: { |
| X86AddressMode SavedAM = AM; |
| |
| // Pattern-match simple GEPs. |
| uint64_t Disp = (int32_t)AM.Disp; |
| unsigned IndexReg = AM.IndexReg; |
| unsigned Scale = AM.Scale; |
| gep_type_iterator GTI = gep_type_begin(U); |
| // Iterate through the indices, folding what we can. Constants can be |
| // folded, and one dynamic index can be handled, if the scale is supported. |
| for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); |
| i != e; ++i, ++GTI) { |
| const Value *Op = *i; |
| if (StructType *STy = GTI.getStructTypeOrNull()) { |
| const StructLayout *SL = DL.getStructLayout(STy); |
| Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); |
| continue; |
| } |
| |
| // A array/variable index is always of the form i*S where S is the |
| // constant scale size. See if we can push the scale into immediates. |
| uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); |
| for (;;) { |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { |
| // Constant-offset addressing. |
| Disp += CI->getSExtValue() * S; |
| break; |
| } |
| if (canFoldAddIntoGEP(U, Op)) { |
| // A compatible add with a constant operand. Fold the constant. |
| ConstantInt *CI = |
| cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); |
| Disp += CI->getSExtValue() * S; |
| // Iterate on the other operand. |
| Op = cast<AddOperator>(Op)->getOperand(0); |
| continue; |
| } |
| if (IndexReg == 0 && |
| (!AM.GV || !Subtarget->isPICStyleRIPRel()) && |
| (S == 1 || S == 2 || S == 4 || S == 8)) { |
| // Scaled-index addressing. |
| Scale = S; |
| IndexReg = getRegForGEPIndex(Op).first; |
| if (IndexReg == 0) |
| return false; |
| break; |
| } |
| // Unsupported. |
| goto unsupported_gep; |
| } |
| } |
| |
| // Check for displacement overflow. |
| if (!isInt<32>(Disp)) |
| break; |
| |
| AM.IndexReg = IndexReg; |
| AM.Scale = Scale; |
| AM.Disp = (uint32_t)Disp; |
| GEPs.push_back(V); |
| |
| if (const GetElementPtrInst *GEP = |
| dyn_cast<GetElementPtrInst>(U->getOperand(0))) { |
| // Ok, the GEP indices were covered by constant-offset and scaled-index |
| // addressing. Update the address state and move on to examining the base. |
| V = GEP; |
| goto redo_gep; |
| } else if (X86SelectAddress(U->getOperand(0), AM)) { |
| return true; |
| } |
| |
| // If we couldn't merge the gep value into this addr mode, revert back to |
| // our address and just match the value instead of completely failing. |
| AM = SavedAM; |
| |
| for (const Value *I : reverse(GEPs)) |
| if (handleConstantAddresses(I, AM)) |
| return true; |
| |
| return false; |
| unsupported_gep: |
| // Ok, the GEP indices weren't all covered. |
| break; |
| } |
| } |
| |
| return handleConstantAddresses(V, AM); |
| } |
| |
| /// X86SelectCallAddress - Attempt to fill in an address from the given value. |
| /// |
| bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { |
| const User *U = nullptr; |
| unsigned Opcode = Instruction::UserOp1; |
| const Instruction *I = dyn_cast<Instruction>(V); |
| // Record if the value is defined in the same basic block. |
| // |
| // This information is crucial to know whether or not folding an |
| // operand is valid. |
| // Indeed, FastISel generates or reuses a virtual register for all |
| // operands of all instructions it selects. Obviously, the definition and |
| // its uses must use the same virtual register otherwise the produced |
| // code is incorrect. |
| // Before instruction selection, FunctionLoweringInfo::set sets the virtual |
| // registers for values that are alive across basic blocks. This ensures |
| // that the values are consistently set between across basic block, even |
| // if different instruction selection mechanisms are used (e.g., a mix of |
| // SDISel and FastISel). |
| // For values local to a basic block, the instruction selection process |
| // generates these virtual registers with whatever method is appropriate |
| // for its needs. In particular, FastISel and SDISel do not share the way |
| // local virtual registers are set. |
| // Therefore, this is impossible (or at least unsafe) to share values |
| // between basic blocks unless they use the same instruction selection |
| // method, which is not guarantee for X86. |
| // Moreover, things like hasOneUse could not be used accurately, if we |
| // allow to reference values across basic blocks whereas they are not |
| // alive across basic blocks initially. |
| bool InMBB = true; |
| if (I) { |
| Opcode = I->getOpcode(); |
| U = I; |
| InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); |
| } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { |
| Opcode = C->getOpcode(); |
| U = C; |
| } |
| |
| switch (Opcode) { |
| default: break; |
| case Instruction::BitCast: |
| // Look past bitcasts if its operand is in the same BB. |
| if (InMBB) |
| return X86SelectCallAddress(U->getOperand(0), AM); |
| break; |
| |
| case Instruction::IntToPtr: |
| // Look past no-op inttoptrs if its operand is in the same BB. |
| if (InMBB && |
| TLI.getValueType(DL, U->getOperand(0)->getType()) == |
| TLI.getPointerTy(DL)) |
| return X86SelectCallAddress(U->getOperand(0), AM); |
| break; |
| |
| case Instruction::PtrToInt: |
| // Look past no-op ptrtoints if its operand is in the same BB. |
| if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) |
| return X86SelectCallAddress(U->getOperand(0), AM); |
| break; |
| } |
| |
| // Handle constant address. |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| // Can't handle alternate code models yet. |
| if (TM.getCodeModel() != CodeModel::Small) |
| return false; |
| |
| // RIP-relative addresses can't have additional register operands. |
| if (Subtarget->isPICStyleRIPRel() && |
| (AM.Base.Reg != 0 || AM.IndexReg != 0)) |
| return false; |
| |
| // Can't handle TLS. |
| if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) |
| if (GVar->isThreadLocal()) |
| return false; |
| |
| // Okay, we've committed to selecting this global. Set up the basic address. |
| AM.GV = GV; |
| |
| // Return a direct reference to the global. Fastisel can handle calls to |
| // functions that require loads, such as dllimport and nonlazybind |
| // functions. |
| if (Subtarget->isPICStyleRIPRel()) { |
| // Use rip-relative addressing if we can. Above we verified that the |
| // base and index registers are unused. |
| assert(AM.Base.Reg == 0 && AM.IndexReg == 0); |
| AM.Base.Reg = X86::RIP; |
| } else { |
| AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr); |
| } |
| |
| return true; |
| } |
| |
| // If all else fails, try to materialize the value in a register. |
| if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { |
| if (AM.Base.Reg == 0) { |
| AM.Base.Reg = getRegForValue(V); |
| return AM.Base.Reg != 0; |
| } |
| if (AM.IndexReg == 0) { |
| assert(AM.Scale == 1 && "Scale with no index!"); |
| AM.IndexReg = getRegForValue(V); |
| return AM.IndexReg != 0; |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| /// X86SelectStore - Select and emit code to implement store instructions. |
| bool X86FastISel::X86SelectStore(const Instruction *I) { |
| // Atomic stores need special handling. |
| const StoreInst *S = cast<StoreInst>(I); |
| |
| if (S->isAtomic()) |
| return false; |
| |
| const Value *PtrV = I->getOperand(1); |
| if (TLI.supportSwiftError()) { |
| // Swifterror values can come from either a function parameter with |
| // swifterror attribute or an alloca with swifterror attribute. |
| if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { |
| if (Arg->hasSwiftErrorAttr()) |
| return false; |
| } |
| |
| if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { |
| if (Alloca->isSwiftError()) |
| return false; |
| } |
| } |
| |
| const Value *Val = S->getValueOperand(); |
| const Value *Ptr = S->getPointerOperand(); |
| |
| MVT VT; |
| if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) |
| return false; |
| |
| unsigned Alignment = S->getAlignment(); |
| unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType()); |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = ABIAlignment; |
| bool Aligned = Alignment >= ABIAlignment; |
| |
| X86AddressMode AM; |
| if (!X86SelectAddress(Ptr, AM)) |
| return false; |
| |
| return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); |
| } |
| |
| /// X86SelectRet - Select and emit code to implement ret instructions. |
| bool X86FastISel::X86SelectRet(const Instruction *I) { |
| const ReturnInst *Ret = cast<ReturnInst>(I); |
| const Function &F = *I->getParent()->getParent(); |
| const X86MachineFunctionInfo *X86MFInfo = |
| FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); |
| |
| if (!FuncInfo.CanLowerReturn) |
| return false; |
| |
| if (TLI.supportSwiftError() && |
| F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) |
| return false; |
| |
| if (TLI.supportSplitCSR(FuncInfo.MF)) |
| return false; |
| |
| CallingConv::ID CC = F.getCallingConv(); |
| if (CC != CallingConv::C && |
| CC != CallingConv::Fast && |
| CC != CallingConv::X86_FastCall && |
| CC != CallingConv::X86_StdCall && |
| CC != CallingConv::X86_ThisCall && |
| CC != CallingConv::X86_64_SysV && |
| CC != CallingConv::Win64) |
| return false; |
| |
| // Don't handle popping bytes if they don't fit the ret's immediate. |
| if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn())) |
| return false; |
| |
| // fastcc with -tailcallopt is intended to provide a guaranteed |
| // tail call optimization. Fastisel doesn't know how to do that. |
| if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) |
| return false; |
| |
| // Let SDISel handle vararg functions. |
| if (F.isVarArg()) |
| return false; |
| |
| // Build a list of return value registers. |
| SmallVector<unsigned, 4> RetRegs; |
| |
| if (Ret->getNumOperands() > 0) { |
| SmallVector<ISD::OutputArg, 4> Outs; |
| GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ValLocs; |
| CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); |
| CCInfo.AnalyzeReturn(Outs, RetCC_X86); |
| |
| const Value *RV = Ret->getOperand(0); |
| unsigned Reg = getRegForValue(RV); |
| if (Reg == 0) |
| return false; |
| |
| // Only handle a single return value for now. |
| if (ValLocs.size() != 1) |
| return false; |
| |
| CCValAssign &VA = ValLocs[0]; |
| |
| // Don't bother handling odd stuff for now. |
| if (VA.getLocInfo() != CCValAssign::Full) |
| return false; |
| // Only handle register returns for now. |
| if (!VA.isRegLoc()) |
| return false; |
| |
| // The calling-convention tables for x87 returns don't tell |
| // the whole story. |
| if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) |
| return false; |
| |
| unsigned SrcReg = Reg + VA.getValNo(); |
| EVT SrcVT = TLI.getValueType(DL, RV->getType()); |
| EVT DstVT = VA.getValVT(); |
| // Special handling for extended integers. |
| if (SrcVT != DstVT) { |
| if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) |
| return false; |
| |
| if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) |
| return false; |
| |
| assert(DstVT == MVT::i32 && "X86 should always ext to i32"); |
| |
| if (SrcVT == MVT::i1) { |
| if (Outs[0].Flags.isSExt()) |
| return false; |
| SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false); |
| SrcVT = MVT::i8; |
| } |
| unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : |
| ISD::SIGN_EXTEND; |
| SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, |
| SrcReg, /*TODO: Kill=*/false); |
| } |
| |
| // Make the copy. |
| unsigned DstReg = VA.getLocReg(); |
| const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg); |
| // Avoid a cross-class copy. This is very unlikely. |
| if (!SrcRC->contains(DstReg)) |
| return false; |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); |
| |
| // Add register to return instruction. |
| RetRegs.push_back(VA.getLocReg()); |
| } |
| |
| // Swift calling convention does not require we copy the sret argument |
| // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. |
| |
| // All x86 ABIs require that for returning structs by value we copy |
| // the sret argument into %rax/%eax (depending on ABI) for the return. |
| // We saved the argument into a virtual register in the entry block, |
| // so now we copy the value out and into %rax/%eax. |
| if (F.hasStructRetAttr() && CC != CallingConv::Swift) { |
| unsigned Reg = X86MFInfo->getSRetReturnReg(); |
| assert(Reg && |
| "SRetReturnReg should have been set in LowerFormalArguments()!"); |
| unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); |
| RetRegs.push_back(RetReg); |
| } |
| |
| // Now emit the RET. |
| MachineInstrBuilder MIB; |
| if (X86MFInfo->getBytesToPopOnReturn()) { |
| MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL)) |
| .addImm(X86MFInfo->getBytesToPopOnReturn()); |
| } else { |
| MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL)); |
| } |
| for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) |
| MIB.addReg(RetRegs[i], RegState::Implicit); |
