| //====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This file implements a pass that converts X86 cmov instructions into |
| /// branches when profitable. This pass is conservative. It transforms if and |
| /// only if it can guarantee a gain with high confidence. |
| /// |
| /// Thus, the optimization applies under the following conditions: |
| /// 1. Consider as candidates only CMOVs in innermost loops (assume that |
| /// most hotspots are represented by these loops). |
| /// 2. Given a group of CMOV instructions that are using the same EFLAGS def |
| /// instruction: |
| /// a. Consider them as candidates only if all have the same code condition |
| /// or the opposite one to prevent generating more than one conditional |
| /// jump per EFLAGS def instruction. |
| /// b. Consider them as candidates only if all are profitable to be |
| /// converted (assume that one bad conversion may cause a degradation). |
| /// 3. Apply conversion only for loops that are found profitable and only for |
| /// CMOV candidates that were found profitable. |
| /// a. A loop is considered profitable only if conversion will reduce its |
| /// depth cost by some threshold. |
| /// b. CMOV is considered profitable if the cost of its condition is higher |
| /// than the average cost of its true-value and false-value by 25% of |
| /// branch-misprediction-penalty. This assures no degradation even with |
| /// 25% branch misprediction. |
| /// |
| /// Note: This pass is assumed to run on SSA machine code. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // External interfaces: |
| // FunctionPass *llvm::createX86CmovConverterPass(); |
| // bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF); |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSchedule.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/MC/MCSchedule.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <iterator> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "x86-cmov-conversion" |
| |
| STATISTIC(NumOfSkippedCmovGroups, "Number of unsupported CMOV-groups"); |
| STATISTIC(NumOfCmovGroupCandidate, "Number of CMOV-group candidates"); |
| STATISTIC(NumOfLoopCandidate, "Number of CMOV-conversion profitable loops"); |
| STATISTIC(NumOfOptimizedCmovGroups, "Number of optimized CMOV-groups"); |
| |
| namespace llvm { |
| |
| void initializeX86CmovConverterPassPass(PassRegistry &); |
| |
| } // end namespace llvm |
| |
| // This internal switch can be used to turn off the cmov/branch optimization. |
| static cl::opt<bool> |
| EnableCmovConverter("x86-cmov-converter", |
| cl::desc("Enable the X86 cmov-to-branch optimization."), |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<unsigned> |
| GainCycleThreshold("x86-cmov-converter-threshold", |
| cl::desc("Minimum gain per loop (in cycles) threshold."), |
| cl::init(4), cl::Hidden); |
| |
| static cl::opt<bool> ForceMemOperand( |
| "x86-cmov-converter-force-mem-operand", |
| cl::desc("Convert cmovs to branches whenever they have memory operands."), |
| cl::init(true), cl::Hidden); |
| |
| namespace { |
| |
| /// Converts X86 cmov instructions into branches when profitable. |
| class X86CmovConverterPass : public MachineFunctionPass { |
| public: |
| X86CmovConverterPass() : MachineFunctionPass(ID) { |
| initializeX86CmovConverterPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| StringRef getPassName() const override { return "X86 cmov Conversion"; } |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| void getAnalysisUsage(AnalysisUsage &AU) const override; |
| |
| /// Pass identification, replacement for typeid. |
| static char ID; |
| |
| private: |
| MachineRegisterInfo *MRI; |
| const TargetInstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| TargetSchedModel TSchedModel; |
| |
| /// List of consecutive CMOV instructions. |
| using CmovGroup = SmallVector<MachineInstr *, 2>; |
| using CmovGroups = SmallVector<CmovGroup, 2>; |
| |
| /// Collect all CMOV-group-candidates in \p CurrLoop and update \p |
| /// CmovInstGroups accordingly. |
| /// |
| /// \param Blocks List of blocks to process. |
