| //===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This describes the calling conventions for the X86-32 and X86-64 |
| // architectures. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| /// CCIfSubtarget - Match if the current subtarget has a feature F. |
| class CCIfSubtarget<string F, CCAction A> |
| : CCIf<!strconcat("static_cast<const X86Subtarget&>" |
| "(State.getMachineFunction().getSubtarget()).", F), |
| A>; |
| |
| /// CCIfNotSubtarget - Match if the current subtarget doesn't has a feature F. |
| class CCIfNotSubtarget<string F, CCAction A> |
| : CCIf<!strconcat("!static_cast<const X86Subtarget&>" |
| "(State.getMachineFunction().getSubtarget()).", F), |
| A>; |
| |
| // Register classes for RegCall |
| class RC_X86_RegCall { |
| list<Register> GPR_8 = []; |
| list<Register> GPR_16 = []; |
| list<Register> GPR_32 = []; |
| list<Register> GPR_64 = []; |
| list<Register> FP_CALL = [FP0]; |
| list<Register> FP_RET = [FP0, FP1]; |
| list<Register> XMM = []; |
| list<Register> YMM = []; |
| list<Register> ZMM = []; |
| } |
| |
| // RegCall register classes for 32 bits |
| def RC_X86_32_RegCall : RC_X86_RegCall { |
| let GPR_8 = [AL, CL, DL, DIL, SIL]; |
| let GPR_16 = [AX, CX, DX, DI, SI]; |
| let GPR_32 = [EAX, ECX, EDX, EDI, ESI]; |
| let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle [] |
| ///< \todo Fix AssignToReg to enable empty lists |
| let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]; |
| let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7]; |
| let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]; |
| } |
| |
| class RC_X86_64_RegCall : RC_X86_RegCall { |
| let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, |
| XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15]; |
| let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7, |
| YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15]; |
| let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7, |
| ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15]; |
| } |
| |
| def RC_X86_64_RegCall_Win : RC_X86_64_RegCall { |
| let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B]; |
| let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W]; |
| let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D]; |
| let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15]; |
| } |
| |
| def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall { |
| let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B]; |
| let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W]; |
| let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D]; |
| let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15]; |
| } |
| |
| // X86-64 Intel regcall calling convention. |
| multiclass X86_RegCall_base<RC_X86_RegCall RC> { |
| def CC_#NAME : CallingConv<[ |
| // Handles byval parameters. |
| CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>, |
| CCIfByVal<CCPassByVal<4, 4>>, |
| |
| // Promote i1/i8/i16/v1i1 arguments to i32. |
| CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, |
| |
| // Promote v8i1/v16i1/v32i1 arguments to i32. |
| CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>, |
| |
| // bool, char, int, enum, long, pointer --> GPR |
| CCIfType<[i32], CCAssignToReg<RC.GPR_32>>, |
| |
| // long long, __int64 --> GPR |
| CCIfType<[i64], CCAssignToReg<RC.GPR_64>>, |
| |
| // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32) |
| CCIfType<[v64i1], CCPromoteToType<i64>>, |
| CCIfSubtarget<"is64Bit()", CCIfType<[i64], |
| CCAssignToReg<RC.GPR_64>>>, |
| CCIfSubtarget<"is32Bit()", CCIfType<[i64], |
| CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>, |
| |
| // float, double, float128 --> XMM |
| // In the case of SSE disabled --> save to stack |
| CCIfType<[f32, f64, f128], |
| CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>, |
| |
| // long double --> FP |
| CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>, |
| |
| // __m128, __m128i, __m128d --> XMM |
| // In the case of SSE disabled --> save to stack |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], |
| CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>, |
| |
| // __m256, __m256i, __m256d --> YMM |
| // In the case of SSE disabled --> save to stack |
| CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], |
| CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>, |
| |
| // __m512, __m512i, __m512d --> ZMM |
| // In the case of SSE disabled --> save to stack |
| CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], |
| CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>, |
| |
| // If no register was found -> assign to stack |
| |
| // In 64 bit, assign 64/32 bit values to 8 byte stack |
| CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64], |
| CCAssignToStack<8, 8>>>, |
| |
| // In 32 bit, assign 64/32 bit values to 8/4 byte stack |
| CCIfType<[i32, f32], CCAssignToStack<4, 4>>, |
| CCIfType<[i64, f64], CCAssignToStack<8, 4>>, |
| |
| // MMX type gets 8 byte slot in stack , while alignment depends on target |
| CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>, |
| CCIfType<[x86mmx], CCAssignToStack<8, 4>>, |
| |
| // float 128 get stack slots whose size and alignment depends |
| // on the subtarget. |
| CCIfType<[f80, f128], CCAssignToStack<0, 0>>, |
| |
| // Vectors get 16-byte stack slots that are 16-byte aligned. |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], |
| CCAssignToStack<16, 16>>, |
| |
| // 256-bit vectors get 32-byte stack slots that are 32-byte aligned. |
| CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], |
| CCAssignToStack<32, 32>>, |
| |