| return true; |
| } |
| |
| /// X86SelectLoad - Select and emit code to implement load instructions. |
| /// |
| bool X86FastISel::X86SelectLoad(const Instruction *I) { |
| const LoadInst *LI = cast<LoadInst>(I); |
| |
| // Atomic loads need special handling. |
| if (LI->isAtomic()) |
| return false; |
| |
| const Value *SV = I->getOperand(0); |
| if (TLI.supportSwiftError()) { |
| // Swifterror values can come from either a function parameter with |
| // swifterror attribute or an alloca with swifterror attribute. |
| if (const Argument *Arg = dyn_cast<Argument>(SV)) { |
| if (Arg->hasSwiftErrorAttr()) |
| return false; |
| } |
| |
| if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { |
| if (Alloca->isSwiftError()) |
| return false; |
| } |
| } |
| |
| MVT VT; |
| if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) |
| return false; |
| |
| const Value *Ptr = LI->getPointerOperand(); |
| |
| X86AddressMode AM; |
| if (!X86SelectAddress(Ptr, AM)) |
| return false; |
| |
| unsigned Alignment = LI->getAlignment(); |
| unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType()); |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = ABIAlignment; |
| |
| unsigned ResultReg = 0; |
| if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg, |
| Alignment)) |
| return false; |
| |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { |
| bool HasAVX512 = Subtarget->hasAVX512(); |
| bool HasAVX = Subtarget->hasAVX(); |
| bool X86ScalarSSEf32 = Subtarget->hasSSE1(); |
| bool X86ScalarSSEf64 = Subtarget->hasSSE2(); |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return 0; |
| case MVT::i8: return X86::CMP8rr; |
| case MVT::i16: return X86::CMP16rr; |
| case MVT::i32: return X86::CMP32rr; |
| case MVT::i64: return X86::CMP64rr; |
| case MVT::f32: |
| return X86ScalarSSEf32 |
| ? (HasAVX512 ? X86::VUCOMISSZrr |
| : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) |
| : 0; |
| case MVT::f64: |
| return X86ScalarSSEf64 |
| ? (HasAVX512 ? X86::VUCOMISDZrr |
| : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) |
| : 0; |
| } |
| } |
| |
| /// If we have a comparison with RHS as the RHS of the comparison, return an |
| /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0. |
| static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { |
| int64_t Val = RHSC->getSExtValue(); |
| switch (VT.getSimpleVT().SimpleTy) { |
| // Otherwise, we can't fold the immediate into this comparison. |
| default: |
| return 0; |
| case MVT::i8: |
| return X86::CMP8ri; |
| case MVT::i16: |
| if (isInt<8>(Val)) |
| return X86::CMP16ri8; |
| return X86::CMP16ri; |
| case MVT::i32: |
| if (isInt<8>(Val)) |
| return X86::CMP32ri8; |
| return X86::CMP32ri; |
| case MVT::i64: |
| if (isInt<8>(Val)) |
| return X86::CMP64ri8; |
| // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext |
| // field. |
| if (isInt<32>(Val)) |
| return X86::CMP64ri32; |
| return 0; |
| } |
| } |
| |
| bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT, |
| const DebugLoc &CurDbgLoc) { |
| unsigned Op0Reg = getRegForValue(Op0); |
| if (Op0Reg == 0) return false; |
| |
| // Handle 'null' like i32/i64 0. |
| if (isa<ConstantPointerNull>(Op1)) |
| Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); |
| |
| // We have two options: compare with register or immediate. If the RHS of |
| // the compare is an immediate that we can fold into this compare, use |
| // CMPri, otherwise use CMPrr. |
| if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { |
| if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc)) |
| .addReg(Op0Reg) |
| .addImm(Op1C->getSExtValue()); |
| return true; |
| } |
| } |
| |
| unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); |
| if (CompareOpc == 0) return false; |
| |
| unsigned Op1Reg = getRegForValue(Op1); |
| if (Op1Reg == 0) return false; |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc)) |
| .addReg(Op0Reg) |
| .addReg(Op1Reg); |
| |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectCmp(const Instruction *I) { |
| const CmpInst *CI = cast<CmpInst>(I); |
| |
| MVT VT; |
| if (!isTypeLegal(I->getOperand(0)->getType(), VT)) |
| return false; |
| |
| // Try to optimize or fold the cmp. |
| CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
| unsigned ResultReg = 0; |
| switch (Predicate) { |
| default: break; |
| case CmpInst::FCMP_FALSE: { |
| ResultReg = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0), |
| ResultReg); |
| ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true, |
| X86::sub_8bit); |
| if (!ResultReg) |
| return false; |
| break; |
| } |
| case CmpInst::FCMP_TRUE: { |
| ResultReg = createResultReg(&X86::GR8RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), |
| ResultReg).addImm(1); |
| break; |
| } |
| } |
| |
| if (ResultReg) { |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| const Value *LHS = CI->getOperand(0); |
| const Value *RHS = CI->getOperand(1); |
| |
| // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. |
| // We don't have to materialize a zero constant for this case and can just use |
| // %x again on the RHS. |
| if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { |
| const auto *RHSC = dyn_cast<ConstantFP>(RHS); |
| if (RHSC && RHSC->isNullValue()) |
| RHS = LHS; |
| } |
| |
| // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. |
| static const uint16_t SETFOpcTable[2][3] = { |
| { X86::SETEr, X86::SETNPr, X86::AND8rr }, |
| { X86::SETNEr, X86::SETPr, X86::OR8rr } |
| }; |
| const uint16_t *SETFOpc = nullptr; |
| switch (Predicate) { |
| default: break; |
| case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; |
| case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; |
| } |
| |
| ResultReg = createResultReg(&X86::GR8RegClass); |
| if (SETFOpc) { |
| if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) |
| return false; |
| |
| unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); |
| unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]), |
| FlagReg1); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]), |
| FlagReg2); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]), |
| ResultReg).addReg(FlagReg1).addReg(FlagReg2); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| X86::CondCode CC; |
| bool SwapArgs; |
| std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); |
| assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); |
| unsigned Opc = X86::getSETFromCond(CC); |
| |
| if (SwapArgs) |
| std::swap(LHS, RHS); |
| |
| // Emit a compare of LHS/RHS. |
| if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) |
| return false; |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectZExt(const Instruction *I) { |
| EVT DstVT = TLI.getValueType(DL, I->getType()); |
| if (!TLI.isTypeLegal(DstVT)) |
| return false; |
| |
| unsigned ResultReg = getRegForValue(I->getOperand(0)); |
| if (ResultReg == 0) |
| return false; |
| |
| // Handle zero-extension from i1 to i8, which is common. |
| MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); |
| if (SrcVT == MVT::i1) { |
| // Set the high bits to zero. |
| ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false); |
| SrcVT = MVT::i8; |
| |
| if (ResultReg == 0) |
| return false; |
| } |
| |
| if (DstVT == MVT::i64) { |
| // Handle extension to 64-bits via sub-register shenanigans. |
| unsigned MovInst; |
| |
| switch (SrcVT.SimpleTy) { |
| case MVT::i8: MovInst = X86::MOVZX32rr8; break; |
| case MVT::i16: MovInst = X86::MOVZX32rr16; break; |
| case MVT::i32: MovInst = X86::MOV32rr; break; |
| default: llvm_unreachable("Unexpected zext to i64 source type"); |
| } |
| |
| unsigned Result32 = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32) |
| .addReg(ResultReg); |
| |
| ResultReg = createResultReg(&X86::GR64RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG), |
| ResultReg) |
| .addImm(0).addReg(Result32).addImm(X86::sub_32bit); |
| } else if (DstVT == MVT::i16) { |
| // i8->i16 doesn't exist in the autogenerated isel table. Need to zero |
| // extend to 32-bits and then extract down to 16-bits. |
| unsigned Result32 = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8), |
| Result32).addReg(ResultReg); |
| |
| ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true, |
| X86::sub_16bit); |
| } else if (DstVT != MVT::i8) { |
| ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, |
| ResultReg, /*Kill=*/true); |
| if (ResultReg == 0) |
| return false; |
| } |
| |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectSExt(const Instruction *I) { |
| EVT DstVT = TLI.getValueType(DL, I->getType()); |
| if (!TLI.isTypeLegal(DstVT)) |
| return false; |
| |
| unsigned ResultReg = getRegForValue(I->getOperand(0)); |
| if (ResultReg == 0) |
| return false; |
| |
| // Handle sign-extension from i1 to i8. |
| MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); |
| if (SrcVT == MVT::i1) { |
| // Set the high bits to zero. |
| unsigned ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg, |
| /*TODO: Kill=*/false); |
| if (ZExtReg == 0) |
| return false; |
| |
| // Negate the result to make an 8-bit sign extended value. |
| ResultReg = createResultReg(&X86::GR8RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r), |
| ResultReg).addReg(ZExtReg); |
| |
| SrcVT = MVT::i8; |
| } |
| |
| if (DstVT == MVT::i16) { |
| // i8->i16 doesn't exist in the autogenerated isel table. Need to sign |
| // extend to 32-bits and then extract down to 16-bits. |
| unsigned Result32 = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8), |
| Result32).addReg(ResultReg); |
| |
| ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true, |
| X86::sub_16bit); |
| } else if (DstVT != MVT::i8) { |
| ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND, |
| ResultReg, /*Kill=*/true); |
| if (ResultReg == 0) |
| return false; |
| } |
| |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectBranch(const Instruction *I) { |
| // Unconditional branches are selected by tablegen-generated code. |
| // Handle a conditional branch. |
| const BranchInst *BI = cast<BranchInst>(I); |
| MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; |
| MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; |
| |
| // Fold the common case of a conditional branch with a comparison |
| // in the same block (values defined on other blocks may not have |
| // initialized registers). |
| X86::CondCode CC; |
| if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { |
| if (CI->hasOneUse() && CI->getParent() == I->getParent()) { |
| EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType()); |
| |
| // Try to optimize or fold the cmp. |
| CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
| switch (Predicate) { |
| default: break; |
| case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true; |
| case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true; |
| } |
| |
| const Value *CmpLHS = CI->getOperand(0); |
| const Value *CmpRHS = CI->getOperand(1); |
| |
| // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, |
| // 0.0. |
| // We don't have to materialize a zero constant for this case and can just |
| // use %x again on the RHS. |
| if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { |
| const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); |
| if (CmpRHSC && CmpRHSC->isNullValue()) |
| CmpRHS = CmpLHS; |
| } |
| |
| // Try to take advantage of fallthrough opportunities. |
| if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { |
| std::swap(TrueMBB, FalseMBB); |
| Predicate = CmpInst::getInversePredicate(Predicate); |
| } |
| |
| // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition |
| // code check. Instead two branch instructions are required to check all |
| // the flags. First we change the predicate to a supported condition code, |
| // which will be the first branch. Later one we will emit the second |
| // branch. |
| bool NeedExtraBranch = false; |
| switch (Predicate) { |
| default: break; |
| case CmpInst::FCMP_OEQ: |
| std::swap(TrueMBB, FalseMBB); |
| LLVM_FALLTHROUGH; |
| case CmpInst::FCMP_UNE: |
| NeedExtraBranch = true; |
| Predicate = CmpInst::FCMP_ONE; |
| break; |
| } |
| |
| bool SwapArgs; |
| unsigned BranchOpc; |
| std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); |
| assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); |
| |
| BranchOpc = X86::GetCondBranchFromCond(CC); |
| if (SwapArgs) |
| std::swap(CmpLHS, CmpRHS); |
| |
| // Emit a compare of the LHS and RHS, setting the flags. |
| if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc())) |
| return false; |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc)) |
| .addMBB(TrueMBB); |
| |
| // X86 requires a second branch to handle UNE (and OEQ, which is mapped |
| // to UNE above). |
| if (NeedExtraBranch) { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1)) |
| .addMBB(TrueMBB); |
| } |
| |
| finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); |