| /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop. |
| /// \returns true iff it found any CMOV-group-candidate. |
| bool collectCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks, |
| CmovGroups &CmovInstGroups, |
| bool IncludeLoads = false); |
| |
| /// Check if it is profitable to transform each CMOV-group-candidates into |
| /// branch. Remove all groups that are not profitable from \p CmovInstGroups. |
| /// |
| /// \param Blocks List of blocks to process. |
| /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop. |
| /// \returns true iff any CMOV-group-candidate remain. |
| bool checkForProfitableCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks, |
| CmovGroups &CmovInstGroups); |
| |
| /// Convert the given list of consecutive CMOV instructions into a branch. |
| /// |
| /// \param Group Consecutive CMOV instructions to be converted into branch. |
| void convertCmovInstsToBranches(SmallVectorImpl<MachineInstr *> &Group) const; |
| }; |
| |
| } // end anonymous namespace |
| |
| char X86CmovConverterPass::ID = 0; |
| |
| void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| MachineFunctionPass::getAnalysisUsage(AU); |
| AU.addRequired<MachineLoopInfo>(); |
| } |
| |
| bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF) { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| if (!EnableCmovConverter) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() |
| << "**********\n"); |
| |
| bool Changed = false; |
| MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); |
| const TargetSubtargetInfo &STI = MF.getSubtarget(); |
| MRI = &MF.getRegInfo(); |
| TII = STI.getInstrInfo(); |
| TRI = STI.getRegisterInfo(); |
| TSchedModel.init(&STI); |
| |
| // Before we handle the more subtle cases of register-register CMOVs inside |
| // of potentially hot loops, we want to quickly remove all CMOVs with |
| // a memory operand. The CMOV will risk a stall waiting for the load to |
| // complete that speculative execution behind a branch is better suited to |
| // handle on modern x86 chips. |
| if (ForceMemOperand) { |
| CmovGroups AllCmovGroups; |
| SmallVector<MachineBasicBlock *, 4> Blocks; |
| for (auto &MBB : MF) |
| Blocks.push_back(&MBB); |
| if (collectCmovCandidates(Blocks, AllCmovGroups, /*IncludeLoads*/ true)) { |
| for (auto &Group : AllCmovGroups) { |
| // Skip any group that doesn't do at least one memory operand cmov. |
| if (!llvm::any_of(Group, [&](MachineInstr *I) { return I->mayLoad(); })) |
| continue; |
| |
| // For CMOV groups which we can rewrite and which contain a memory load, |
| // always rewrite them. On x86, a CMOV will dramatically amplify any |
| // memory latency by blocking speculative execution. |
| Changed = true; |
| convertCmovInstsToBranches(Group); |
| } |
| } |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Register-operand Conversion Algorithm |
| // --------- |
| // For each inner most loop |
| // collectCmovCandidates() { |
| // Find all CMOV-group-candidates. |
| // } |
| // |
| // checkForProfitableCmovCandidates() { |
| // * Calculate both loop-depth and optimized-loop-depth. |
| // * Use these depth to check for loop transformation profitability. |
| // * Check for CMOV-group-candidate transformation profitability. |
| // } |
| // |
| // For each profitable CMOV-group-candidate |
| // convertCmovInstsToBranches() { |
| // * Create FalseBB, SinkBB, Conditional branch to SinkBB. |
| // * Replace each CMOV instruction with a PHI instruction in SinkBB. |
| // } |
| // |
| // Note: For more details, see each function description. |
| //===--------------------------------------------------------------------===// |
| |
| // Build up the loops in pre-order. |
| SmallVector<MachineLoop *, 4> Loops(MLI.begin(), MLI.end()); |
| // Note that we need to check size on each iteration as we accumulate child |
| // loops. |
| for (int i = 0; i < (int)Loops.size(); ++i) |
| for (MachineLoop *Child : Loops[i]->getSubLoops()) |
| Loops.push_back(Child); |
| |
| for (MachineLoop *CurrLoop : Loops) { |
| // Optimize only inner most loops. |
| if (!CurrLoop->getSubLoops().empty()) |
| continue; |