| // 512-bit vectors get 64-byte stack slots that are 64-byte aligned. |
| CCIfType<[v16i32, v8i64, v16f32, v8f64], CCAssignToStack<64, 64>> |
| ]>; |
| |
| def RetCC_#NAME : CallingConv<[ |
| // Promote i1, v1i1, v8i1 arguments to i8. |
| CCIfType<[i1, v1i1, v8i1], CCPromoteToType<i8>>, |
| |
| // Promote v16i1 arguments to i16. |
| CCIfType<[v16i1], CCPromoteToType<i16>>, |
| |
| // Promote v32i1 arguments to i32. |
| CCIfType<[v32i1], CCPromoteToType<i32>>, |
| |
| // bool, char, int, enum, long, pointer --> GPR |
| CCIfType<[i8], CCAssignToReg<RC.GPR_8>>, |
| CCIfType<[i16], CCAssignToReg<RC.GPR_16>>, |
| CCIfType<[i32], CCAssignToReg<RC.GPR_32>>, |
| |
| // long long, __int64 --> GPR |
| CCIfType<[i64], CCAssignToReg<RC.GPR_64>>, |
| |
| // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32) |
| CCIfType<[v64i1], CCPromoteToType<i64>>, |
| CCIfSubtarget<"is64Bit()", CCIfType<[i64], |
| CCAssignToReg<RC.GPR_64>>>, |
| CCIfSubtarget<"is32Bit()", CCIfType<[i64], |
| CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>, |
| |
| // long double --> FP |
| CCIfType<[f80], CCAssignToReg<RC.FP_RET>>, |
| |
| // float, double, float128 --> XMM |
| CCIfType<[f32, f64, f128], |
| CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>, |
| |
| // __m128, __m128i, __m128d --> XMM |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], |
| CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>, |
| |
| // __m256, __m256i, __m256d --> YMM |
| CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], |
| CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>, |
| |
| // __m512, __m512i, __m512d --> ZMM |
| CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], |
| CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>> |
| ]>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Return Value Calling Conventions |
| //===----------------------------------------------------------------------===// |
| |
| // Return-value conventions common to all X86 CC's. |
| def RetCC_X86Common : CallingConv<[ |
| // Scalar values are returned in AX first, then DX. For i8, the ABI |
| // requires the values to be in AL and AH, however this code uses AL and DL |
| // instead. This is because using AH for the second register conflicts with |
| // the way LLVM does multiple return values -- a return of {i16,i8} would end |
| // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI |
| // for functions that return two i8 values are currently expected to pack the |
| // values into an i16 (which uses AX, and thus AL:AH). |
| // |
| // For code that doesn't care about the ABI, we allow returning more than two |
| // integer values in registers. |
| CCIfType<[v1i1], CCPromoteToType<i8>>, |
| CCIfType<[i1], CCPromoteToType<i8>>, |
| CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>, |
| CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, |
| CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, |
| CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>, |
| |
| // Boolean vectors of AVX-512 are returned in SIMD registers. |
| // The call from AVX to AVX-512 function should work, |
| // since the boolean types in AVX/AVX2 are promoted by default. |
| CCIfType<[v2i1], CCPromoteToType<v2i64>>, |
| CCIfType<[v4i1], CCPromoteToType<v4i32>>, |
| CCIfType<[v8i1], CCPromoteToType<v8i16>>, |
| CCIfType<[v16i1], CCPromoteToType<v16i8>>, |
| CCIfType<[v32i1], CCPromoteToType<v32i8>>, |
| CCIfType<[v64i1], CCPromoteToType<v64i8>>, |
| |
| // Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3 |
| // can only be used by ABI non-compliant code. If the target doesn't have XMM |
| // registers, it won't have vector types. |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], |
| CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, |
| |
| // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3 |
| // can only be used by ABI non-compliant code. This vector type is only |
| // supported while using the AVX target feature. |
| CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], |
| CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, |
| |
| // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3 |
| // can only be used by ABI non-compliant code. This vector type is only |
| // supported while using the AVX-512 target feature. |
| CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], |
| CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>, |
| |
| // MMX vector types are always returned in MM0. If the target doesn't have |
| // MM0, it doesn't support these vector types. |
| CCIfType<[x86mmx], CCAssignToReg<[MM0]>>, |
| |
| // Long double types are always returned in FP0 (even with SSE), |
| // except on Win64. |
| CCIfNotSubtarget<"isTargetWin64()", CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>> |
| ]>; |
| |
| // X86-32 C return-value convention. |
| def RetCC_X86_32_C : CallingConv<[ |
| // The X86-32 calling convention returns FP values in FP0, unless marked |
| // with "inreg" (used here to distinguish one kind of reg from another, |
| // weirdly; this is really the sse-regparm calling convention) in which |
| // case they use XMM0, otherwise it is the same as the common X86 calling |
| // conv. |
| CCIfInReg<CCIfSubtarget<"hasSSE2()", |
| CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>, |
| CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>, |
| CCDelegateTo<RetCC_X86Common> |
| ]>; |
| |
| // X86-32 FastCC return-value convention. |
| def RetCC_X86_32_Fast : CallingConv<[ |
| // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has |
| // SSE2. |
| // This can happen when a float, 2 x float, or 3 x float vector is split by |