| return true; |
| } |
| } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { |
| // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which |
| // typically happen for _Bool and C++ bools. |
| MVT SourceVT; |
| if (TI->hasOneUse() && TI->getParent() == I->getParent() && |
| isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { |
| unsigned TestOpc = 0; |
| switch (SourceVT.SimpleTy) { |
| default: break; |
| case MVT::i8: TestOpc = X86::TEST8ri; break; |
| case MVT::i16: TestOpc = X86::TEST16ri; break; |
| case MVT::i32: TestOpc = X86::TEST32ri; break; |
| case MVT::i64: TestOpc = X86::TEST64ri32; break; |
| } |
| if (TestOpc) { |
| unsigned OpReg = getRegForValue(TI->getOperand(0)); |
| if (OpReg == 0) return false; |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc)) |
| .addReg(OpReg).addImm(1); |
| |
| unsigned JmpOpc = X86::JNE_1; |
| if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { |
| std::swap(TrueMBB, FalseMBB); |
| JmpOpc = X86::JE_1; |
| } |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc)) |
| .addMBB(TrueMBB); |
| |
| finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); |
| return true; |
| } |
| } |
| } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { |
| // Fake request the condition, otherwise the intrinsic might be completely |
| // optimized away. |
| unsigned TmpReg = getRegForValue(BI->getCondition()); |
| if (TmpReg == 0) |
| return false; |
| |
| unsigned BranchOpc = X86::GetCondBranchFromCond(CC); |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc)) |
| .addMBB(TrueMBB); |
| finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); |
| return true; |
| } |
| |
| // Otherwise do a clumsy setcc and re-test it. |
| // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used |
| // in an explicit cast, so make sure to handle that correctly. |
| unsigned OpReg = getRegForValue(BI->getCondition()); |
| if (OpReg == 0) return false; |
| |
| // In case OpReg is a K register, COPY to a GPR |
| if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) { |
| unsigned KOpReg = OpReg; |
| OpReg = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), OpReg) |
| .addReg(KOpReg); |
| OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true, |
| X86::sub_8bit); |
| } |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) |
| .addReg(OpReg) |
| .addImm(1); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1)) |
| .addMBB(TrueMBB); |
| finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectShift(const Instruction *I) { |
| unsigned CReg = 0, OpReg = 0; |
| const TargetRegisterClass *RC = nullptr; |
| if (I->getType()->isIntegerTy(8)) { |
| CReg = X86::CL; |
| RC = &X86::GR8RegClass; |
| switch (I->getOpcode()) { |
| case Instruction::LShr: OpReg = X86::SHR8rCL; break; |
| case Instruction::AShr: OpReg = X86::SAR8rCL; break; |
| case Instruction::Shl: OpReg = X86::SHL8rCL; break; |
| default: return false; |
| } |
| } else if (I->getType()->isIntegerTy(16)) { |
| CReg = X86::CX; |
| RC = &X86::GR16RegClass; |
| switch (I->getOpcode()) { |
| default: llvm_unreachable("Unexpected shift opcode"); |
| case Instruction::LShr: OpReg = X86::SHR16rCL; break; |
| case Instruction::AShr: OpReg = X86::SAR16rCL; break; |
| case Instruction::Shl: OpReg = X86::SHL16rCL; break; |
| } |
| } else if (I->getType()->isIntegerTy(32)) { |
| CReg = X86::ECX; |
| RC = &X86::GR32RegClass; |
| switch (I->getOpcode()) { |
| default: llvm_unreachable("Unexpected shift opcode"); |
| case Instruction::LShr: OpReg = X86::SHR32rCL; break; |
| case Instruction::AShr: OpReg = X86::SAR32rCL; break; |
| case Instruction::Shl: OpReg = X86::SHL32rCL; break; |
| } |
| } else if (I->getType()->isIntegerTy(64)) { |
| CReg = X86::RCX; |
| RC = &X86::GR64RegClass; |
| switch (I->getOpcode()) { |
| default: llvm_unreachable("Unexpected shift opcode"); |
| case Instruction::LShr: OpReg = X86::SHR64rCL; break; |
| case Instruction::AShr: OpReg = X86::SAR64rCL; break; |
| case Instruction::Shl: OpReg = X86::SHL64rCL; break; |
| } |
| } else { |
| return false; |
| } |
| |
| MVT VT; |
| if (!isTypeLegal(I->getType(), VT)) |
| return false; |
| |
| unsigned Op0Reg = getRegForValue(I->getOperand(0)); |
| if (Op0Reg == 0) return false; |
| |
| unsigned Op1Reg = getRegForValue(I->getOperand(1)); |
| if (Op1Reg == 0) return false; |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), |
| CReg).addReg(Op1Reg); |
| |
| // The shift instruction uses X86::CL. If we defined a super-register |
| // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. |
| if (CReg != X86::CL) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::KILL), X86::CL) |
| .addReg(CReg, RegState::Kill); |
| |
| unsigned ResultReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg) |
| .addReg(Op0Reg); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectDivRem(const Instruction *I) { |
| const static unsigned NumTypes = 4; // i8, i16, i32, i64 |
| const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem |
| const static bool S = true; // IsSigned |
| const static bool U = false; // !IsSigned |
| const static unsigned Copy = TargetOpcode::COPY; |
| // For the X86 DIV/IDIV instruction, in most cases the dividend |
| // (numerator) must be in a specific register pair highreg:lowreg, |
| // producing the quotient in lowreg and the remainder in highreg. |
| // For most data types, to set up the instruction, the dividend is |
| // copied into lowreg, and lowreg is sign-extended or zero-extended |
| // into highreg. The exception is i8, where the dividend is defined |
| // as a single register rather than a register pair, and we |
| // therefore directly sign-extend or zero-extend the dividend into |
| // lowreg, instead of copying, and ignore the highreg. |
| const static struct DivRemEntry { |
| // The following portion depends only on the data type. |
| const TargetRegisterClass *RC; |
| unsigned LowInReg; // low part of the register pair |
| unsigned HighInReg; // high part of the register pair |
| // The following portion depends on both the data type and the operation. |
| struct DivRemResult { |
| unsigned OpDivRem; // The specific DIV/IDIV opcode to use. |
| unsigned OpSignExtend; // Opcode for sign-extending lowreg into |
| // highreg, or copying a zero into highreg. |
| unsigned OpCopy; // Opcode for copying dividend into lowreg, or |
| // zero/sign-extending into lowreg for i8. |
| unsigned DivRemResultReg; // Register containing the desired result. |
| bool IsOpSigned; // Whether to use signed or unsigned form. |
| } ResultTable[NumOps]; |
| } OpTable[NumTypes] = { |
| { &X86::GR8RegClass, X86::AX, 0, { |
| { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv |
| { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem |
| { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv |
| { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem |
| } |
| }, // i8 |
| { &X86::GR16RegClass, X86::AX, X86::DX, { |
| { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv |
| { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem |
| { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv |
| { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem |
| } |
| }, // i16 |
| { &X86::GR32RegClass, X86::EAX, X86::EDX, { |
| { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv |
| { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem |
| { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv |
| { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem |
| } |
| }, // i32 |
| { &X86::GR64RegClass, X86::RAX, X86::RDX, { |
| { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv |
| { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem |
| { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv |
| { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem |
| } |
| }, // i64 |
| }; |
| |
| MVT VT; |
| if (!isTypeLegal(I->getType(), VT)) |
| return false; |
| |
| unsigned TypeIndex, OpIndex; |
| switch (VT.SimpleTy) { |
| default: return false; |
| case MVT::i8: TypeIndex = 0; break; |
| case MVT::i16: TypeIndex = 1; break; |
| case MVT::i32: TypeIndex = 2; break; |
| case MVT::i64: TypeIndex = 3; |
| if (!Subtarget->is64Bit()) |
| return false; |
| break; |
| } |
| |
| switch (I->getOpcode()) { |
| default: llvm_unreachable("Unexpected div/rem opcode"); |
| case Instruction::SDiv: OpIndex = 0; break; |
| case Instruction::SRem: OpIndex = 1; break; |
| case Instruction::UDiv: OpIndex = 2; break; |
| case Instruction::URem: OpIndex = 3; break; |
| } |
| |
| const DivRemEntry &TypeEntry = OpTable[TypeIndex]; |
| const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; |
| unsigned Op0Reg = getRegForValue(I->getOperand(0)); |
| if (Op0Reg == 0) |
| return false; |
| unsigned Op1Reg = getRegForValue(I->getOperand(1)); |
| if (Op1Reg == 0) |
| return false; |
| |
| // Move op0 into low-order input register. |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); |
| // Zero-extend or sign-extend into high-order input register. |
| if (OpEntry.OpSignExtend) { |
| if (OpEntry.IsOpSigned) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(OpEntry.OpSignExtend)); |
| else { |
| unsigned Zero32 = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(X86::MOV32r0), Zero32); |
| |
| // Copy the zero into the appropriate sub/super/identical physical |
| // register. Unfortunately the operations needed are not uniform enough |
| // to fit neatly into the table above. |
| if (VT == MVT::i16) { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Copy), TypeEntry.HighInReg) |
| .addReg(Zero32, 0, X86::sub_16bit); |
| } else if (VT == MVT::i32) { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Copy), TypeEntry.HighInReg) |
| .addReg(Zero32); |
| } else if (VT == MVT::i64) { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) |
| .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); |
| } |
| } |
| } |
| // Generate the DIV/IDIV instruction. |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); |
| // For i8 remainder, we can't reference ah directly, as we'll end |
| // up with bogus copies like %r9b = COPY %ah. Reference ax |
| // instead to prevent ah references in a rex instruction. |
| // |
| // The current assumption of the fast register allocator is that isel |
| // won't generate explicit references to the GR8_NOREX registers. If |
| // the allocator and/or the backend get enhanced to be more robust in |
| // that regard, this can be, and should be, removed. |
| unsigned ResultReg = 0; |
| if ((I->getOpcode() == Instruction::SRem || |
| I->getOpcode() == Instruction::URem) && |
| OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { |
| unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass); |
| unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Copy), SourceSuperReg).addReg(X86::AX); |
| |
| // Shift AX right by 8 bits instead of using AH. |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri), |
| ResultSuperReg).addReg(SourceSuperReg).addImm(8); |
| |
| // Now reference the 8-bit subreg of the result. |
| ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, |
| /*Kill=*/true, X86::sub_8bit); |
| } |
| // Copy the result out of the physreg if we haven't already. |
| if (!ResultReg) { |
| ResultReg = createResultReg(TypeEntry.RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg) |
| .addReg(OpEntry.DivRemResultReg); |
| } |
| updateValueMap(I, ResultReg); |
| |
| return true; |
| } |
| |
| /// Emit a conditional move instruction (if the are supported) to lower |
| /// the select. |
| bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { |
| // Check if the subtarget supports these instructions. |
| if (!Subtarget->hasCMov()) |
| return false; |
| |
| // FIXME: Add support for i8. |
| if (RetVT < MVT::i16 || RetVT > MVT::i64) |
| return false; |
| |
| const Value *Cond = I->getOperand(0); |
| const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); |
| bool NeedTest = true; |
| X86::CondCode CC = X86::COND_NE; |
| |
| // Optimize conditions coming from a compare if both instructions are in the |
| // same basic block (values defined in other basic blocks may not have |
| // initialized registers). |
| const auto *CI = dyn_cast<CmpInst>(Cond); |
| if (CI && (CI->getParent() == I->getParent())) { |
| CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
| |
| // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. |
| static const uint16_t SETFOpcTable[2][3] = { |
| { X86::SETNPr, X86::SETEr , X86::TEST8rr }, |
| { X86::SETPr, X86::SETNEr, X86::OR8rr } |
| }; |
| const uint16_t *SETFOpc = nullptr; |
| switch (Predicate) { |
| default: break; |
| case CmpInst::FCMP_OEQ: |
| SETFOpc = &SETFOpcTable[0][0]; |
| Predicate = CmpInst::ICMP_NE; |
| break; |
| case CmpInst::FCMP_UNE: |
| SETFOpc = &SETFOpcTable[1][0]; |
| Predicate = CmpInst::ICMP_NE; |
| break; |
| } |
| |
| bool NeedSwap; |