| |
| // List of consecutive CMOV instructions to be processed. |
| CmovGroups CmovInstGroups; |
| |
| if (!collectCmovCandidates(CurrLoop->getBlocks(), CmovInstGroups)) |
| continue; |
| |
| if (!checkForProfitableCmovCandidates(CurrLoop->getBlocks(), |
| CmovInstGroups)) |
| continue; |
| |
| Changed = true; |
| for (auto &Group : CmovInstGroups) |
| convertCmovInstsToBranches(Group); |
| } |
| |
| return Changed; |
| } |
| |
| bool X86CmovConverterPass::collectCmovCandidates( |
| ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups, |
| bool IncludeLoads) { |
| //===--------------------------------------------------------------------===// |
| // Collect all CMOV-group-candidates and add them into CmovInstGroups. |
| // |
| // CMOV-group: |
| // CMOV instructions, in same MBB, that uses same EFLAGS def instruction. |
| // |
| // CMOV-group-candidate: |
| // CMOV-group where all the CMOV instructions are |
| // 1. consecutive. |
| // 2. have same condition code or opposite one. |
| // 3. have only operand registers (X86::CMOVrr). |
| //===--------------------------------------------------------------------===// |
| // List of possible improvement (TODO's): |
| // -------------------------------------- |
| // TODO: Add support for X86::CMOVrm instructions. |
| // TODO: Add support for X86::SETcc instructions. |
| // TODO: Add support for CMOV-groups with non consecutive CMOV instructions. |
| //===--------------------------------------------------------------------===// |
| |
| // Current processed CMOV-Group. |
| CmovGroup Group; |
| for (auto *MBB : Blocks) { |
| Group.clear(); |
| // Condition code of first CMOV instruction current processed range and its |
| // opposite condition code. |
| X86::CondCode FirstCC, FirstOppCC, MemOpCC; |
| // Indicator of a non CMOVrr instruction in the current processed range. |
| bool FoundNonCMOVInst = false; |
| // Indicator for current processed CMOV-group if it should be skipped. |
| bool SkipGroup = false; |
| |
| for (auto &I : *MBB) { |
| // Skip debug instructions. |
| if (I.isDebugInstr()) |
| continue; |
| X86::CondCode CC = X86::getCondFromCMovOpc(I.getOpcode()); |
| // Check if we found a X86::CMOVrr instruction. |
| if (CC != X86::COND_INVALID && (IncludeLoads || !I.mayLoad())) { |
| if (Group.empty()) { |
| // We found first CMOV in the range, reset flags. |
| FirstCC = CC; |
| FirstOppCC = X86::GetOppositeBranchCondition(CC); |
| // Clear out the prior group's memory operand CC. |
| MemOpCC = X86::COND_INVALID; |
| FoundNonCMOVInst = false; |
| SkipGroup = false; |
| } |
| Group.push_back(&I); |
| // Check if it is a non-consecutive CMOV instruction or it has different |
| // condition code than FirstCC or FirstOppCC. |
| if (FoundNonCMOVInst || (CC != FirstCC && CC != FirstOppCC)) |
| // Mark the SKipGroup indicator to skip current processed CMOV-Group. |
| SkipGroup = true; |
| if (I.mayLoad()) { |
| if (MemOpCC == X86::COND_INVALID) |
| // The first memory operand CMOV. |
| MemOpCC = CC; |
| else if (CC != MemOpCC) |
| // Can't handle mixed conditions with memory operands. |
| SkipGroup = true; |
| } |
| // Check if we were relying on zero-extending behavior of the CMOV. |
| if (!SkipGroup && |
| llvm::any_of( |
| MRI->use_nodbg_instructions(I.defs().begin()->getReg()), |
| [&](MachineInstr &UseI) { |
| return UseI.getOpcode() == X86::SUBREG_TO_REG; |
| })) |
| // FIXME: We should model the cost of using an explicit MOV to handle |
| // the zero-extension rather than just refusing to handle this. |
| SkipGroup = true; |
| continue; |
| } |
| // If Group is empty, keep looking for first CMOV in the range. |
| if (Group.empty()) |
| continue; |
| |
| // We found a non X86::CMOVrr instruction. |
| FoundNonCMOVInst = true; |
| // Check if this instruction define EFLAGS, to determine end of processed |
| // range, as there would be no more instructions using current EFLAGS def. |
| if (I.definesRegister(X86::EFLAGS)) { |
| // Check if current processed CMOV-group should not be skipped and add |
| // it as a CMOV-group-candidate. |
| if (!SkipGroup) |
| CmovInstGroups.push_back(Group); |