| // target lowering, and is returned in 1-3 sse regs. |
| CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, |
| CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, |
| |
| // For integers, ECX can be used as an extra return register |
| CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>, |
| CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, |
| CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, |
| |
| // Otherwise, it is the same as the common X86 calling convention. |
| CCDelegateTo<RetCC_X86Common> |
| ]>; |
| |
| // Intel_OCL_BI return-value convention. |
| def RetCC_Intel_OCL_BI : CallingConv<[ |
| // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3. |
| CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64], |
| CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, |
| |
| // 256-bit FP vectors |
| // No more than 4 registers |
| CCIfType<[v8f32, v4f64, v8i32, v4i64], |
| CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, |
| |
| // 512-bit FP vectors |
| CCIfType<[v16f32, v8f64, v16i32, v8i64], |
| CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>, |
| |
| // i32, i64 in the standard way |
| CCDelegateTo<RetCC_X86Common> |
| ]>; |
| |
| // X86-32 HiPE return-value convention. |
| def RetCC_X86_32_HiPE : CallingConv<[ |
| // Promote all types to i32 |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, |
| |
| // Return: HP, P, VAL1, VAL2 |
| CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>> |
| ]>; |
| |
| // X86-32 Vectorcall return-value convention. |
| def RetCC_X86_32_VectorCall : CallingConv<[ |
| // Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3. |
| CCIfType<[f32, f64, f128], |
| CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, |
| |
| // Return integers in the standard way. |
| CCDelegateTo<RetCC_X86Common> |
| ]>; |
| |
| // X86-64 C return-value convention. |
| def RetCC_X86_64_C : CallingConv<[ |
| // The X86-64 calling convention always returns FP values in XMM0. |
| CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>, |
| CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>, |
| CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>, |
| |
| // MMX vector types are always returned in XMM0. |
| CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>, |
| |
| CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>, |
| |
| CCDelegateTo<RetCC_X86Common> |
| ]>; |
| |
| // X86-Win64 C return-value convention. |
| def RetCC_X86_Win64_C : CallingConv<[ |
| // The X86-Win64 calling convention always returns __m64 values in RAX. |
| CCIfType<[x86mmx], CCBitConvertToType<i64>>, |
| |
| // Otherwise, everything is the same as 'normal' X86-64 C CC. |
| CCDelegateTo<RetCC_X86_64_C> |
| ]>; |
| |
| // X86-64 vectorcall return-value convention. |
| def RetCC_X86_64_Vectorcall : CallingConv<[ |
| // Vectorcall calling convention always returns FP values in XMMs. |
| CCIfType<[f32, f64, f128], |
| CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, |
| |
| // Otherwise, everything is the same as Windows X86-64 C CC. |
| CCDelegateTo<RetCC_X86_Win64_C> |
| ]>; |
| |
| // X86-64 HiPE return-value convention. |
| def RetCC_X86_64_HiPE : CallingConv<[ |
| // Promote all types to i64 |
| CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, |
| |
| // Return: HP, P, VAL1, VAL2 |
| CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>> |
| ]>; |
| |
| // X86-64 WebKit_JS return-value convention. |
| def RetCC_X86_64_WebKit_JS : CallingConv<[ |
| // Promote all types to i64 |
| CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, |
| |
| // Return: RAX |
| CCIfType<[i64], CCAssignToReg<[RAX]>> |
| ]>; |
| |
| def RetCC_X86_64_Swift : CallingConv<[ |
| |
| CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>, |
| |
| // For integers, ECX, R8D can be used as extra return registers. |
| CCIfType<[v1i1], CCPromoteToType<i8>>, |
| CCIfType<[i1], CCPromoteToType<i8>>, |
| CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>, |
| CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>, |
| CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>, |
| CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>, |
| |
| // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values. |
| CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, |
| CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, |
| CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, |
| |
| // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3. |
| CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, |
| CCDelegateTo<RetCC_X86Common> |
| ]>; |
| |
| // X86-64 AnyReg return-value convention. No explicit register is specified for |
| // the return-value. The register allocator is allowed and expected to choose |
| // any free register. |
| // |
| // This calling convention is currently only supported by the stackmap and |
| // patchpoint intrinsics. All other uses will result in an assert on Debug |
| // builds. On Release builds we fallback to the X86 C calling convention. |
| def RetCC_X86_64_AnyReg : CallingConv<[ |
| CCCustom<"CC_X86_AnyReg_Error"> |
| ]>; |
| |
| // X86-64 HHVM return-value convention. |
| def RetCC_X86_64_HHVM: CallingConv<[ |
| // Promote all types to i64 |
| CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, |
| |
| // Return: could return in any GP register save RSP and R12. |
| CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9, |
| RAX, R10, R11, R13, R14, R15]>> |
| ]>; |
| |
| |
| defm X86_32_RegCall : |
| X86_RegCall_base<RC_X86_32_RegCall>; |
| defm X86_Win64_RegCall : |