| std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate); |
| assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); |
| |
| const Value *CmpLHS = CI->getOperand(0); |
| const Value *CmpRHS = CI->getOperand(1); |
| if (NeedSwap) |
| std::swap(CmpLHS, CmpRHS); |
| |
| EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); |
| // Emit a compare of the LHS and RHS, setting the flags. |
| if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) |
| return false; |
| |
| if (SETFOpc) { |
| unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); |
| unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]), |
| FlagReg1); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]), |
| FlagReg2); |
| auto const &II = TII.get(SETFOpc[2]); |
| if (II.getNumDefs()) { |
| unsigned TmpReg = createResultReg(&X86::GR8RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg) |
| .addReg(FlagReg2).addReg(FlagReg1); |
| } else { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) |
| .addReg(FlagReg2).addReg(FlagReg1); |
| } |
| } |
| NeedTest = false; |
| } else if (foldX86XALUIntrinsic(CC, I, Cond)) { |
| // Fake request the condition, otherwise the intrinsic might be completely |
| // optimized away. |
| unsigned TmpReg = getRegForValue(Cond); |
| if (TmpReg == 0) |
| return false; |
| |
| NeedTest = false; |
| } |
| |
| if (NeedTest) { |
| // Selects operate on i1, however, CondReg is 8 bits width and may contain |
| // garbage. Indeed, only the less significant bit is supposed to be |
| // accurate. If we read more than the lsb, we may see non-zero values |
| // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for |
| // the select. This is achieved by performing TEST against 1. |
| unsigned CondReg = getRegForValue(Cond); |
| if (CondReg == 0) |
| return false; |
| bool CondIsKill = hasTrivialKill(Cond); |
| |
| // In case OpReg is a K register, COPY to a GPR |
| if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { |
| unsigned KCondReg = CondReg; |
| CondReg = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), CondReg) |
| .addReg(KCondReg, getKillRegState(CondIsKill)); |
| CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true, |
| X86::sub_8bit); |
| } |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) |
| .addReg(CondReg, getKillRegState(CondIsKill)) |
| .addImm(1); |
| } |
| |
| const Value *LHS = I->getOperand(1); |
| const Value *RHS = I->getOperand(2); |
| |
| unsigned RHSReg = getRegForValue(RHS); |
| bool RHSIsKill = hasTrivialKill(RHS); |
| |
| unsigned LHSReg = getRegForValue(LHS); |
| bool LHSIsKill = hasTrivialKill(LHS); |
| |
| if (!LHSReg || !RHSReg) |
| return false; |
| |
| const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo(); |
| unsigned Opc = X86::getCMovFromCond(CC, TRI.getRegSizeInBits(*RC)/8); |
| unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill, |
| LHSReg, LHSIsKill); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| /// Emit SSE or AVX instructions to lower the select. |
| /// |
| /// Try to use SSE1/SSE2 instructions to simulate a select without branches. |
| /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary |
| /// SSE instructions are available. If AVX is available, try to use a VBLENDV. |
| bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { |
| // Optimize conditions coming from a compare if both instructions are in the |
| // same basic block (values defined in other basic blocks may not have |
| // initialized registers). |
| const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0)); |
| if (!CI || (CI->getParent() != I->getParent())) |
| return false; |
| |
| if (I->getType() != CI->getOperand(0)->getType() || |
| !((Subtarget->hasSSE1() && RetVT == MVT::f32) || |
| (Subtarget->hasSSE2() && RetVT == MVT::f64))) |
| return false; |
| |
| const Value *CmpLHS = CI->getOperand(0); |
| const Value *CmpRHS = CI->getOperand(1); |
| CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
| |
| // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. |
| // We don't have to materialize a zero constant for this case and can just use |
| // %x again on the RHS. |
| if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { |
| const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); |
| if (CmpRHSC && CmpRHSC->isNullValue()) |
| CmpRHS = CmpLHS; |
| } |
| |
| unsigned CC; |
| bool NeedSwap; |
| std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); |
| if (CC > 7 && !Subtarget->hasAVX()) |
| return false; |
| |
| if (NeedSwap) |
| std::swap(CmpLHS, CmpRHS); |
| |
| // Choose the SSE instruction sequence based on data type (float or double). |
| static const uint16_t OpcTable[2][4] = { |
| { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr }, |
| { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr } |
| }; |
| |
| const uint16_t *Opc = nullptr; |
| switch (RetVT.SimpleTy) { |
| default: return false; |
| case MVT::f32: Opc = &OpcTable[0][0]; break; |
| case MVT::f64: Opc = &OpcTable[1][0]; break; |
| } |
| |
| const Value *LHS = I->getOperand(1); |
| const Value *RHS = I->getOperand(2); |
| |
| unsigned LHSReg = getRegForValue(LHS); |
| bool LHSIsKill = hasTrivialKill(LHS); |
| |
| unsigned RHSReg = getRegForValue(RHS); |
| bool RHSIsKill = hasTrivialKill(RHS); |
| |
| unsigned CmpLHSReg = getRegForValue(CmpLHS); |
| bool CmpLHSIsKill = hasTrivialKill(CmpLHS); |
| |
| unsigned CmpRHSReg = getRegForValue(CmpRHS); |
| bool CmpRHSIsKill = hasTrivialKill(CmpRHS); |
| |
| if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS) |
| return false; |
| |
| const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); |
| unsigned ResultReg; |
| |
| if (Subtarget->hasAVX512()) { |
| // If we have AVX512 we can use a mask compare and masked movss/sd. |
| const TargetRegisterClass *VR128X = &X86::VR128XRegClass; |
| const TargetRegisterClass *VK1 = &X86::VK1RegClass; |
| |
| unsigned CmpOpcode = |
| (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr; |
| unsigned CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill, |
| CmpRHSReg, CmpRHSIsKill, CC); |
| |
| // Need an IMPLICIT_DEF for the input that is used to generate the upper |
| // bits of the result register since its not based on any of the inputs. |
| unsigned ImplicitDefReg = createResultReg(VR128X); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); |
| |
| // Place RHSReg is the passthru of the masked movss/sd operation and put |
| // LHS in the input. The mask input comes from the compare. |
| unsigned MovOpcode = |
| (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk; |
| unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill, |
| CmpReg, true, ImplicitDefReg, true, |
| LHSReg, LHSIsKill); |
| |
| ResultReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg); |
| |
| } else if (Subtarget->hasAVX()) { |
| const TargetRegisterClass *VR128 = &X86::VR128RegClass; |
| |
| // If we have AVX, create 1 blendv instead of 3 logic instructions. |
| // Blendv was introduced with SSE 4.1, but the 2 register form implicitly |
| // uses XMM0 as the selection register. That may need just as many |
| // instructions as the AND/ANDN/OR sequence due to register moves, so |
| // don't bother. |
| unsigned CmpOpcode = |
| (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr; |
| unsigned BlendOpcode = |
| (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr; |
| |
| unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill, |
| CmpRHSReg, CmpRHSIsKill, CC); |
| unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill, |
| LHSReg, LHSIsKill, CmpReg, true); |
| ResultReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg); |
| } else { |
| const TargetRegisterClass *VR128 = &X86::VR128RegClass; |
| unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill, |
| CmpRHSReg, CmpRHSIsKill, CC); |
| unsigned AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false, |
| LHSReg, LHSIsKill); |
| unsigned AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true, |
| RHSReg, RHSIsKill); |
| unsigned OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true, |
| AndReg, /*IsKill=*/true); |
| ResultReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg); |
| } |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { |
| // These are pseudo CMOV instructions and will be later expanded into control- |
| // flow. |
| unsigned Opc; |
| switch (RetVT.SimpleTy) { |
| default: return false; |
| case MVT::i8: Opc = X86::CMOV_GR8; break; |
| case MVT::i16: Opc = X86::CMOV_GR16; break; |
| case MVT::i32: Opc = X86::CMOV_GR32; break; |
| case MVT::f32: Opc = X86::CMOV_FR32; break; |
| case MVT::f64: Opc = X86::CMOV_FR64; break; |
| } |
| |
| const Value *Cond = I->getOperand(0); |
| X86::CondCode CC = X86::COND_NE; |
| |
| // Optimize conditions coming from a compare if both instructions are in the |
| // same basic block (values defined in other basic blocks may not have |
| // initialized registers). |
| const auto *CI = dyn_cast<CmpInst>(Cond); |
| if (CI && (CI->getParent() == I->getParent())) { |
| bool NeedSwap; |
| std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate()); |
| if (CC > X86::LAST_VALID_COND) |
| return false; |
| |
| const Value *CmpLHS = CI->getOperand(0); |
| const Value *CmpRHS = CI->getOperand(1); |
| |
| if (NeedSwap) |
| std::swap(CmpLHS, CmpRHS); |
| |
| EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); |
| if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) |
| return false; |
| } else { |
| unsigned CondReg = getRegForValue(Cond); |
| if (CondReg == 0) |
| return false; |
| bool CondIsKill = hasTrivialKill(Cond); |
| |
| // In case OpReg is a K register, COPY to a GPR |
| if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { |
| unsigned KCondReg = CondReg; |
| CondReg = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), CondReg) |
| .addReg(KCondReg, getKillRegState(CondIsKill)); |
| CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true, |
| X86::sub_8bit); |
| } |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) |
| .addReg(CondReg, getKillRegState(CondIsKill)) |
| .addImm(1); |
| } |
| |
| const Value *LHS = I->getOperand(1); |
| const Value *RHS = I->getOperand(2); |
| |
| unsigned LHSReg = getRegForValue(LHS); |
| bool LHSIsKill = hasTrivialKill(LHS); |
| |
| unsigned RHSReg = getRegForValue(RHS); |
| bool RHSIsKill = hasTrivialKill(RHS); |
| |
| if (!LHSReg || !RHSReg) |
| return false; |
| |
| const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); |
| |
| unsigned ResultReg = |
| fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectSelect(const Instruction *I) { |
| MVT RetVT; |
| if (!isTypeLegal(I->getType(), RetVT)) |
| return false; |
| |
| // Check if we can fold the select. |
| if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) { |
| CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
| const Value *Opnd = nullptr; |
| switch (Predicate) { |
| default: break; |
| case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; |
| case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break; |
| } |
| // No need for a select anymore - this is an unconditional move. |
| if (Opnd) { |
| unsigned OpReg = getRegForValue(Opnd); |
| if (OpReg == 0) |
| return false; |
| bool OpIsKill = hasTrivialKill(Opnd); |
| const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); |
| unsigned ResultReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), ResultReg) |
| .addReg(OpReg, getKillRegState(OpIsKill)); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| } |
| |
| // First try to use real conditional move instructions. |
| if (X86FastEmitCMoveSelect(RetVT, I)) |
| return true; |
| |
| // Try to use a sequence of SSE instructions to simulate a conditional move. |
| if (X86FastEmitSSESelect(RetVT, I)) |
| return true; |
| |
| // Fall-back to pseudo conditional move instructions, which will be later |
| // converted to control-flow. |
| if (X86FastEmitPseudoSelect(RetVT, I)) |
| return true; |
| |
| return false; |
| } |
| |
| // Common code for X86SelectSIToFP and X86SelectUIToFP. |
| bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) { |
| // The target-independent selection algorithm in FastISel already knows how |
| // to select a SINT_TO_FP if the target is SSE but not AVX. |
| // Early exit if the subtarget doesn't have AVX. |
| // Unsigned conversion requires avx512. |
| bool HasAVX512 = Subtarget->hasAVX512(); |
| if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512)) |
| return false; |
| |
| // TODO: We could sign extend narrower types. |
| MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); |
| if (SrcVT != MVT::i32 && SrcVT != MVT::i64) |
| return false; |
| |
| // Select integer to float/double conversion. |
| unsigned OpReg = getRegForValue(I->getOperand(0)); |
| if (OpReg == 0) |
| return false; |
| |
| unsigned Opcode; |
| |
| static const uint16_t SCvtOpc[2][2][2] = { |
| { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr }, |
| { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } }, |
| { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr }, |
| { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } }, |
| }; |
| static const uint16_t UCvtOpc[2][2] = { |
| { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr }, |
| { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr }, |
| }; |
| bool Is64Bit = SrcVT == MVT::i64; |
| |
| if (I->getType()->isDoubleTy()) { |
| // s/uitofp int -> double |
| Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit]; |
| } else if (I->getType()->isFloatTy()) { |
| // s/uitofp int -> float |
| Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit]; |
| } else |
| return false; |
| |
| MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT(); |
| const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT); |
| unsigned ImplicitDefReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); |
| unsigned ResultReg = |
| fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectSIToFP(const Instruction *I) { |
| return X86SelectIntToFP(I, /*IsSigned*/true); |
| } |
| |
| bool X86FastISel::X86SelectUIToFP(const Instruction *I) { |
| return X86SelectIntToFP(I, /*IsSigned*/false); |
| } |
| |
| // Helper method used by X86SelectFPExt and X86SelectFPTrunc. |
| bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I, |
| unsigned TargetOpc, |
| const TargetRegisterClass *RC) { |
| assert((I->getOpcode() == Instruction::FPExt || |
| I->getOpcode() == Instruction::FPTrunc) && |
| "Instruction must be an FPExt or FPTrunc!"); |
| |
| unsigned OpReg = getRegForValue(I->getOperand(0)); |
| if (OpReg == 0) |
| return false; |
| |
| unsigned ImplicitDefReg; |
| if (Subtarget->hasAVX()) { |
| ImplicitDefReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); |
| |
| } |
| |
| unsigned ResultReg = createResultReg(RC); |
| MachineInstrBuilder MIB; |
| MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc), |
| ResultReg); |
| |
| if (Subtarget->hasAVX()) |
| MIB.addReg(ImplicitDefReg); |
| |
| MIB.addReg(OpReg); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectFPExt(const Instruction *I) { |
| if (X86ScalarSSEf64 && I->getType()->isDoubleTy() && |
| I->getOperand(0)->getType()->isFloatTy()) { |
| bool HasAVX512 = Subtarget->hasAVX512(); |
| // fpext from float to double. |
| unsigned Opc = |
| HasAVX512 ? X86::VCVTSS2SDZrr |
| : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr; |
| return X86SelectFPExtOrFPTrunc( |
| I, Opc, HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass); |
| } |
| |
| return false; |
| } |
| |
| bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { |
| if (X86ScalarSSEf64 && I->getType()->isFloatTy() && |
| I->getOperand(0)->getType()->isDoubleTy()) { |
| bool HasAVX512 = Subtarget->hasAVX512(); |
| // fptrunc from double to float. |
| unsigned Opc = |
| HasAVX512 ? X86::VCVTSD2SSZrr |
| : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr; |
| return X86SelectFPExtOrFPTrunc( |
| I, Opc, HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass); |
| } |
| |
| return false; |
| } |
| |
| bool X86FastISel::X86SelectTrunc(const Instruction *I) { |
| EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); |
| EVT DstVT = TLI.getValueType(DL, I->getType()); |
| |
| // This code only handles truncation to byte. |
| if (DstVT != MVT::i8 && DstVT != MVT::i1) |
| return false; |
| if (!TLI.isTypeLegal(SrcVT)) |
| return false; |
| |
| unsigned InputReg = getRegForValue(I->getOperand(0)); |
| if (!InputReg) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| if (SrcVT == MVT::i8) { |
| // Truncate from i8 to i1; no code needed. |
| updateValueMap(I, InputReg); |
| return true; |
| } |
| |
| // Issue an extract_subreg. |
| unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8, |
| InputReg, false, |
| X86::sub_8bit); |
| if (!ResultReg) |
| return false; |
| |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::IsMemcpySmall(uint64_t Len) { |
| return Len <= (Subtarget->is64Bit() ? 32 : 16); |
| } |
| |
| bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, |
| X86AddressMode SrcAM, uint64_t Len) { |
| |
| // Make sure we don't bloat code by inlining very large memcpy's. |
| if (!IsMemcpySmall(Len)) |
| return false; |
| |
| bool i64Legal = Subtarget->is64Bit(); |
| |
| // We don't care about alignment here since we just emit integer accesses. |
| while (Len) { |
| MVT VT; |
| if (Len >= 8 && i64Legal) |
| VT = MVT::i64; |
| else if (Len >= 4) |
| VT = MVT::i32; |
| else if (Len >= 2) |
| VT = MVT::i16; |
| else |
| VT = MVT::i8; |
| |
| unsigned Reg; |
| bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg); |
| RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM); |
| assert(RV && "Failed to emit load or store??"); |
| |
| unsigned Size = VT.getSizeInBits()/8; |
| Len -= Size; |
| DestAM.Disp += Size; |
| SrcAM.Disp += Size; |
| } |
| |
| return true; |
| } |
| |
| bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { |
| // FIXME: Handle more intrinsics. |
| switch (II->getIntrinsicID()) { |
| default: return false; |
| case Intrinsic::convert_from_fp16: |
| case Intrinsic::convert_to_fp16: { |
| if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) |
| return false; |
| |
| const Value *Op = II->getArgOperand(0); |
| unsigned InputReg = getRegForValue(Op); |
| if (InputReg == 0) |
| return false; |
| |
| // F16C only allows converting from float to half and from half to float. |
| bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16; |
| if (IsFloatToHalf) { |
| if (!Op->getType()->isFloatTy()) |
| return false; |
| } else { |
| if (!II->getType()->isFloatTy()) |
| return false; |
| } |
| |
| unsigned ResultReg = 0; |
| const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16); |
| if (IsFloatToHalf) { |
| // 'InputReg' is implicitly promoted from register class FR32 to |
| // register class VR128 by method 'constrainOperandRegClass' which is |
| // directly called by 'fastEmitInst_ri'. |
| // Instruction VCVTPS2PHrr takes an extra immediate operand which is |
| // used to provide rounding control: use MXCSR.RC, encoded as 0b100. |
| // It's consistent with the other FP instructions, which are usually |
| // controlled by MXCSR. |
| InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4); |
| |
| // Move the lower 32-bits of ResultReg to another register of class GR32. |
| ResultReg = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(X86::VMOVPDI2DIrr), ResultReg) |
| .addReg(InputReg, RegState::Kill); |
| |
| // The result value is in the lower 16-bits of ResultReg. |
| unsigned RegIdx = X86::sub_16bit; |
| ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx); |
| } else { |
| assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!"); |
| // Explicitly sign-extend the input to 32-bit. |
| InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg, |
| /*Kill=*/false); |
| |
| // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr. |
| InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR, |
| InputReg, /*Kill=*/true); |
| |
| InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true); |
| |
| // The result value is in the lower 32-bits of ResultReg. |
| // Emit an explicit copy from register class VR128 to register class FR32. |
| ResultReg = createResultReg(&X86::FR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), ResultReg) |
| .addReg(InputReg, RegState::Kill); |
| } |
| |
| updateValueMap(II, ResultReg); |
| return true; |
| } |
| case Intrinsic::frameaddress: { |
| MachineFunction *MF = FuncInfo.MF; |
| if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI()) |
| return false; |
| |
| Type *RetTy = II->getCalledFunction()->getReturnType(); |
| |
| MVT VT; |
| if (!isTypeLegal(RetTy, VT)) |
| return false; |
| |
| unsigned Opc; |
| const TargetRegisterClass *RC = nullptr; |
| |
| switch (VT.SimpleTy) { |
| default: llvm_unreachable("Invalid result type for frameaddress."); |
| case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; |
| case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; |
| } |
| |
| // This needs to be set before we call getPtrSizedFrameRegister, otherwise |
| // we get the wrong frame register. |
| MachineFrameInfo &MFI = MF->getFrameInfo(); |
| MFI.setFrameAddressIsTaken(true); |
| |
| const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); |
| unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF); |
| assert(((FrameReg == X86::RBP && VT == MVT::i64) || |
| (FrameReg == X86::EBP && VT == MVT::i32)) && |
| "Invalid Frame Register!"); |
| |
| // Always make a copy of the frame register to a vreg first, so that we |
| // never directly reference the frame register (the TwoAddressInstruction- |
| // Pass doesn't like that). |
| unsigned SrcReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg); |
| |
| // Now recursively load from the frame address. |
| // movq (%rbp), %rax |
| // movq (%rax), %rax |
| // movq (%rax), %rax |
| // ... |
| unsigned DestReg; |
| unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue(); |
| while (Depth--) { |
| DestReg = createResultReg(RC); |
| addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), DestReg), SrcReg); |
| SrcReg = DestReg; |
| } |
| |
| updateValueMap(II, SrcReg); |
| return true; |
| } |
| case Intrinsic::memcpy: { |
| const MemCpyInst *MCI = cast<MemCpyInst>(II); |
| // Don't handle volatile or variable length memcpys. |
| if (MCI->isVolatile()) |
| return false; |
| |
| if (isa<ConstantInt>(MCI->getLength())) { |
| // Small memcpy's are common enough that we want to do them |
| // without a call if possible. |
| uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue(); |
| if (IsMemcpySmall(Len)) { |
| X86AddressMode DestAM, SrcAM; |
| if (!X86SelectAddress(MCI->getRawDest(), DestAM) || |
| !X86SelectAddress(MCI->getRawSource(), SrcAM)) |
| return false; |
| TryEmitSmallMemcpy(DestAM, SrcAM, Len); |
| return true; |
| } |
| } |
| |
| unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; |
| if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth)) |
| return false; |
| |
| if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) |
| return false; |
| |
| return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1); |
| } |
| case Intrinsic::memset: { |
| const MemSetInst *MSI = cast<MemSetInst>(II); |
| |
| if (MSI->isVolatile()) |
| return false; |
| |
| unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; |
| if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth)) |
| return false; |
| |
| if (MSI->getDestAddressSpace() > 255) |
| return false; |
| |
| return lowerCallTo(II, "memset", II->getNumArgOperands() - 1); |
| } |
| case Intrinsic::stackprotector: { |
| // Emit code to store the stack guard onto the stack. |
| EVT PtrTy = TLI.getPointerTy(DL); |
| |
| const Value *Op1 = II->getArgOperand(0); // The guard's value. |
| const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1)); |
| |
| MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); |
| |
| // Grab the frame index. |
| X86AddressMode AM; |
| if (!X86SelectAddress(Slot, AM)) return false; |
| if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; |
| return true; |
| } |
| case Intrinsic::dbg_declare: { |
| const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); |
| X86AddressMode AM; |
| assert(DI->getAddress() && "Null address should be checked earlier!"); |
| if (!X86SelectAddress(DI->getAddress(), AM)) |
| return false; |
| const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); |
| // FIXME may need to add RegState::Debug to any registers produced, |
| // although ESP/EBP should be the only ones at the moment. |
| assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && |
| "Expected inlined-at fields to agree"); |
| addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM) |
| .addImm(0) |
| .addMetadata(DI->getVariable()) |
| .addMetadata(DI->getExpression()); |
| return true; |
| } |
| case Intrinsic::trap: { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP)); |
| return true; |
| } |
| case Intrinsic::sqrt: { |
| if (!Subtarget->hasSSE1()) |
| return false; |
| |
| Type *RetTy = II->getCalledFunction()->getReturnType(); |
| |
| MVT VT; |
| if (!isTypeLegal(RetTy, VT)) |
| return false; |
| |
| // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT |
| // is not generated by FastISel yet. |
| // FIXME: Update this code once tablegen can handle it. |
| static const uint16_t SqrtOpc[3][2] = { |
| { X86::SQRTSSr, X86::SQRTSDr }, |
| { X86::VSQRTSSr, X86::VSQRTSDr }, |
| { X86::VSQRTSSZr, X86::VSQRTSDZr }, |
| }; |
| unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : |
| Subtarget->hasAVX() ? 1 : |
| 0; |
| unsigned Opc; |
| switch (VT.SimpleTy) { |
| default: return false; |
| case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break; |
| case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break; |