| else |
| ++NumOfSkippedCmovGroups; |
| Group.clear(); |
| } |
| } |
| // End of basic block is considered end of range, check if current processed |
| // CMOV-group should not be skipped and add it as a CMOV-group-candidate. |
| if (Group.empty()) |
| continue; |
| if (!SkipGroup) |
| CmovInstGroups.push_back(Group); |
| else |
| ++NumOfSkippedCmovGroups; |
| } |
| |
| NumOfCmovGroupCandidate += CmovInstGroups.size(); |
| return !CmovInstGroups.empty(); |
| } |
| |
| /// \returns Depth of CMOV instruction as if it was converted into branch. |
| /// \param TrueOpDepth depth cost of CMOV true value operand. |
| /// \param FalseOpDepth depth cost of CMOV false value operand. |
| static unsigned getDepthOfOptCmov(unsigned TrueOpDepth, unsigned FalseOpDepth) { |
| //===--------------------------------------------------------------------===// |
| // With no info about branch weight, we assume 50% for each value operand. |
| // Thus, depth of optimized CMOV instruction is the rounded up average of |
| // its True-Operand-Value-Depth and False-Operand-Value-Depth. |
| //===--------------------------------------------------------------------===// |
| return (TrueOpDepth + FalseOpDepth + 1) / 2; |
| } |
| |
| bool X86CmovConverterPass::checkForProfitableCmovCandidates( |
| ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups) { |
| struct DepthInfo { |
| /// Depth of original loop. |
| unsigned Depth; |
| /// Depth of optimized loop. |
| unsigned OptDepth; |
| }; |
| /// Number of loop iterations to calculate depth for ?! |
| static const unsigned LoopIterations = 2; |
| DenseMap<MachineInstr *, DepthInfo> DepthMap; |
| DepthInfo LoopDepth[LoopIterations] = {{0, 0}, {0, 0}}; |
| enum { PhyRegType = 0, VirRegType = 1, RegTypeNum = 2 }; |
| /// For each register type maps the register to its last def instruction. |
| DenseMap<unsigned, MachineInstr *> RegDefMaps[RegTypeNum]; |
| /// Maps register operand to its def instruction, which can be nullptr if it |
| /// is unknown (e.g., operand is defined outside the loop). |
| DenseMap<MachineOperand *, MachineInstr *> OperandToDefMap; |
| |
| // Set depth of unknown instruction (i.e., nullptr) to zero. |
| DepthMap[nullptr] = {0, 0}; |
| |
| SmallPtrSet<MachineInstr *, 4> CmovInstructions; |
| for (auto &Group : CmovInstGroups) |
| CmovInstructions.insert(Group.begin(), Group.end()); |
| |
| //===--------------------------------------------------------------------===// |
| // Step 1: Calculate instruction depth and loop depth. |
| // Optimized-Loop: |
| // loop with CMOV-group-candidates converted into branches. |
| // |
| // Instruction-Depth: |
| // instruction latency + max operand depth. |
| // * For CMOV instruction in optimized loop the depth is calculated as: |
| // CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth) |
| // TODO: Find a better way to estimate the latency of the branch instruction |
| // rather than using the CMOV latency. |
| // |
| // Loop-Depth: |
| // max instruction depth of all instructions in the loop. |
| // Note: instruction with max depth represents the critical-path in the loop. |
| // |
| // Loop-Depth[i]: |
| // Loop-Depth calculated for first `i` iterations. |
| // Note: it is enough to calculate depth for up to two iterations. |
| // |
| // Depth-Diff[i]: |
| // Number of cycles saved in first 'i` iterations by optimizing the loop. |
| //===--------------------------------------------------------------------===// |
| for (unsigned I = 0; I < LoopIterations; ++I) { |
| DepthInfo &MaxDepth = LoopDepth[I]; |
| for (auto *MBB : Blocks) { |
| // Clear physical registers Def map. |
| RegDefMaps[PhyRegType].clear(); |
| for (MachineInstr &MI : *MBB) { |
| // Skip debug instructions. |
| if (MI.isDebugInstr()) |
| continue; |
| unsigned MIDepth = 0; |
| unsigned MIDepthOpt = 0; |
| bool IsCMOV = CmovInstructions.count(&MI); |
| for (auto &MO : MI.uses()) { |
| // Checks for "isUse()" as "uses()" returns also implicit definitions. |
| if (!MO.isReg() || !MO.isUse()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| auto &RDM = RegDefMaps[TargetRegisterInfo::isVirtualRegister(Reg)]; |