| X86_RegCall_base<RC_X86_64_RegCall_Win>; |
| defm X86_SysV64_RegCall : |
| X86_RegCall_base<RC_X86_64_RegCall_SysV>; |
| |
| // This is the root return-value convention for the X86-32 backend. |
| def RetCC_X86_32 : CallingConv<[ |
| // If FastCC, use RetCC_X86_32_Fast. |
| CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>, |
| // If HiPE, use RetCC_X86_32_HiPE. |
| CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>, |
| CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>, |
| CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>, |
| |
| // Otherwise, use RetCC_X86_32_C. |
| CCDelegateTo<RetCC_X86_32_C> |
| ]>; |
| |
| // This is the root return-value convention for the X86-64 backend. |
| def RetCC_X86_64 : CallingConv<[ |
| // HiPE uses RetCC_X86_64_HiPE |
| CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>, |
| |
| // Handle JavaScript calls. |
| CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>, |
| CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>, |
| |
| // Handle Swift calls. |
| CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>, |
| |
| // Handle explicit CC selection |
| CCIfCC<"CallingConv::Win64", CCDelegateTo<RetCC_X86_Win64_C>>, |
| CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>, |
| |
| // Handle Vectorcall CC |
| CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>, |
| |
| // Handle HHVM calls. |
| CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>, |
| |
| CCIfCC<"CallingConv::X86_RegCall", |
| CCIfSubtarget<"isTargetWin64()", |
| CCDelegateTo<RetCC_X86_Win64_RegCall>>>, |
| CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>, |
| |
| // Mingw64 and native Win64 use Win64 CC |
| CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>, |
| |
| // Otherwise, drop to normal X86-64 CC |
| CCDelegateTo<RetCC_X86_64_C> |
| ]>; |
| |
| // This is the return-value convention used for the entire X86 backend. |
| def RetCC_X86 : CallingConv<[ |
| |
| // Check if this is the Intel OpenCL built-ins calling convention |
| CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>, |
| |
| CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>, |
| CCDelegateTo<RetCC_X86_32> |
| ]>; |
| |
| //===----------------------------------------------------------------------===// |
| // X86-64 Argument Calling Conventions |
| //===----------------------------------------------------------------------===// |
| |
| def CC_X86_64_C : CallingConv<[ |
| // Handles byval parameters. |
| CCIfByVal<CCPassByVal<8, 8>>, |
| |
| // Promote i1/i8/i16/v1i1 arguments to i32. |
| CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, |
| |
| // The 'nest' parameter, if any, is passed in R10. |
| CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>, |
| CCIfNest<CCAssignToReg<[R10]>>, |
| |
| // Pass SwiftSelf in a callee saved register. |
| CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>, |
| |
| // A SwiftError is passed in R12. |
| CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>, |
| |
| // For Swift Calling Convention, pass sret in %rax. |
| CCIfCC<"CallingConv::Swift", |
| CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>, |
| |
| // The first 6 integer arguments are passed in integer registers. |
| CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>, |
| CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>, |
| |
| // The first 8 MMX vector arguments are passed in XMM registers on Darwin. |
| CCIfType<[x86mmx], |
| CCIfSubtarget<"isTargetDarwin()", |
| CCIfSubtarget<"hasSSE2()", |
| CCPromoteToType<v2i64>>>>, |
| |
| // Boolean vectors of AVX-512 are passed in SIMD registers. |
| // The call from AVX to AVX-512 function should work, |
| // since the boolean types in AVX/AVX2 are promoted by default. |
| CCIfType<[v2i1], CCPromoteToType<v2i64>>, |
| CCIfType<[v4i1], CCPromoteToType<v4i32>>, |
| CCIfType<[v8i1], CCPromoteToType<v8i16>>, |
| CCIfType<[v16i1], CCPromoteToType<v16i8>>, |
| CCIfType<[v32i1], CCPromoteToType<v32i8>>, |
| CCIfType<[v64i1], CCPromoteToType<v64i8>>, |
| |
| // The first 8 FP/Vector arguments are passed in XMM registers. |
| CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], |
| CCIfSubtarget<"hasSSE1()", |
| CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>, |
| |
| // The first 8 256-bit vector arguments are passed in YMM registers, unless |
| // this is a vararg function. |
| // FIXME: This isn't precisely correct; the x86-64 ABI document says that |
| // fixed arguments to vararg functions are supposed to be passed in |
| // registers. Actually modeling that would be a lot of work, though. |
| CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], |
| CCIfSubtarget<"hasAVX()", |
| CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, |
| YMM4, YMM5, YMM6, YMM7]>>>>, |
| |
| // The first 8 512-bit vector arguments are passed in ZMM registers. |
| CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], |
| CCIfSubtarget<"hasAVX512()", |
| CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>, |
| |
| // Integer/FP values get stored in stack slots that are 8 bytes in size and |
| // 8-byte aligned if there are no more registers to hold them. |
| CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, |
| |
| // Long doubles get stack slots whose size and alignment depends on the |
| // subtarget. |
| CCIfType<[f80, f128], CCAssignToStack<0, 0>>, |
| |
| // Vectors get 16-byte stack slots that are 16-byte aligned. |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, |
| |
| // 256-bit vectors get 32-byte stack slots that are 32-byte aligned. |
| CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], |