| } |
| |
| const Value *SrcVal = II->getArgOperand(0); |
| unsigned SrcReg = getRegForValue(SrcVal); |
| |
| if (SrcReg == 0) |
| return false; |
| |
| const TargetRegisterClass *RC = TLI.getRegClassFor(VT); |
| unsigned ImplicitDefReg = 0; |
| if (AVXLevel > 0) { |
| ImplicitDefReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); |
| } |
| |
| unsigned ResultReg = createResultReg(RC); |
| MachineInstrBuilder MIB; |
| MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), |
| ResultReg); |
| |
| if (ImplicitDefReg) |
| MIB.addReg(ImplicitDefReg); |
| |
| MIB.addReg(SrcReg); |
| |
| updateValueMap(II, ResultReg); |
| return true; |
| } |
| case Intrinsic::sadd_with_overflow: |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::ssub_with_overflow: |
| case Intrinsic::usub_with_overflow: |
| case Intrinsic::smul_with_overflow: |
| case Intrinsic::umul_with_overflow: { |
| // This implements the basic lowering of the xalu with overflow intrinsics |
| // into add/sub/mul followed by either seto or setb. |
| const Function *Callee = II->getCalledFunction(); |
| auto *Ty = cast<StructType>(Callee->getReturnType()); |
| Type *RetTy = Ty->getTypeAtIndex(0U); |
| assert(Ty->getTypeAtIndex(1)->isIntegerTy() && |
| Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 && |
| "Overflow value expected to be an i1"); |
| |
| MVT VT; |
| if (!isTypeLegal(RetTy, VT)) |
| return false; |
| |
| if (VT < MVT::i8 || VT > MVT::i64) |
| return false; |
| |
| const Value *LHS = II->getArgOperand(0); |
| const Value *RHS = II->getArgOperand(1); |
| |
| // Canonicalize immediate to the RHS. |
| if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && |
| isCommutativeIntrinsic(II)) |
| std::swap(LHS, RHS); |
| |
| bool UseIncDec = false; |
| if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne()) |
| UseIncDec = true; |
| |
| unsigned BaseOpc, CondOpc; |
| switch (II->getIntrinsicID()) { |
| default: llvm_unreachable("Unexpected intrinsic!"); |
| case Intrinsic::sadd_with_overflow: |
| BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD); |
| CondOpc = X86::SETOr; |
| break; |
| case Intrinsic::uadd_with_overflow: |
| BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break; |
| case Intrinsic::ssub_with_overflow: |
| BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB); |
| CondOpc = X86::SETOr; |
| break; |
| case Intrinsic::usub_with_overflow: |
| BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break; |
| case Intrinsic::smul_with_overflow: |
| BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break; |
| case Intrinsic::umul_with_overflow: |
| BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break; |
| } |
| |
| unsigned LHSReg = getRegForValue(LHS); |
| if (LHSReg == 0) |
| return false; |
| bool LHSIsKill = hasTrivialKill(LHS); |
| |
| unsigned ResultReg = 0; |
| // Check if we have an immediate version. |
| if (const auto *CI = dyn_cast<ConstantInt>(RHS)) { |
| static const uint16_t Opc[2][4] = { |
| { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r }, |
| { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r } |
| }; |
| |
| if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) { |
| ResultReg = createResultReg(TLI.getRegClassFor(VT)); |
| bool IsDec = BaseOpc == X86ISD::DEC; |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg) |
| .addReg(LHSReg, getKillRegState(LHSIsKill)); |
| } else |
| ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill, |
| CI->getZExtValue()); |
| } |
| |
| unsigned RHSReg; |
| bool RHSIsKill; |
| if (!ResultReg) { |
| RHSReg = getRegForValue(RHS); |
| if (RHSReg == 0) |
| return false; |
| RHSIsKill = hasTrivialKill(RHS); |
| ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg, |
| RHSIsKill); |
| } |
| |
| // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit |
| // it manually. |
| if (BaseOpc == X86ISD::UMUL && !ResultReg) { |
| static const uint16_t MULOpc[] = |
| { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; |
| static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; |
| // First copy the first operand into RAX, which is an implicit input to |
| // the X86::MUL*r instruction. |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8]) |
| .addReg(LHSReg, getKillRegState(LHSIsKill)); |
| ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8], |
| TLI.getRegClassFor(VT), RHSReg, RHSIsKill); |
| } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { |
| static const uint16_t MULOpc[] = |
| { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; |
| if (VT == MVT::i8) { |
| // Copy the first operand into AL, which is an implicit input to the |
| // X86::IMUL8r instruction. |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), X86::AL) |
| .addReg(LHSReg, getKillRegState(LHSIsKill)); |
| ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg, |
| RHSIsKill); |
| } else |
| ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8], |
| TLI.getRegClassFor(VT), LHSReg, LHSIsKill, |
| RHSReg, RHSIsKill); |
| } |
| |
| if (!ResultReg) |
| return false; |
| |
| // Assign to a GPR since the overflow return value is lowered to a SETcc. |
| unsigned ResultReg2 = createResultReg(&X86::GR8RegClass); |
| assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc), |
| ResultReg2); |
| |
| updateValueMap(II, ResultReg, 2); |
| return true; |
| } |
| case Intrinsic::x86_sse_cvttss2si: |
| case Intrinsic::x86_sse_cvttss2si64: |
| case Intrinsic::x86_sse2_cvttsd2si: |
| case Intrinsic::x86_sse2_cvttsd2si64: { |
| bool IsInputDouble; |
| switch (II->getIntrinsicID()) { |
| default: llvm_unreachable("Unexpected intrinsic."); |
| case Intrinsic::x86_sse_cvttss2si: |
| case Intrinsic::x86_sse_cvttss2si64: |
| if (!Subtarget->hasSSE1()) |
| return false; |
| IsInputDouble = false; |
| break; |
| case Intrinsic::x86_sse2_cvttsd2si: |
| case Intrinsic::x86_sse2_cvttsd2si64: |
| if (!Subtarget->hasSSE2()) |
| return false; |
| IsInputDouble = true; |
| break; |
| } |
| |
| Type *RetTy = II->getCalledFunction()->getReturnType(); |
| MVT VT; |
| if (!isTypeLegal(RetTy, VT)) |
| return false; |
| |
| static const uint16_t CvtOpc[3][2][2] = { |
| { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr }, |
| { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } }, |
| { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr }, |
| { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } }, |
| { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr }, |
| { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } }, |
| }; |
| unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : |
| Subtarget->hasAVX() ? 1 : |
| 0; |
| unsigned Opc; |
| switch (VT.SimpleTy) { |
| default: llvm_unreachable("Unexpected result type."); |
| case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break; |
| case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break; |
| } |
| |
| // Check if we can fold insertelement instructions into the convert. |
| const Value *Op = II->getArgOperand(0); |
| while (auto *IE = dyn_cast<InsertElementInst>(Op)) { |
| const Value *Index = IE->getOperand(2); |
| if (!isa<ConstantInt>(Index)) |
| break; |
| unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); |
| |
| if (Idx == 0) { |
| Op = IE->getOperand(1); |
| break; |
| } |
| Op = IE->getOperand(0); |
| } |
| |
| unsigned Reg = getRegForValue(Op); |
| if (Reg == 0) |
| return false; |
| |
| unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) |
| .addReg(Reg); |
| |
| updateValueMap(II, ResultReg); |
| return true; |
| } |
| } |
| } |
| |
| bool X86FastISel::fastLowerArguments() { |
| if (!FuncInfo.CanLowerReturn) |
| return false; |
| |
| const Function *F = FuncInfo.Fn; |
| if (F->isVarArg()) |
| return false; |
| |
| CallingConv::ID CC = F->getCallingConv(); |
| if (CC != CallingConv::C) |
| return false; |
| |
| if (Subtarget->isCallingConvWin64(CC)) |
| return false; |
| |
| if (!Subtarget->is64Bit()) |
| return false; |
| |
| if (Subtarget->useSoftFloat()) |
| return false; |
| |
| // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. |
| unsigned GPRCnt = 0; |
| unsigned FPRCnt = 0; |
| for (auto const &Arg : F->args()) { |
| if (Arg.hasAttribute(Attribute::ByVal) || |
| Arg.hasAttribute(Attribute::InReg) || |
| Arg.hasAttribute(Attribute::StructRet) || |
| Arg.hasAttribute(Attribute::SwiftSelf) || |
| Arg.hasAttribute(Attribute::SwiftError) || |
| Arg.hasAttribute(Attribute::Nest)) |
| return false; |
| |
| Type *ArgTy = Arg.getType(); |
| if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) |
| return false; |
| |
| EVT ArgVT = TLI.getValueType(DL, ArgTy); |
| if (!ArgVT.isSimple()) return false; |
| switch (ArgVT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i32: |
| case MVT::i64: |
| ++GPRCnt; |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| if (!Subtarget->hasSSE1()) |
| return false; |
| ++FPRCnt; |
| break; |
| } |
| |
| if (GPRCnt > 6) |
| return false; |
| |
| if (FPRCnt > 8) |
| return false; |
| } |
| |
| static const MCPhysReg GPR32ArgRegs[] = { |
| X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D |
| }; |
| static const MCPhysReg GPR64ArgRegs[] = { |
| X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 |
| }; |
| static const MCPhysReg XMMArgRegs[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
| }; |
| |
| unsigned GPRIdx = 0; |
| unsigned FPRIdx = 0; |
| for (auto const &Arg : F->args()) { |
| MVT VT = TLI.getSimpleValueType(DL, Arg.getType()); |
| const TargetRegisterClass *RC = TLI.getRegClassFor(VT); |
| unsigned SrcReg; |
| switch (VT.SimpleTy) { |
| default: llvm_unreachable("Unexpected value type."); |
| case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; |
| case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; |
| case MVT::f32: LLVM_FALLTHROUGH; |
| case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; |
| } |
| unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); |
| // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. |
| // Without this, EmitLiveInCopies may eliminate the livein if its only |
| // use is a bitcast (which isn't turned into an instruction). |
| unsigned ResultReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), ResultReg) |
| .addReg(DstReg, getKillRegState(true)); |
| updateValueMap(&Arg, ResultReg); |
| } |
| return true; |
| } |
| |
| static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, |
| CallingConv::ID CC, |
| ImmutableCallSite *CS) { |
| if (Subtarget->is64Bit()) |
| return 0; |
| if (Subtarget->getTargetTriple().isOSMSVCRT()) |
| return 0; |
| if (CC == CallingConv::Fast || CC == CallingConv::GHC || |
| CC == CallingConv::HiPE) |
| return 0; |
| |
| if (CS) |
| if (CS->arg_empty() || !CS->paramHasAttr(0, Attribute::StructRet) || |
| CS->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU()) |
| return 0; |
| |
| return 4; |
| } |
| |
| bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) { |
| auto &OutVals = CLI.OutVals; |
| auto &OutFlags = CLI.OutFlags; |
| auto &OutRegs = CLI.OutRegs; |
| auto &Ins = CLI.Ins; |
| auto &InRegs = CLI.InRegs; |
| CallingConv::ID CC = CLI.CallConv; |
| bool &IsTailCall = CLI.IsTailCall; |
| bool IsVarArg = CLI.IsVarArg; |
| const Value *Callee = CLI.Callee; |
| MCSymbol *Symbol = CLI.Symbol; |
| |
| bool Is64Bit = Subtarget->is64Bit(); |
| bool IsWin64 = Subtarget->isCallingConvWin64(CC); |
| |
| const CallInst *CI = |
| CLI.CS ? dyn_cast<CallInst>(CLI.CS->getInstruction()) : nullptr; |
| const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr; |
| |
| // Call / invoke instructions with NoCfCheck attribute require special |
| // handling. |
| const auto *II = |
| CLI.CS ? dyn_cast<InvokeInst>(CLI.CS->getInstruction()) : nullptr; |
| if ((CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck())) |
| return false; |
| |
| // Functions with no_caller_saved_registers that need special handling. |
| if ((CI && CI->hasFnAttr("no_caller_saved_registers")) || |
| (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers"))) |
| return false; |
| |
| // Functions using retpoline should use SDISel for calls. |
| if (Subtarget->useRetpoline()) |
| return false; |
| |
| // Handle only C, fastcc, and webkit_js calling conventions for now. |
| switch (CC) { |
| default: return false; |
| case CallingConv::C: |
| case CallingConv::Fast: |
| case CallingConv::WebKit_JS: |
| case CallingConv::Swift: |
| case CallingConv::X86_FastCall: |
| case CallingConv::X86_StdCall: |
| case CallingConv::X86_ThisCall: |
| case CallingConv::Win64: |
| case CallingConv::X86_64_SysV: |
| break; |
| } |
| |
| // Allow SelectionDAG isel to handle tail calls. |
| if (IsTailCall) |
| return false; |
| |
| // fastcc with -tailcallopt is intended to provide a guaranteed |
| // tail call optimization. Fastisel doesn't know how to do that. |
| if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) |
| return false; |
| |