| if (MachineInstr *DefMI = RDM.lookup(Reg)) { |
| OperandToDefMap[&MO] = DefMI; |
| DepthInfo Info = DepthMap.lookup(DefMI); |
| MIDepth = std::max(MIDepth, Info.Depth); |
| if (!IsCMOV) |
| MIDepthOpt = std::max(MIDepthOpt, Info.OptDepth); |
| } |
| } |
| |
| if (IsCMOV) |
| MIDepthOpt = getDepthOfOptCmov( |
| DepthMap[OperandToDefMap.lookup(&MI.getOperand(1))].OptDepth, |
| DepthMap[OperandToDefMap.lookup(&MI.getOperand(2))].OptDepth); |
| |
| // Iterates over all operands to handle implicit definitions as well. |
| for (auto &MO : MI.operands()) { |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| RegDefMaps[TargetRegisterInfo::isVirtualRegister(Reg)][Reg] = &MI; |
| } |
| |
| unsigned Latency = TSchedModel.computeInstrLatency(&MI); |
| DepthMap[&MI] = {MIDepth += Latency, MIDepthOpt += Latency}; |
| MaxDepth.Depth = std::max(MaxDepth.Depth, MIDepth); |
| MaxDepth.OptDepth = std::max(MaxDepth.OptDepth, MIDepthOpt); |
| } |
| } |
| } |
| |
| unsigned Diff[LoopIterations] = {LoopDepth[0].Depth - LoopDepth[0].OptDepth, |
| LoopDepth[1].Depth - LoopDepth[1].OptDepth}; |
| |
| //===--------------------------------------------------------------------===// |
| // Step 2: Check if Loop worth to be optimized. |
| // Worth-Optimize-Loop: |
| // case 1: Diff[1] == Diff[0] |
| // Critical-path is iteration independent - there is no dependency |
| // of critical-path instructions on critical-path instructions of |
| // previous iteration. |
| // Thus, it is enough to check gain percent of 1st iteration - |
| // To be conservative, the optimized loop need to have a depth of |
| // 12.5% cycles less than original loop, per iteration. |
| // |
| // case 2: Diff[1] > Diff[0] |
| // Critical-path is iteration dependent - there is dependency of |
| // critical-path instructions on critical-path instructions of |
| // previous iteration. |
| // Thus, check the gain percent of the 2nd iteration (similar to the |
| // previous case), but it is also required to check the gradient of |
| // the gain - the change in Depth-Diff compared to the change in |
| // Loop-Depth between 1st and 2nd iterations. |
| // To be conservative, the gradient need to be at least 50%. |
| // |
| // In addition, In order not to optimize loops with very small gain, the |
| // gain (in cycles) after 2nd iteration should not be less than a given |
| // threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply. |
| // |
| // If loop is not worth optimizing, remove all CMOV-group-candidates. |
| //===--------------------------------------------------------------------===// |
| if (Diff[1] < GainCycleThreshold) |
| return false; |
| |
| bool WorthOptLoop = false; |
| if (Diff[1] == Diff[0]) |
| WorthOptLoop = Diff[0] * 8 >= LoopDepth[0].Depth; |
| else if (Diff[1] > Diff[0]) |
| WorthOptLoop = |
| (Diff[1] - Diff[0]) * 2 >= (LoopDepth[1].Depth - LoopDepth[0].Depth) && |
| (Diff[1] * 8 >= LoopDepth[1].Depth); |
| |
| if (!WorthOptLoop) |
| return false; |
| |
| ++NumOfLoopCandidate; |
| |
| //===--------------------------------------------------------------------===// |
| // Step 3: Check for each CMOV-group-candidate if it worth to be optimized. |
| // Worth-Optimize-Group: |
| // Iff it worths to optimize all CMOV instructions in the group. |
| // |
| // Worth-Optimize-CMOV: |
| // Predicted branch is faster than CMOV by the difference between depth of |
| // condition operand and depth of taken (predicted) value operand. |
| // To be conservative, the gain of such CMOV transformation should cover at |
| // at least 25% of branch-misprediction-penalty. |
| //===--------------------------------------------------------------------===// |
| unsigned MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty; |
| CmovGroups TempGroups; |
| std::swap(TempGroups, CmovInstGroups); |
| for (auto &Group : TempGroups) { |
| bool WorthOpGroup = true; |
| for (auto *MI : Group) { |
| // Avoid CMOV instruction which value is used as a pointer to load from. |
| // This is another conservative check to avoid converting CMOV instruction |