| CCAssignToStack<32, 32>>, |
| |
| // 512-bit vectors get 64-byte stack slots that are 64-byte aligned. |
| CCIfType<[v16i32, v8i64, v16f32, v8f64], |
| CCAssignToStack<64, 64>> |
| ]>; |
| |
| // Calling convention for X86-64 HHVM. |
| def CC_X86_64_HHVM : CallingConv<[ |
| // Use all/any GP registers for args, except RSP. |
| CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15, |
| RDI, RSI, RDX, RCX, R8, R9, |
| RAX, R10, R11, R13, R14]>> |
| ]>; |
| |
| // Calling convention for helper functions in HHVM. |
| def CC_X86_64_HHVM_C : CallingConv<[ |
| // Pass the first argument in RBP. |
| CCIfType<[i64], CCAssignToReg<[RBP]>>, |
| |
| // Otherwise it's the same as the regular C calling convention. |
| CCDelegateTo<CC_X86_64_C> |
| ]>; |
| |
| // Calling convention used on Win64 |
| def CC_X86_Win64_C : CallingConv<[ |
| // FIXME: Handle byval stuff. |
| // FIXME: Handle varargs. |
| |
| // Promote i1/v1i1 arguments to i8. |
| CCIfType<[i1, v1i1], CCPromoteToType<i8>>, |
| |
| // The 'nest' parameter, if any, is passed in R10. |
| CCIfNest<CCAssignToReg<[R10]>>, |
| |
| // A SwiftError is passed in R12. |
| CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>, |
| |
| // 128 bit vectors are passed by pointer |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>, |
| |
| |
| // 256 bit vectors are passed by pointer |
| CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>, |
| |
| // 512 bit vectors are passed by pointer |
| CCIfType<[v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>, |
| |
| // Long doubles are passed by pointer |
| CCIfType<[f80], CCPassIndirect<i64>>, |
| |
| // The first 4 MMX vector arguments are passed in GPRs. |
| CCIfType<[x86mmx], CCBitConvertToType<i64>>, |
| |
| // The first 4 integer arguments are passed in integer registers. |
| CCIfType<[i8 ], CCAssignToRegWithShadow<[CL , DL , R8B , R9B ], |
| [XMM0, XMM1, XMM2, XMM3]>>, |
| CCIfType<[i16], CCAssignToRegWithShadow<[CX , DX , R8W , R9W ], |
| [XMM0, XMM1, XMM2, XMM3]>>, |
| CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ], |
| [XMM0, XMM1, XMM2, XMM3]>>, |
| |
| // Do not pass the sret argument in RCX, the Win64 thiscall calling |
| // convention requires "this" to be passed in RCX. |
| CCIfCC<"CallingConv::X86_ThisCall", |
| CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8 , R9 ], |
| [XMM1, XMM2, XMM3]>>>>, |
| |
| CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ], |
| [XMM0, XMM1, XMM2, XMM3]>>, |
| |
| // The first 4 FP/Vector arguments are passed in XMM registers. |
| CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], |
| CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3], |
| [RCX , RDX , R8 , R9 ]>>, |
| |
| // Integer/FP values get stored in stack slots that are 8 bytes in size and |
| // 8-byte aligned if there are no more registers to hold them. |
| CCIfType<[i8, i16, i32, i64, f32, f64], CCAssignToStack<8, 8>> |
| ]>; |
| |
| def CC_X86_Win64_VectorCall : CallingConv<[ |
| CCCustom<"CC_X86_64_VectorCall">, |
| |
| // Delegate to fastcall to handle integer types. |
| CCDelegateTo<CC_X86_Win64_C> |
| ]>; |
| |
| |
| def CC_X86_64_GHC : CallingConv<[ |
| // Promote i8/i16/i32 arguments to i64. |
| CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, |
| |
| // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim |
| CCIfType<[i64], |
| CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>, |
| |
| // Pass in STG registers: F1, F2, F3, F4, D1, D2 |
| CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], |
| CCIfSubtarget<"hasSSE1()", |
| CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>, |
| // AVX |
| CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], |
| CCIfSubtarget<"hasAVX()", |
| CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>, |
| // AVX-512 |
| CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], |
| CCIfSubtarget<"hasAVX512()", |
| CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>> |
| ]>; |
| |
| def CC_X86_64_HiPE : CallingConv<[ |
| // Promote i8/i16/i32 arguments to i64. |
| CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, |
| |
| // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3 |
| CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>, |
| |
| // Integer/FP values get stored in stack slots that are 8 bytes in size and |
| // 8-byte aligned if there are no more registers to hold them. |
| CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>> |
| ]>; |
| |
| def CC_X86_64_WebKit_JS : CallingConv<[ |
| // Promote i8/i16 arguments to i32. |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, |
| |
| // Only the first integer argument is passed in register. |
| CCIfType<[i32], CCAssignToReg<[EAX]>>, |
| CCIfType<[i64], CCAssignToReg<[RAX]>>, |
| |
| // The remaining integer arguments are passed on the stack. 32bit integer and |
| // floating-point arguments are aligned to 4 byte and stored in 4 byte slots. |
| // 64bit integer and floating-point arguments are aligned to 8 byte and stored |
| // in 8 byte stack slots. |
| CCIfType<[i32, f32], CCAssignToStack<4, 4>>, |
| CCIfType<[i64, f64], CCAssignToStack<8, 8>> |
| ]>; |
| |
| // No explicit register is specified for the AnyReg calling convention. The |
| // register allocator may assign the arguments to any free register. |
| // |
| // This calling convention is currently only supported by the stackmap and |
| // patchpoint intrinsics. All other uses will result in an assert on Debug |
| // builds. On Release builds we fallback to the X86 C calling convention. |
| def CC_X86_64_AnyReg : CallingConv<[ |
| CCCustom<"CC_X86_AnyReg_Error"> |
| ]>; |
| |