| // Don't know how to handle Win64 varargs yet. Nothing special needed for |
| // x86-32. Special handling for x86-64 is implemented. |
| if (IsVarArg && IsWin64) |
| return false; |
| |
| // Don't know about inalloca yet. |
| if (CLI.CS && CLI.CS->hasInAllocaArgument()) |
| return false; |
| |
| for (auto Flag : CLI.OutFlags) |
| if (Flag.isSwiftError()) |
| return false; |
| |
| SmallVector<MVT, 16> OutVTs; |
| SmallVector<unsigned, 16> ArgRegs; |
| |
| // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra |
| // instruction. This is safe because it is common to all FastISel supported |
| // calling conventions on x86. |
| for (int i = 0, e = OutVals.size(); i != e; ++i) { |
| Value *&Val = OutVals[i]; |
| ISD::ArgFlagsTy Flags = OutFlags[i]; |
| if (auto *CI = dyn_cast<ConstantInt>(Val)) { |
| if (CI->getBitWidth() < 32) { |
| if (Flags.isSExt()) |
| Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext())); |
| else |
| Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext())); |
| } |
| } |
| |
| // Passing bools around ends up doing a trunc to i1 and passing it. |
| // Codegen this as an argument + "and 1". |
| MVT VT; |
| auto *TI = dyn_cast<TruncInst>(Val); |
| unsigned ResultReg; |
| if (TI && TI->getType()->isIntegerTy(1) && CLI.CS && |
| (TI->getParent() == CLI.CS->getInstruction()->getParent()) && |
| TI->hasOneUse()) { |
| Value *PrevVal = TI->getOperand(0); |
| ResultReg = getRegForValue(PrevVal); |
| |
| if (!ResultReg) |
| return false; |
| |
| if (!isTypeLegal(PrevVal->getType(), VT)) |
| return false; |
| |
| ResultReg = |
| fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1); |
| } else { |
| if (!isTypeLegal(Val->getType(), VT)) |
| return false; |
| ResultReg = getRegForValue(Val); |
| } |
| |
| if (!ResultReg) |
| return false; |
| |
| ArgRegs.push_back(ResultReg); |
| OutVTs.push_back(VT); |
| } |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext()); |
| |
| // Allocate shadow area for Win64 |
| if (IsWin64) |
| CCInfo.AllocateStack(32, 8); |
| |
| CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); |
| |
| // Issue CALLSEQ_START |
| unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) |
| .addImm(NumBytes).addImm(0).addImm(0); |
| |
| // Walk the register/memloc assignments, inserting copies/loads. |
| const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign const &VA = ArgLocs[i]; |
| const Value *ArgVal = OutVals[VA.getValNo()]; |
| MVT ArgVT = OutVTs[VA.getValNo()]; |
| |
| if (ArgVT == MVT::x86mmx) |
| return false; |
| |
| unsigned ArgReg = ArgRegs[VA.getValNo()]; |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| case CCValAssign::Full: break; |
| case CCValAssign::SExt: { |
| assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && |
| "Unexpected extend"); |
| |
| if (ArgVT == MVT::i1) |
| return false; |
| |
| bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, |
| ArgVT, ArgReg); |
| assert(Emitted && "Failed to emit a sext!"); (void)Emitted; |
| ArgVT = VA.getLocVT(); |
| break; |
| } |
| case CCValAssign::ZExt: { |
| assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && |
| "Unexpected extend"); |
| |
| // Handle zero-extension from i1 to i8, which is common. |
| if (ArgVT == MVT::i1) { |
| // Set the high bits to zero. |
| ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false); |
| ArgVT = MVT::i8; |
| |
| if (ArgReg == 0) |
| return false; |
| } |
| |
| bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, |
| ArgVT, ArgReg); |
| assert(Emitted && "Failed to emit a zext!"); (void)Emitted; |
| ArgVT = VA.getLocVT(); |
| break; |
| } |
| case CCValAssign::AExt: { |
| assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && |
| "Unexpected extend"); |
| bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg, |
| ArgVT, ArgReg); |
| if (!Emitted) |
| Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, |
| ArgVT, ArgReg); |
| if (!Emitted) |
| Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, |
| ArgVT, ArgReg); |
| |
| assert(Emitted && "Failed to emit a aext!"); (void)Emitted; |
| ArgVT = VA.getLocVT(); |
| break; |
| } |
| case CCValAssign::BCvt: { |
| ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg, |
| /*TODO: Kill=*/false); |
| assert(ArgReg && "Failed to emit a bitcast!"); |
| ArgVT = VA.getLocVT(); |
| break; |
| } |
| case CCValAssign::VExt: |
| // VExt has not been implemented, so this should be impossible to reach |
| // for now. However, fallback to Selection DAG isel once implemented. |
| return false; |
| case CCValAssign::AExtUpper: |
| case CCValAssign::SExtUpper: |
| case CCValAssign::ZExtUpper: |
| case CCValAssign::FPExt: |
| llvm_unreachable("Unexpected loc info!"); |
| case CCValAssign::Indirect: |
| // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully |
| // support this. |
| return false; |
| } |
| |
| if (VA.isRegLoc()) { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); |
| OutRegs.push_back(VA.getLocReg()); |
| } else { |
| assert(VA.isMemLoc()); |
| |
| // Don't emit stores for undef values. |
| if (isa<UndefValue>(ArgVal)) |
| continue; |
| |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| X86AddressMode AM; |
| AM.Base.Reg = RegInfo->getStackRegister(); |
| AM.Disp = LocMemOffset; |
| ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; |
| unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType()); |
| MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( |
| MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset), |
| MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); |
| if (Flags.isByVal()) { |
| X86AddressMode SrcAM; |
| SrcAM.Base.Reg = ArgReg; |
| if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize())) |
| return false; |
| } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { |
| // If this is a really simple value, emit this with the Value* version |
| // of X86FastEmitStore. If it isn't simple, we don't want to do this, |
| // as it can cause us to reevaluate the argument. |
| if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO)) |
| return false; |
| } else { |
| bool ValIsKill = hasTrivialKill(ArgVal); |
| if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO)) |
| return false; |
| } |
| } |
| } |
| |
| // ELF / PIC requires GOT in the EBX register before function calls via PLT |
| // GOT pointer. |
| if (Subtarget->isPICStyleGOT()) { |
| unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); |
| } |
| |
| if (Is64Bit && IsVarArg && !IsWin64) { |
| // From AMD64 ABI document: |
| // For calls that may call functions that use varargs or stdargs |
| // (prototype-less calls or calls to functions containing ellipsis (...) in |
| // the declaration) %al is used as hidden argument to specify the number |
| // of SSE registers used. The contents of %al do not need to match exactly |
| // the number of registers, but must be an ubound on the number of SSE |
| // registers used and is in the range 0 - 8 inclusive. |
| |
| // Count the number of XMM registers allocated. |
| static const MCPhysReg XMMArgRegs[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
| }; |
| unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); |
| assert((Subtarget->hasSSE1() || !NumXMMRegs) |
| && "SSE registers cannot be used when SSE is disabled"); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), |
| X86::AL).addImm(NumXMMRegs); |
| } |
| |
| // Materialize callee address in a register. FIXME: GV address can be |
| // handled with a CALLpcrel32 instead. |
| X86AddressMode CalleeAM; |
| if (!X86SelectCallAddress(Callee, CalleeAM)) |
| return false; |
| |
| unsigned CalleeOp = 0; |
| const GlobalValue *GV = nullptr; |
| if (CalleeAM.GV != nullptr) { |
| GV = CalleeAM.GV; |
| } else if (CalleeAM.Base.Reg != 0) { |
| CalleeOp = CalleeAM.Base.Reg; |
| } else |
| return false; |
| |
| // Issue the call. |
| MachineInstrBuilder MIB; |
| if (CalleeOp) { |
| // Register-indirect call. |
| unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; |
| MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)) |
| .addReg(CalleeOp); |
| } else { |
| // Direct call. |
| assert(GV && "Not a direct call"); |
| // See if we need any target-specific flags on the GV operand. |
| unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV); |
| |
| // This will be a direct call, or an indirect call through memory for |
| // NonLazyBind calls or dllimport calls. |
| bool NeedLoad = |
| OpFlags == X86II::MO_DLLIMPORT || OpFlags == X86II::MO_GOTPCREL; |
| unsigned CallOpc = NeedLoad |
| ? (Is64Bit ? X86::CALL64m : X86::CALL32m) |
| : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); |
| |
| MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)); |
| if (NeedLoad) |
| MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0); |
| if (Symbol) |
| MIB.addSym(Symbol, OpFlags); |
| else |
| MIB.addGlobalAddress(GV, 0, OpFlags); |
| if (NeedLoad) |
| MIB.addReg(0); |
| } |
| |
| // Add a register mask operand representing the call-preserved registers. |
| // Proper defs for return values will be added by setPhysRegsDeadExcept(). |
| MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); |
| |
| // Add an implicit use GOT pointer in EBX. |
| if (Subtarget->isPICStyleGOT()) |
| MIB.addReg(X86::EBX, RegState::Implicit); |
| |
| if (Is64Bit && IsVarArg && !IsWin64) |
| MIB.addReg(X86::AL, RegState::Implicit); |
| |
| // Add implicit physical register uses to the call. |
| for (auto Reg : OutRegs) |
| MIB.addReg(Reg, RegState::Implicit); |
| |
| // Issue CALLSEQ_END |
| unsigned NumBytesForCalleeToPop = |
| X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg, |
| TM.Options.GuaranteedTailCallOpt) |
| ? NumBytes // Callee pops everything. |
| : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS); |
| unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) |
| .addImm(NumBytes).addImm(NumBytesForCalleeToPop); |
| |
| // Now handle call return values. |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, |
| CLI.RetTy->getContext()); |
| CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); |
| |
| // Copy all of the result registers out of their specified physreg. |
| unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy); |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| EVT CopyVT = VA.getValVT(); |
| unsigned CopyReg = ResultReg + i; |
| unsigned SrcReg = VA.getLocReg(); |
| |
| // If this is x86-64, and we disabled SSE, we can't return FP values |
| if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && |
| ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { |
| report_fatal_error("SSE register return with SSE disabled"); |
| } |
| |
| // If we prefer to use the value in xmm registers, copy it out as f80 and |
| // use a truncate to move it from fp stack reg to xmm reg. |
| if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) && |
| isScalarFPTypeInSSEReg(VA.getValVT())) { |
| CopyVT = MVT::f80; |
| CopyReg = createResultReg(&X86::RFP80RegClass); |
| } |
| |
| // Copy out the result. |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg); |
| InRegs.push_back(VA.getLocReg()); |
| |
| // Round the f80 to the right size, which also moves it to the appropriate |
| // xmm register. This is accomplished by storing the f80 value in memory |
| // and then loading it back. |
| if (CopyVT != VA.getValVT()) { |
| EVT ResVT = VA.getValVT(); |
| unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; |
| unsigned MemSize = ResVT.getSizeInBits()/8; |
| int FI = MFI.CreateStackObject(MemSize, MemSize, false); |
| addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc)), FI) |
| .addReg(CopyReg); |
| Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm; |
| addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), ResultReg + i), FI); |
| } |
| } |
| |
| CLI.ResultReg = ResultReg; |
| CLI.NumResultRegs = RVLocs.size(); |
| CLI.Call = MIB; |
| |
| return true; |
| } |
| |
| bool |
| X86FastISel::fastSelectInstruction(const Instruction *I) { |
| switch (I->getOpcode()) { |
| default: break; |
| case Instruction::Load: |
| return X86SelectLoad(I); |
| case Instruction::Store: |
| return X86SelectStore(I); |
| case Instruction::Ret: |
| return X86SelectRet(I); |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| return X86SelectCmp(I); |
| case Instruction::ZExt: |
| return X86SelectZExt(I); |
| case Instruction::SExt: |
| return X86SelectSExt(I); |
| case Instruction::Br: |
| return X86SelectBranch(I); |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::Shl: |
| return X86SelectShift(I); |
| case Instruction::SDiv: |
| case Instruction::UDiv: |
| case Instruction::SRem: |
| case Instruction::URem: |
| return X86SelectDivRem(I); |
| case Instruction::Select: |
| return X86SelectSelect(I); |
| case Instruction::Trunc: |
| return X86SelectTrunc(I); |
| case Instruction::FPExt: |
| return X86SelectFPExt(I); |
| case Instruction::FPTrunc: |
| return X86SelectFPTrunc(I); |
| case Instruction::SIToFP: |