| // used with tree-search like algorithm, where the branch is unpredicted. |
| auto UIs = MRI->use_instructions(MI->defs().begin()->getReg()); |
| if (UIs.begin() != UIs.end() && ++UIs.begin() == UIs.end()) { |
| unsigned Op = UIs.begin()->getOpcode(); |
| if (Op == X86::MOV64rm || Op == X86::MOV32rm) { |
| WorthOpGroup = false; |
| break; |
| } |
| } |
| |
| unsigned CondCost = |
| DepthMap[OperandToDefMap.lookup(&MI->getOperand(3))].Depth; |
| unsigned ValCost = getDepthOfOptCmov( |
| DepthMap[OperandToDefMap.lookup(&MI->getOperand(1))].Depth, |
| DepthMap[OperandToDefMap.lookup(&MI->getOperand(2))].Depth); |
| if (ValCost > CondCost || (CondCost - ValCost) * 4 < MispredictPenalty) { |
| WorthOpGroup = false; |
| break; |
| } |
| } |
| |
| if (WorthOpGroup) |
| CmovInstGroups.push_back(Group); |
| } |
| |
| return !CmovInstGroups.empty(); |
| } |
| |
| static bool checkEFLAGSLive(MachineInstr *MI) { |
| if (MI->killsRegister(X86::EFLAGS)) |
| return false; |
| |
| // The EFLAGS operand of MI might be missing a kill marker. |
| // Figure out whether EFLAGS operand should LIVE after MI instruction. |
| MachineBasicBlock *BB = MI->getParent(); |
| MachineBasicBlock::iterator ItrMI = MI; |
| |
| // Scan forward through BB for a use/def of EFLAGS. |
| for (auto I = std::next(ItrMI), E = BB->end(); I != E; ++I) { |
| if (I->readsRegister(X86::EFLAGS)) |
| return true; |
| if (I->definesRegister(X86::EFLAGS)) |
| return false; |
| } |
| |
| // We hit the end of the block, check whether EFLAGS is live into a successor. |
| for (auto I = BB->succ_begin(), E = BB->succ_end(); I != E; ++I) { |
| if ((*I)->isLiveIn(X86::EFLAGS)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Given /p First CMOV instruction and /p Last CMOV instruction representing a |
| /// group of CMOV instructions, which may contain debug instructions in between, |
| /// move all debug instructions to after the last CMOV instruction, making the |
| /// CMOV group consecutive. |
| static void packCmovGroup(MachineInstr *First, MachineInstr *Last) { |
| assert(X86::getCondFromCMovOpc(Last->getOpcode()) != X86::COND_INVALID && |
| "Last instruction in a CMOV group must be a CMOV instruction"); |
| |
| SmallVector<MachineInstr *, 2> DBGInstructions; |
| for (auto I = First->getIterator(), E = Last->getIterator(); I != E; I++) { |
| if (I->isDebugInstr()) |
| DBGInstructions.push_back(&*I); |
| } |
| |
| // Splice the debug instruction after the cmov group. |
| MachineBasicBlock *MBB = First->getParent(); |
| for (auto *MI : DBGInstructions) |
| MBB->insertAfter(Last, MI->removeFromParent()); |
| } |
| |
| void X86CmovConverterPass::convertCmovInstsToBranches( |
| SmallVectorImpl<MachineInstr *> &Group) const { |
| assert(!Group.empty() && "No CMOV instructions to convert"); |
| ++NumOfOptimizedCmovGroups; |
| |
| // If the CMOV group is not packed, e.g., there are debug instructions between |
| // first CMOV and last CMOV, then pack the group and make the CMOV instruction |
| // consecutive by moving the debug instructions to after the last CMOV. |
| packCmovGroup(Group.front(), Group.back()); |
| |
| // To convert a CMOVcc instruction, we actually have to insert the diamond |
| // control-flow pattern. The incoming instruction knows the destination vreg |
| // to set, the condition code register to branch on, the true/false values to |
| // select between, and a branch opcode to use. |
| |
| // Before |
| // ----- |
| // MBB: |
| // cond = cmp ... |
| // v1 = CMOVge t1, f1, cond |
| // v2 = CMOVlt t2, f2, cond |
| // v3 = CMOVge v1, f3, cond |
| // |
| // After |
| // ----- |
| // MBB: |
| // cond = cmp ... |
| // jge %SinkMBB |
| // |
| // FalseMBB: |
| // jmp %SinkMBB |
| // |
| // SinkMBB: |
| // %v1 = phi[%f1, %FalseMBB], [%t1, %MBB] |
| // %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch |
| // ; true-value with false-value |
| // %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use |
| // ; previous Phi instruction result |
| |
| MachineInstr &MI = *Group.front(); |
| MachineInstr *LastCMOV = Group.back(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| X86::CondCode CC = X86::CondCode(X86::getCondFromCMovOpc(MI.getOpcode())); |