| //===----------------------------------------------------------------------===// |
| // X86 C Calling Convention |
| //===----------------------------------------------------------------------===// |
| |
| /// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector |
| /// values are spilled on the stack. |
| def CC_X86_32_Vector_Common : CallingConv<[ |
| // Other SSE vectors get 16-byte stack slots that are 16-byte aligned. |
| CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, |
| |
| // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned. |
| CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], |
| CCAssignToStack<32, 32>>, |
| |
| // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned. |
| CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], |
| CCAssignToStack<64, 64>> |
| ]>; |
| |
| // CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in |
| // vector registers |
| def CC_X86_32_Vector_Standard : CallingConv<[ |
| // SSE vector arguments are passed in XMM registers. |
| CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], |
| CCAssignToReg<[XMM0, XMM1, XMM2]>>>, |
| |
| // AVX 256-bit vector arguments are passed in YMM registers. |
| CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], |
| CCIfSubtarget<"hasAVX()", |
| CCAssignToReg<[YMM0, YMM1, YMM2]>>>>, |
| |
| // AVX 512-bit vector arguments are passed in ZMM registers. |
| CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], |
| CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>, |
| |
| CCDelegateTo<CC_X86_32_Vector_Common> |
| ]>; |
| |
| // CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in |
| // vector registers. |
| def CC_X86_32_Vector_Darwin : CallingConv<[ |
| // SSE vector arguments are passed in XMM registers. |
| CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], |
| CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>, |
| |
| // AVX 256-bit vector arguments are passed in YMM registers. |
| CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], |
| CCIfSubtarget<"hasAVX()", |
| CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>, |
| |
| // AVX 512-bit vector arguments are passed in ZMM registers. |
| CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], |
| CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>, |
| |
| CCDelegateTo<CC_X86_32_Vector_Common> |
| ]>; |
| |
| /// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP |
| /// values are spilled on the stack. |
| def CC_X86_32_Common : CallingConv<[ |
| // Handles byval parameters. |
| CCIfByVal<CCPassByVal<4, 4>>, |
| |
| // The first 3 float or double arguments, if marked 'inreg' and if the call |
| // is not a vararg call and if SSE2 is available, are passed in SSE registers. |
| CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64], |
| CCIfSubtarget<"hasSSE2()", |
| CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>, |
| |
| // The first 3 __m64 vector arguments are passed in mmx registers if the |
| // call is not a vararg call. |
| CCIfNotVarArg<CCIfType<[x86mmx], |
| CCAssignToReg<[MM0, MM1, MM2]>>>, |
| |
| // Integer/Float values get stored in stack slots that are 4 bytes in |
| // size and 4-byte aligned. |
| CCIfType<[i32, f32], CCAssignToStack<4, 4>>, |
| |
| // Doubles get 8-byte slots that are 4-byte aligned. |
| CCIfType<[f64], CCAssignToStack<8, 4>>, |
| |
| // Long doubles get slots whose size depends on the subtarget. |
| CCIfType<[f80], CCAssignToStack<0, 4>>, |
| |
| // Boolean vectors of AVX-512 are passed in SIMD registers. |
| // The call from AVX to AVX-512 function should work, |
| // since the boolean types in AVX/AVX2 are promoted by default. |
| CCIfType<[v2i1], CCPromoteToType<v2i64>>, |
| CCIfType<[v4i1], CCPromoteToType<v4i32>>, |
| CCIfType<[v8i1], CCPromoteToType<v8i16>>, |
| CCIfType<[v16i1], CCPromoteToType<v16i8>>, |
| CCIfType<[v32i1], CCPromoteToType<v32i8>>, |
| CCIfType<[v64i1], CCPromoteToType<v64i8>>, |
| |
| // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are |
| // passed in the parameter area. |
| CCIfType<[x86mmx], CCAssignToStack<8, 4>>, |
| |
| // Darwin passes vectors in a form that differs from the i386 psABI |
| CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>, |
| |
| // Otherwise, drop to 'normal' X86-32 CC |
| CCDelegateTo<CC_X86_32_Vector_Standard> |
| ]>; |
| |
| def CC_X86_32_C : CallingConv<[ |
| // Promote i1/i8/i16/v1i1 arguments to i32. |
| CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, |
| |
| // The 'nest' parameter, if any, is passed in ECX. |
| CCIfNest<CCAssignToReg<[ECX]>>, |
| |
| // The first 3 integer arguments, if marked 'inreg' and if the call is not |
| // a vararg call, are passed in integer registers. |
| CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>, |
| |
| // Otherwise, same as everything else. |
| CCDelegateTo<CC_X86_32_Common> |
| ]>; |
| |
| def CC_X86_32_MCU : CallingConv<[ |
| // Handles byval parameters. Note that, like FastCC, we can't rely on |
| // the delegation to CC_X86_32_Common because that happens after code that |
| // puts arguments in registers. |
| CCIfByVal<CCPassByVal<4, 4>>, |
| |
| // Promote i1/i8/i16/v1i1 arguments to i32. |
| CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, |
| |
| // If the call is not a vararg call, some arguments may be passed |
| // in integer registers. |
| CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>, |
| |
| // Otherwise, same as everything else. |
| CCDelegateTo<CC_X86_32_Common> |
| ]>; |
| |
| def CC_X86_32_FastCall : CallingConv<[ |
| // Promote i1 to i8. |
| CCIfType<[i1], CCPromoteToType<i8>>, |
| |
| // The 'nest' parameter, if any, is passed in EAX. |