| return X86SelectSIToFP(I); |
| case Instruction::UIToFP: |
| return X86SelectUIToFP(I); |
| case Instruction::IntToPtr: // Deliberate fall-through. |
| case Instruction::PtrToInt: { |
| EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); |
| EVT DstVT = TLI.getValueType(DL, I->getType()); |
| if (DstVT.bitsGT(SrcVT)) |
| return X86SelectZExt(I); |
| if (DstVT.bitsLT(SrcVT)) |
| return X86SelectTrunc(I); |
| unsigned Reg = getRegForValue(I->getOperand(0)); |
| if (Reg == 0) return false; |
| updateValueMap(I, Reg); |
| return true; |
| } |
| case Instruction::BitCast: { |
| // Select SSE2/AVX bitcasts between 128/256 bit vector types. |
| if (!Subtarget->hasSSE2()) |
| return false; |
| |
| EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); |
| EVT DstVT = TLI.getValueType(DL, I->getType()); |
| |
| if (!SrcVT.isSimple() || !DstVT.isSimple()) |
| return false; |
| |
| MVT SVT = SrcVT.getSimpleVT(); |
| MVT DVT = DstVT.getSimpleVT(); |
| |
| if (!SVT.is128BitVector() && |
| !(Subtarget->hasAVX() && SVT.is256BitVector()) && |
| !(Subtarget->hasAVX512() && SVT.is512BitVector() && |
| (Subtarget->hasBWI() || (SVT.getScalarSizeInBits() >= 32 && |
| DVT.getScalarSizeInBits() >= 32)))) |
| return false; |
| |
| unsigned Reg = getRegForValue(I->getOperand(0)); |
| if (Reg == 0) |
| return false; |
| |
| // No instruction is needed for conversion. Reuse the register used by |
| // the fist operand. |
| updateValueMap(I, Reg); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) { |
| if (VT > MVT::i64) |
| return 0; |
| |
| uint64_t Imm = CI->getZExtValue(); |
| if (Imm == 0) { |
| unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass); |
| switch (VT.SimpleTy) { |
| default: llvm_unreachable("Unexpected value type"); |
| case MVT::i1: |
| case MVT::i8: |
| return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true, |
| X86::sub_8bit); |
| case MVT::i16: |
| return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true, |
| X86::sub_16bit); |
| case MVT::i32: |
| return SrcReg; |
| case MVT::i64: { |
| unsigned ResultReg = createResultReg(&X86::GR64RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) |
| .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); |
| return ResultReg; |
| } |
| } |
| } |
| |
| unsigned Opc = 0; |
| switch (VT.SimpleTy) { |
| default: llvm_unreachable("Unexpected value type"); |
| case MVT::i1: |
| // TODO: Support this properly. |
| if (Subtarget->hasAVX512()) |
| return 0; |
| VT = MVT::i8; |
| LLVM_FALLTHROUGH; |
| case MVT::i8: Opc = X86::MOV8ri; break; |
| case MVT::i16: Opc = X86::MOV16ri; break; |
| case MVT::i32: Opc = X86::MOV32ri; break; |
| case MVT::i64: { |
| if (isUInt<32>(Imm)) |
| Opc = X86::MOV32ri; |
| else if (isInt<32>(Imm)) |
| Opc = X86::MOV64ri32; |
| else |
| Opc = X86::MOV64ri; |
| break; |
| } |
| } |
| if (VT == MVT::i64 && Opc == X86::MOV32ri) { |
| unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm); |
| unsigned ResultReg = createResultReg(&X86::GR64RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) |
| .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); |
| return ResultReg; |
| } |
| return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm); |
| } |
| |
| unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) { |
| if (CFP->isNullValue()) |
| return fastMaterializeFloatZero(CFP); |
| |
| // Can't handle alternate code models yet. |
| CodeModel::Model CM = TM.getCodeModel(); |
| if (CM != CodeModel::Small && CM != CodeModel::Large) |
| return 0; |
| |
| // Get opcode and regclass of the output for the given load instruction. |
| unsigned Opc = 0; |
| const TargetRegisterClass *RC = nullptr; |
| switch (VT.SimpleTy) { |
| default: return 0; |
| case MVT::f32: |
| if (X86ScalarSSEf32) { |
| Opc = Subtarget->hasAVX512() |
| ? X86::VMOVSSZrm |
| : Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm; |
| RC = Subtarget->hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass; |
| } else { |
| Opc = X86::LD_Fp32m; |
| RC = &X86::RFP32RegClass; |
| } |
| break; |
| case MVT::f64: |
| if (X86ScalarSSEf64) { |
| Opc = Subtarget->hasAVX512() |
| ? X86::VMOVSDZrm |
| : Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm; |
| RC = Subtarget->hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass; |
| } else { |
| Opc = X86::LD_Fp64m; |
| RC = &X86::RFP64RegClass; |
| } |
| break; |
| case MVT::f80: |
| // No f80 support yet. |
| return 0; |
| } |
| |
| // MachineConstantPool wants an explicit alignment. |
| unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); |
| if (Align == 0) { |
| // Alignment of vector types. FIXME! |
| Align = DL.getTypeAllocSize(CFP->getType()); |
| } |
| |
| // x86-32 PIC requires a PIC base register for constant pools. |
| unsigned PICBase = 0; |
| unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr); |
| if (OpFlag == X86II::MO_PIC_BASE_OFFSET) |
| PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); |
| else if (OpFlag == X86II::MO_GOTOFF) |
| PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); |
| else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small) |
| PICBase = X86::RIP; |
| |
| // Create the load from the constant pool. |
| unsigned CPI = MCP.getConstantPoolIndex(CFP, Align); |
| unsigned ResultReg = createResultReg(RC); |
| |
| if (CM == CodeModel::Large) { |
| unsigned AddrReg = createResultReg(&X86::GR64RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), |
| AddrReg) |
| .addConstantPoolIndex(CPI, 0, OpFlag); |
| MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), ResultReg); |
| addDirectMem(MIB, AddrReg); |
| MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( |
| MachinePointerInfo::getConstantPool(*FuncInfo.MF), |
| MachineMemOperand::MOLoad, DL.getPointerSize(), Align); |
| MIB->addMemOperand(*FuncInfo.MF, MMO); |
| return ResultReg; |
| } |
| |
| addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), ResultReg), |
| CPI, PICBase, OpFlag); |
| return ResultReg; |
| } |
| |
| unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) { |
| // Can't handle alternate code models yet. |
| if (TM.getCodeModel() != CodeModel::Small) |
| return 0; |
| |
| // Materialize addresses with LEA/MOV instructions. |
| X86AddressMode AM; |
| if (X86SelectAddress(GV, AM)) { |
| // If the expression is just a basereg, then we're done, otherwise we need |
| // to emit an LEA. |
| if (AM.BaseType == X86AddressMode::RegBase && |
| AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) |
| return AM.Base.Reg; |
| |
| unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); |
| if (TM.getRelocationModel() == Reloc::Static && |
| TLI.getPointerTy(DL) == MVT::i64) { |
| // The displacement code could be more than 32 bits away so we need to use |
| // an instruction with a 64 bit immediate |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), |
| ResultReg) |
| .addGlobalAddress(GV); |
| } else { |
| unsigned Opc = |
| TLI.getPointerTy(DL) == MVT::i32 |
| ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) |
| : X86::LEA64r; |
| addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), ResultReg), AM); |
| } |
| return ResultReg; |
| } |
| return 0; |
| } |
| |
| unsigned X86FastISel::fastMaterializeConstant(const Constant *C) { |
| EVT CEVT = TLI.getValueType(DL, C->getType(), true); |
| |
| // Only handle simple types. |
| if (!CEVT.isSimple()) |
| return 0; |
| MVT VT = CEVT.getSimpleVT(); |
| |
| if (const auto *CI = dyn_cast<ConstantInt>(C)) |
| return X86MaterializeInt(CI, VT); |
| else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) |
| return X86MaterializeFP(CFP, VT); |
| else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) |
| return X86MaterializeGV(GV, VT); |
| |
| return 0; |
| } |
| |
| unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) { |
| // Fail on dynamic allocas. At this point, getRegForValue has already |
| // checked its CSE maps, so if we're here trying to handle a dynamic |
| // alloca, we're not going to succeed. X86SelectAddress has a |
| // check for dynamic allocas, because it's called directly from |
| // various places, but targetMaterializeAlloca also needs a check |
| // in order to avoid recursion between getRegForValue, |
| // X86SelectAddrss, and targetMaterializeAlloca. |
| if (!FuncInfo.StaticAllocaMap.count(C)) |
| return 0; |
| assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?"); |
| |
| X86AddressMode AM; |
| if (!X86SelectAddress(C, AM)) |
| return 0; |
| unsigned Opc = |
| TLI.getPointerTy(DL) == MVT::i32 |
| ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) |
| : X86::LEA64r; |
| const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); |
| unsigned ResultReg = createResultReg(RC); |
| addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), ResultReg), AM); |
| return ResultReg; |
| } |
| |
| unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) { |
| MVT VT; |
| if (!isTypeLegal(CF->getType(), VT)) |
| return 0; |
| |
| // Get opcode and regclass for the given zero. |
| bool HasAVX512 = Subtarget->hasAVX512(); |
| unsigned Opc = 0; |
| const TargetRegisterClass *RC = nullptr; |
| switch (VT.SimpleTy) { |
| default: return 0; |
| case MVT::f32: |
| if (X86ScalarSSEf32) { |
| Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS; |
| RC = HasAVX512 ? &X86::FR32XRegClass : &X86::FR32RegClass; |
| } else { |
| Opc = X86::LD_Fp032; |
| RC = &X86::RFP32RegClass; |
| } |
| break; |
| case MVT::f64: |
| if (X86ScalarSSEf64) { |
| Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD; |
| RC = HasAVX512 ? &X86::FR64XRegClass : &X86::FR64RegClass; |
| } else { |
| Opc = X86::LD_Fp064; |
| RC = &X86::RFP64RegClass; |
| } |
| break; |
| case MVT::f80: |
| // No f80 support yet. |
| return 0; |
| } |
| |
| unsigned ResultReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); |
| return ResultReg; |
| } |
| |
| |
| bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, |
| const LoadInst *LI) { |
| const Value *Ptr = LI->getPointerOperand(); |
| X86AddressMode AM; |
| if (!X86SelectAddress(Ptr, AM)) |
| return false; |
| |
| const X86InstrInfo &XII = (const X86InstrInfo &)TII; |
| |
| unsigned Size = DL.getTypeAllocSize(LI->getType()); |
| unsigned Alignment = LI->getAlignment(); |
| |
| if (Alignment == 0) // Ensure that codegen never sees alignment 0 |
| Alignment = DL.getABITypeAlignment(LI->getType()); |
| |
| SmallVector<MachineOperand, 8> AddrOps; |
| AM.getFullAddress(AddrOps); |
| |
| MachineInstr *Result = XII.foldMemoryOperandImpl( |
| *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment, |
| /*AllowCommute=*/true); |
| if (!Result) |
| return false; |
| |
| // The index register could be in the wrong register class. Unfortunately, |
| // foldMemoryOperandImpl could have commuted the instruction so its not enough |
| // to just look at OpNo + the offset to the index reg. We actually need to |
| // scan the instruction to find the index reg and see if its the correct reg |
| // class. |
| unsigned OperandNo = 0; |
| for (MachineInstr::mop_iterator I = Result->operands_begin(), |
| E = Result->operands_end(); I != E; ++I, ++OperandNo) { |
| MachineOperand &MO = *I; |
| if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg) |
| continue; |
| // Found the index reg, now try to rewrite it. |
| unsigned IndexReg = constrainOperandRegClass(Result->getDesc(), |
| MO.getReg(), OperandNo); |
| if (IndexReg == MO.getReg()) |
| continue; |
| MO.setReg(IndexReg); |
| } |
| |
| Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI)); |
| MI->eraseFromParent(); |
| return true; |
| } |
| |
| unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0, bool Op0IsKill, |
| unsigned Op1, bool Op1IsKill, |
| unsigned Op2, bool Op2IsKill, |
| unsigned Op3, bool Op3IsKill) { |
| const MCInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| unsigned ResultReg = createResultReg(RC); |
| Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); |
| Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); |
| Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); |
| Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3); |
| |
| if (II.getNumDefs() >= 1) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) |
| .addReg(Op0, getKillRegState(Op0IsKill)) |
| .addReg(Op1, getKillRegState(Op1IsKill)) |
| .addReg(Op2, getKillRegState(Op2IsKill)) |
| .addReg(Op3, getKillRegState(Op3IsKill)); |
| else { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) |
| .addReg(Op0, getKillRegState(Op0IsKill)) |
| .addReg(Op1, getKillRegState(Op1IsKill)) |
| .addReg(Op2, getKillRegState(Op2IsKill)) |
| .addReg(Op3, getKillRegState(Op3IsKill)); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); |
| } |
| return ResultReg; |
| } |
| |
| |
| namespace llvm { |
| FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, |
| const TargetLibraryInfo *libInfo) { |
| return new X86FastISel(funcInfo, libInfo); |
| } |
| } |