| X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC); |
| // Potentially swap the condition codes so that any memory operand to a CMOV |
| // is in the *false* position instead of the *true* position. We can invert |
| // any non-memory operand CMOV instructions to cope with this and we ensure |
| // memory operand CMOVs are only included with a single condition code. |
| if (llvm::any_of(Group, [&](MachineInstr *I) { |
| return I->mayLoad() && X86::getCondFromCMovOpc(I->getOpcode()) == CC; |
| })) |
| std::swap(CC, OppCC); |
| |
| MachineBasicBlock *MBB = MI.getParent(); |
| MachineFunction::iterator It = ++MBB->getIterator(); |
| MachineFunction *F = MBB->getParent(); |
| const BasicBlock *BB = MBB->getBasicBlock(); |
| |
| MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(BB); |
| MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB); |
| F->insert(It, FalseMBB); |
| F->insert(It, SinkMBB); |
| |
| // If the EFLAGS register isn't dead in the terminator, then claim that it's |
| // live into the sink and copy blocks. |
| if (checkEFLAGSLive(LastCMOV)) { |
| FalseMBB->addLiveIn(X86::EFLAGS); |
| SinkMBB->addLiveIn(X86::EFLAGS); |
| } |
| |
| // Transfer the remainder of BB and its successor edges to SinkMBB. |
| SinkMBB->splice(SinkMBB->begin(), MBB, |
| std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end()); |
| SinkMBB->transferSuccessorsAndUpdatePHIs(MBB); |
| |
| // Add the false and sink blocks as its successors. |
| MBB->addSuccessor(FalseMBB); |
| MBB->addSuccessor(SinkMBB); |
| |
| // Create the conditional branch instruction. |
| BuildMI(MBB, DL, TII->get(X86::GetCondBranchFromCond(CC))).addMBB(SinkMBB); |
| |
| // Add the sink block to the false block successors. |
| FalseMBB->addSuccessor(SinkMBB); |
| |
| MachineInstrBuilder MIB; |
| MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); |
| MachineBasicBlock::iterator MIItEnd = |
| std::next(MachineBasicBlock::iterator(LastCMOV)); |
| MachineBasicBlock::iterator FalseInsertionPoint = FalseMBB->begin(); |
| MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); |
| |
| // First we need to insert an explicit load on the false path for any memory |
| // operand. We also need to potentially do register rewriting here, but it is |
| // simpler as the memory operands are always on the false path so we can |
| // simply take that input, whatever it is. |
| DenseMap<unsigned, unsigned> FalseBBRegRewriteTable; |
| for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;) { |
| auto &MI = *MIIt++; |
| // Skip any CMOVs in this group which don't load from memory. |
| if (!MI.mayLoad()) { |
| // Remember the false-side register input. |
| unsigned FalseReg = |
| MI.getOperand(X86::getCondFromCMovOpc(MI.getOpcode()) == CC ? 1 : 2) |
| .getReg(); |
| // Walk back through any intermediate cmovs referenced. |
| while (true) { |
| auto FRIt = FalseBBRegRewriteTable.find(FalseReg); |
| if (FRIt == FalseBBRegRewriteTable.end()) |
| break; |
| FalseReg = FRIt->second; |
| } |
| FalseBBRegRewriteTable[MI.getOperand(0).getReg()] = FalseReg; |
| continue; |
| } |
| |
| // The condition must be the *opposite* of the one we've decided to branch |
| // on as the branch will go *around* the load and the load should happen |
| // when the CMOV condition is false. |
| assert(X86::getCondFromCMovOpc(MI.getOpcode()) == OppCC && |
| "Can only handle memory-operand cmov instructions with a condition " |
| "opposite to the selected branch direction."); |
| |
| // The goal is to rewrite the cmov from: |
| // |
| // MBB: |
| // %A = CMOVcc %B (tied), (mem) |
| // |
| // to |
| // |
| // MBB: |
| // %A = CMOVcc %B (tied), %C |
| // FalseMBB: |
| // %C = MOV (mem) |
| // |
| // Which will allow the next loop to rewrite the CMOV in terms of a PHI: |
| // |
| // MBB: |
| // JMP!cc SinkMBB |
| // FalseMBB: |
| // %C = MOV (mem) |
| // SinkMBB: |
| // %A = PHI [ %C, FalseMBB ], [ %B, MBB] |
| |
| // Get a fresh register to use as the destination of the MOV. |
| const TargetRegisterClass *RC = MRI->getRegClass(MI.getOperand(0).getReg()); |