| CCIfNest<CCAssignToReg<[EAX]>>, |
| |
| // The first 2 integer arguments are passed in ECX/EDX |
| CCIfInReg<CCIfType<[ i8], CCAssignToReg<[ CL, DL]>>>, |
| CCIfInReg<CCIfType<[i16], CCAssignToReg<[ CX, DX]>>>, |
| CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>, |
| |
| // Otherwise, same as everything else. |
| CCDelegateTo<CC_X86_32_Common> |
| ]>; |
| |
| def CC_X86_Win32_VectorCall : CallingConv<[ |
| // Pass floating point in XMMs |
| CCCustom<"CC_X86_32_VectorCall">, |
| |
| // Delegate to fastcall to handle integer types. |
| CCDelegateTo<CC_X86_32_FastCall> |
| ]>; |
| |
| def CC_X86_32_ThisCall_Common : CallingConv<[ |
| // The first integer argument is passed in ECX |
| CCIfType<[i32], CCAssignToReg<[ECX]>>, |
| |
| // Otherwise, same as everything else. |
| CCDelegateTo<CC_X86_32_Common> |
| ]>; |
| |
| def CC_X86_32_ThisCall_Mingw : CallingConv<[ |
| // Promote i1/i8/i16/v1i1 arguments to i32. |
| CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, |
| |
| CCDelegateTo<CC_X86_32_ThisCall_Common> |
| ]>; |
| |
| def CC_X86_32_ThisCall_Win : CallingConv<[ |
| // Promote i1/i8/i16/v1i1 arguments to i32. |
| CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, |
| |
| // Pass sret arguments indirectly through stack. |
| CCIfSRet<CCAssignToStack<4, 4>>, |
| |
| CCDelegateTo<CC_X86_32_ThisCall_Common> |
| ]>; |
| |
| def CC_X86_32_ThisCall : CallingConv<[ |
| CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>, |
| CCDelegateTo<CC_X86_32_ThisCall_Win> |
| ]>; |
| |
| def CC_X86_32_FastCC : CallingConv<[ |
| // Handles byval parameters. Note that we can't rely on the delegation |
| // to CC_X86_32_Common for this because that happens after code that |
| // puts arguments in registers. |
| CCIfByVal<CCPassByVal<4, 4>>, |
| |
| // Promote i1/i8/i16/v1i1 arguments to i32. |
| CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, |
| |
| // The 'nest' parameter, if any, is passed in EAX. |
| CCIfNest<CCAssignToReg<[EAX]>>, |
| |
| // The first 2 integer arguments are passed in ECX/EDX |
| CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>, |
| |
| // The first 3 float or double arguments, if the call is not a vararg |
| // call and if SSE2 is available, are passed in SSE registers. |
| CCIfNotVarArg<CCIfType<[f32,f64], |
| CCIfSubtarget<"hasSSE2()", |
| CCAssignToReg<[XMM0,XMM1,XMM2]>>>>, |
| |
| // Doubles get 8-byte slots that are 8-byte aligned. |
| CCIfType<[f64], CCAssignToStack<8, 8>>, |
| |
| // Otherwise, same as everything else. |
| CCDelegateTo<CC_X86_32_Common> |
| ]>; |
| |
| def CC_X86_32_GHC : CallingConv<[ |
| // Promote i8/i16 arguments to i32. |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, |
| |
| // Pass in STG registers: Base, Sp, Hp, R1 |
| CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>> |
| ]>; |
| |
| def CC_X86_32_HiPE : CallingConv<[ |
| // Promote i8/i16 arguments to i32. |
| CCIfType<[i8, i16], CCPromoteToType<i32>>, |
| |
| // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2 |
| CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>, |
| |
| // Integer/Float values get stored in stack slots that are 4 bytes in |
| // size and 4-byte aligned. |
| CCIfType<[i32, f32], CCAssignToStack<4, 4>> |
| ]>; |
| |
| // X86-64 Intel OpenCL built-ins calling convention. |
| def CC_Intel_OCL_BI : CallingConv<[ |
| |
| CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>, |
| CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8, R9 ]>>>, |
| |
| CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>, |
| CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>, |
| |
| CCIfType<[i32], CCAssignToStack<4, 4>>, |
| |
| // The SSE vector arguments are passed in XMM registers. |
| CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64], |
| CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, |
| |
| // The 256-bit vector arguments are passed in YMM registers. |
| CCIfType<[v8f32, v4f64, v8i32, v4i64], |
| CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>, |
| |
| // The 512-bit vector arguments are passed in ZMM registers. |
| CCIfType<[v16f32, v8f64, v16i32, v8i64], |
| CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>, |
| |
| // Pass masks in mask registers |
| CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>, |
| |
| CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>, |
| CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64_C>>, |
| CCDelegateTo<CC_X86_32_C> |
| ]>; |
| |
| def CC_X86_32_Intr : CallingConv<[ |
| CCAssignToStack<4, 4> |
| ]>; |
| |
| def CC_X86_64_Intr : CallingConv<[ |
| CCAssignToStack<8, 8> |
| ]>; |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Root Argument Calling Conventions |
| //===----------------------------------------------------------------------===// |
| |
| // This is the root argument convention for the X86-32 backend. |
| def CC_X86_32 : CallingConv<[ |
| // X86_INTR calling convention is valid in MCU target and should override the |
| // MCU calling convention. Thus, this should be checked before isTargetMCU(). |
| CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_32_Intr>>, |
| CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>, |
| CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>, |
| CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>, |
| CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>, |
| CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>, |
| CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>, |
| CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>, |
| CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>, |