| unsigned TmpReg = MRI->createVirtualRegister(RC); |
| |
| SmallVector<MachineInstr *, 4> NewMIs; |
| bool Unfolded = TII->unfoldMemoryOperand(*MBB->getParent(), MI, TmpReg, |
| /*UnfoldLoad*/ true, |
| /*UnfoldStore*/ false, NewMIs); |
| (void)Unfolded; |
| assert(Unfolded && "Should never fail to unfold a loading cmov!"); |
| |
| // Move the new CMOV to just before the old one and reset any impacted |
| // iterator. |
| auto *NewCMOV = NewMIs.pop_back_val(); |
| assert(X86::getCondFromCMovOpc(NewCMOV->getOpcode()) == OppCC && |
| "Last new instruction isn't the expected CMOV!"); |
| LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV->dump()); |
| MBB->insert(MachineBasicBlock::iterator(MI), NewCMOV); |
| if (&*MIItBegin == &MI) |
| MIItBegin = MachineBasicBlock::iterator(NewCMOV); |
| |
| // Sink whatever instructions were needed to produce the unfolded operand |
| // into the false block. |
| for (auto *NewMI : NewMIs) { |
| LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI->dump()); |
| FalseMBB->insert(FalseInsertionPoint, NewMI); |
| // Re-map any operands that are from other cmovs to the inputs for this block. |
| for (auto &MOp : NewMI->uses()) { |
| if (!MOp.isReg()) |
| continue; |
| auto It = FalseBBRegRewriteTable.find(MOp.getReg()); |
| if (It == FalseBBRegRewriteTable.end()) |
| continue; |
| |
| MOp.setReg(It->second); |
| // This might have been a kill when it referenced the cmov result, but |
| // it won't necessarily be once rewritten. |
| // FIXME: We could potentially improve this by tracking whether the |
| // operand to the cmov was also a kill, and then skipping the PHI node |
| // construction below. |
| MOp.setIsKill(false); |
| } |
| } |
| MBB->erase(MachineBasicBlock::iterator(MI), |
| std::next(MachineBasicBlock::iterator(MI))); |
| |
| // Add this PHI to the rewrite table. |
| FalseBBRegRewriteTable[NewCMOV->getOperand(0).getReg()] = TmpReg; |
| } |
| |
| // As we are creating the PHIs, we have to be careful if there is more than |
| // one. Later CMOVs may reference the results of earlier CMOVs, but later |
| // PHIs have to reference the individual true/false inputs from earlier PHIs. |
| // That also means that PHI construction must work forward from earlier to |
| // later, and that the code must maintain a mapping from earlier PHI's |
| // destination registers, and the registers that went into the PHI. |
| DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; |
| |
| for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) { |
| unsigned DestReg = MIIt->getOperand(0).getReg(); |
| unsigned Op1Reg = MIIt->getOperand(1).getReg(); |
| unsigned Op2Reg = MIIt->getOperand(2).getReg(); |
| |
| // If this CMOV we are processing is the opposite condition from the jump we |
| // generated, then we have to swap the operands for the PHI that is going to |
| // be generated. |
| if (X86::getCondFromCMovOpc(MIIt->getOpcode()) == OppCC) |
| std::swap(Op1Reg, Op2Reg); |
| |
| auto Op1Itr = RegRewriteTable.find(Op1Reg); |
| if (Op1Itr != RegRewriteTable.end()) |
| Op1Reg = Op1Itr->second.first; |
| |
| auto Op2Itr = RegRewriteTable.find(Op2Reg); |
| if (Op2Itr != RegRewriteTable.end()) |
| Op2Reg = Op2Itr->second.second; |
| |
| // SinkMBB: |
| // %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ] |
| // ... |
| MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg) |
| .addReg(Op1Reg) |
| .addMBB(FalseMBB) |
| .addReg(Op2Reg) |
| .addMBB(MBB); |
| (void)MIB; |
| LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt->dump()); |
| LLVM_DEBUG(dbgs() << "\tTo: "; MIB->dump()); |
| |
| // Add this PHI to the rewrite table. |
| RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg); |
| } |
| |
| // Now remove the CMOV(s). |
| MBB->erase(MIItBegin, MIItEnd); |
| } |
| |
| INITIALIZE_PASS_BEGIN(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion", |
| false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_END(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion", |
| false, false) |
| |
| FunctionPass *llvm::createX86CmovConverterPass() { |
| return new X86CmovConverterPass(); |
| } |