| |
| // Otherwise, drop to normal X86-32 CC |
| CCDelegateTo<CC_X86_32_C> |
| ]>; |
| |
| // This is the root argument convention for the X86-64 backend. |
| def CC_X86_64 : CallingConv<[ |
| CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>, |
| CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>, |
| CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>, |
| CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>, |
| CCIfCC<"CallingConv::Win64", CCDelegateTo<CC_X86_Win64_C>>, |
| CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>, |
| CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>, |
| CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>, |
| CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>, |
| CCIfCC<"CallingConv::X86_RegCall", |
| CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>, |
| CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>, |
| CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_64_Intr>>, |
| |
| // Mingw64 and native Win64 use Win64 CC |
| CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>, |
| |
| // Otherwise, drop to normal X86-64 CC |
| CCDelegateTo<CC_X86_64_C> |
| ]>; |
| |
| // This is the argument convention used for the entire X86 backend. |
| def CC_X86 : CallingConv<[ |
| CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>, |
| CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>, |
| CCDelegateTo<CC_X86_32> |
| ]>; |
| |
| //===----------------------------------------------------------------------===// |
| // Callee-saved Registers. |
| //===----------------------------------------------------------------------===// |
| |
| def CSR_NoRegs : CalleeSavedRegs<(add)>; |
| |
| def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>; |
| def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>; |
| |
| def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>; |
| |
| def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>; |
| def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>; |
| |
| def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>; |
| |
| def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE, |
| (sequence "XMM%u", 6, 15))>; |
| |
| def CSR_Win64_SwiftError : CalleeSavedRegs<(sub CSR_Win64, R12)>; |
| |
| // The function used by Darwin to obtain the address of a thread-local variable |
| // uses rdi to pass a single parameter and rax for the return value. All other |
| // GPRs are preserved. |
| def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI, |
| R8, R9, R10, R11)>; |
| |
| // CSRs that are handled by prologue, epilogue. |
| def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>; |
| |
| // CSRs that are handled explicitly via copies. |
| def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>; |
| |
| // All GPRs - except r11 |
| def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI, |
| R8, R9, R10, RSP)>; |
| |
| // All registers - except r11 |
| def CSR_64_RT_AllRegs : CalleeSavedRegs<(add CSR_64_RT_MostRegs, |
| (sequence "XMM%u", 0, 15))>; |
| def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs, |
| (sequence "YMM%u", 0, 15))>; |
| |
| def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10, |
| R11, R12, R13, R14, R15, RBP, |
| (sequence "XMM%u", 0, 15))>; |
| |
| def CSR_32_AllRegs : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI, |
| EDI)>; |
| def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs, |
| (sequence "XMM%u", 0, 7))>; |
| def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs, |
| (sequence "YMM%u", 0, 7))>; |
| def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs, |
| (sequence "ZMM%u", 0, 7), |
| (sequence "K%u", 0, 7))>; |
| |
| def CSR_64_AllRegs : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>; |
| def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9, |
| R10, R11, R12, R13, R14, R15, RBP)>; |
| def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX, |
| (sequence "YMM%u", 0, 15)), |
| (sequence "XMM%u", 0, 15))>; |
| def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX, |
| (sequence "ZMM%u", 0, 31), |
| (sequence "K%u", 0, 7)), |
| (sequence "XMM%u", 0, 15))>; |
| |
| // Standard C + YMM6-15 |
| def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, |
| R13, R14, R15, |
| (sequence "YMM%u", 6, 15))>; |
| |
| def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, |
| R12, R13, R14, R15, |
| (sequence "ZMM%u", 6, 21), |
| K4, K5, K6, K7)>; |
| //Standard C + XMM 8-15 |
| def CSR_64_Intel_OCL_BI : CalleeSavedRegs<(add CSR_64, |
| (sequence "XMM%u", 8, 15))>; |
| |
| //Standard C + YMM 8-15 |
| def CSR_64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add CSR_64, |
| (sequence "YMM%u", 8, 15))>; |
| |
| def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15, |
| (sequence "ZMM%u", 16, 31), |
| K4, K5, K6, K7)>; |
| |
| // Only R12 is preserved for PHP calls in HHVM. |
| def CSR_64_HHVM : CalleeSavedRegs<(add R12)>; |
| |
| // Register calling convention preserves few GPR and XMM8-15 |
| def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP, ESP)>; |
| def CSR_32_RegCall : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE, |
| (sequence "XMM%u", 4, 7))>; |
| def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP, |
| (sequence "R%u", 10, 15))>; |
| def CSR_Win64_RegCall : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE, |
| (sequence "XMM%u", 8, 15))>; |
| def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP, |
| (sequence "R%u", 12, 15))>; |
| def CSR_SysV64_RegCall : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE, |
| (sequence "XMM%u", 8, 15))>; |
| |