| //===-- BPFISelLowering.cpp - BPF DAG Lowering Implementation ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that BPF uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "BPFISelLowering.h" |
| #include "BPF.h" |
| #include "BPFSubtarget.h" |
| #include "BPFTargetMachine.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/DiagnosticPrinter.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "bpf-lower" |
| |
| static cl::opt<bool> BPFExpandMemcpyInOrder("bpf-expand-memcpy-in-order", |
| cl::Hidden, cl::init(false), |
| cl::desc("Expand memcpy into load/store pairs in order")); |
| |
| static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| DAG.getContext()->diagnose( |
| DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); |
| } |
| |
| static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg, |
| SDValue Val) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| std::string Str; |
| raw_string_ostream OS(Str); |
| OS << Msg; |
| Val->print(OS); |
| OS.flush(); |
| DAG.getContext()->diagnose( |
| DiagnosticInfoUnsupported(MF.getFunction(), Str, DL.getDebugLoc())); |
| } |
| |
| BPFTargetLowering::BPFTargetLowering(const TargetMachine &TM, |
| const BPFSubtarget &STI) |
| : TargetLowering(TM) { |
| |
| // Set up the register classes. |
| addRegisterClass(MVT::i64, &BPF::GPRRegClass); |
| if (STI.getHasAlu32()) |
| addRegisterClass(MVT::i32, &BPF::GPR32RegClass); |
| |
| // Compute derived properties from the register classes |
| computeRegisterProperties(STI.getRegisterInfo()); |
| |
| setStackPointerRegisterToSaveRestore(BPF::R11); |
| |
| setOperationAction(ISD::BR_CC, MVT::i64, Custom); |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| setOperationAction(ISD::BRIND, MVT::Other, Expand); |
| setOperationAction(ISD::BRCOND, MVT::Other, Expand); |
| |
| setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); |
| |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| |
| for (auto VT : { MVT::i32, MVT::i64 }) { |
| if (VT == MVT::i32 && !STI.getHasAlu32()) |
| continue; |
| |
| setOperationAction(ISD::SDIVREM, VT, Expand); |
| setOperationAction(ISD::UDIVREM, VT, Expand); |
| setOperationAction(ISD::SREM, VT, Expand); |
| setOperationAction(ISD::UREM, VT, Expand); |
| setOperationAction(ISD::MULHU, VT, Expand); |
| setOperationAction(ISD::MULHS, VT, Expand); |
| setOperationAction(ISD::UMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::SMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::ROTR, VT, Expand); |
| setOperationAction(ISD::ROTL, VT, Expand); |
| setOperationAction(ISD::SHL_PARTS, VT, Expand); |
| setOperationAction(ISD::SRL_PARTS, VT, Expand); |
| setOperationAction(ISD::SRA_PARTS, VT, Expand); |
| setOperationAction(ISD::CTPOP, VT, Expand); |
| |
| setOperationAction(ISD::SETCC, VT, Expand); |
| setOperationAction(ISD::SELECT, VT, Expand); |
| setOperationAction(ISD::SELECT_CC, VT, Custom); |
| } |
| |
| if (STI.getHasAlu32()) { |
| setOperationAction(ISD::BSWAP, MVT::i32, Promote); |
| setOperationAction(ISD::BR_CC, MVT::i32, Promote); |
| } |
| |
| setOperationAction(ISD::CTTZ, MVT::i64, Custom); |
| setOperationAction(ISD::CTLZ, MVT::i64, Custom); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); |
| |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand); |
| |
| // Extended load operations for i1 types must be promoted |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); |
| |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); |
| } |
| |
| setBooleanContents(ZeroOrOneBooleanContent); |
| |
| // Function alignments (log2) |
| setMinFunctionAlignment(3); |
| setPrefFunctionAlignment(3); |
| |
| if (BPFExpandMemcpyInOrder) { |
| // LLVM generic code will try to expand memcpy into load/store pairs at this |
| // stage which is before quite a few IR optimization passes, therefore the |
| // loads and stores could potentially be moved apart from each other which |
| // will cause trouble to memcpy pattern matcher inside kernel eBPF JIT |
| // compilers. |
| // |
| // When -bpf-expand-memcpy-in-order specified, we want to defer the expand |
| // of memcpy to later stage in IR optimization pipeline so those load/store |
| // pairs won't be touched and could be kept in order. Hence, we set |
| // MaxStoresPerMem* to zero to disable the generic getMemcpyLoadsAndStores |
| // code path, and ask LLVM to use target expander EmitTargetCodeForMemcpy. |
| MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 0; |
| MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 0; |
| MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 0; |
| } else { |
| // inline memcpy() for kernel to see explicit copy |
| unsigned CommonMaxStores = |
| STI.getSelectionDAGInfo()->getCommonMaxStoresPerMemFunc(); |
| |
| MaxStoresPerMemset = MaxStoresPerMemsetOptSize = CommonMaxStores; |
| MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = CommonMaxStores; |
| MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = CommonMaxStores; |
| } |
| |
| // CPU/Feature control |
| HasAlu32 = STI.getHasAlu32(); |
| HasJmpExt = STI.getHasJmpExt(); |
| } |
| |
| bool BPFTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { |
| return false; |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| BPFTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| StringRef Constraint, |
| MVT VT) const { |
| if (Constraint.size() == 1) |
| // GCC Constraint Letters |
| switch (Constraint[0]) { |
| case 'r': // GENERAL_REGS |
| return std::make_pair(0U, &BPF::GPRRegClass); |
| default: |
| break; |
| } |
| |
| return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| } |
| |
| SDValue BPFTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| case ISD::BR_CC: |
| return LowerBR_CC(Op, DAG); |
| case ISD::GlobalAddress: |
| return LowerGlobalAddress(Op, DAG); |
| case ISD::SELECT_CC: |
| return LowerSELECT_CC(Op, DAG); |
| default: |
| llvm_unreachable("unimplemented operand"); |
| } |
| } |
| |
| // Calling Convention Implementation |
| #include "BPFGenCallingConv.inc" |
| |
| SDValue BPFTargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| switch (CallConv) { |
| default: |
| report_fatal_error("Unsupported calling convention"); |
| case CallingConv::C: |
| case CallingConv::Fast: |
| break; |
| } |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); |
| CCInfo.AnalyzeFormalArguments(Ins, getHasAlu32() ? CC_BPF32 : CC_BPF64); |
| |
| for (auto &VA : ArgLocs) { |
| if (VA.isRegLoc()) { |
| // Arguments passed in registers |
| EVT RegVT = VA.getLocVT(); |
| MVT::SimpleValueType SimpleTy = RegVT.getSimpleVT().SimpleTy; |
| switch (SimpleTy) { |
| default: { |
| errs() << "LowerFormalArguments Unhandled argument type: " |
| << RegVT.getEVTString() << '\n'; |
| llvm_unreachable(0); |
| } |
| case MVT::i32: |
| case MVT::i64: |
| unsigned VReg = RegInfo.createVirtualRegister(SimpleTy == MVT::i64 ? |
| &BPF::GPRRegClass : |
| &BPF::GPR32RegClass); |
| RegInfo.addLiveIn(VA.getLocReg(), VReg); |
| SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT); |
| |
| // If this is an value that has been promoted to wider types, insert an |
| // assert[sz]ext to capture this, then truncate to the right size. |
| if (VA.getLocInfo() == CCValAssign::SExt) |
| ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| else if (VA.getLocInfo() == CCValAssign::ZExt) |
| ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| |
| if (VA.getLocInfo() != CCValAssign::Full) |
| ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue); |
| |
| InVals.push_back(ArgValue); |
| |
| break; |
| } |
| } else { |
| fail(DL, DAG, "defined with too many args"); |
| InVals.push_back(DAG.getConstant(0, DL, VA.getLocVT())); |
| } |
| } |
| |
| if (IsVarArg || MF.getFunction().hasStructRetAttr()) { |
| fail(DL, DAG, "functions with VarArgs or StructRet are not supported"); |
| } |
| |
| return Chain; |
| } |
| |
| const unsigned BPFTargetLowering::MaxArgs = 5; |
| |
| SDValue BPFTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| auto &Outs = CLI.Outs; |
| auto &OutVals = CLI.OutVals; |
| auto &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &IsTailCall = CLI.IsTailCall; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool IsVarArg = CLI.IsVarArg; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // BPF target does not support tail call optimization. |
| IsTailCall = false; |
| |
| switch (CallConv) { |
| default: |
| report_fatal_error("Unsupported calling convention"); |
| case CallingConv::Fast: |
| case CallingConv::C: |
| break; |
| } |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); |
| |
| CCInfo.AnalyzeCallOperands(Outs, getHasAlu32() ? CC_BPF32 : CC_BPF64); |
| |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| |
| if (Outs.size() > MaxArgs) |
| fail(CLI.DL, DAG, "too many args to ", Callee); |
| |
| for (auto &Arg : Outs) { |
| ISD::ArgFlagsTy Flags = Arg.Flags; |
| if (!Flags.isByVal()) |
| continue; |
| |
| fail(CLI.DL, DAG, "pass by value not supported ", Callee); |
| } |
| |
| auto PtrVT = getPointerTy(MF.getDataLayout()); |
| Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); |
| |
| SmallVector<std::pair<unsigned, SDValue>, MaxArgs> RegsToPass; |
| |
| // Walk arg assignments |
| for (unsigned i = 0, |
| e = std::min(static_cast<unsigned>(ArgLocs.size()), MaxArgs); |
| i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue Arg = OutVals[i]; |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unknown loc info"); |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, CLI.DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, CLI.DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, CLI.DL, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| // Push arguments into RegsToPass vector |
| if (VA.isRegLoc()) |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| else |
| llvm_unreachable("call arg pass bug"); |
| } |
| |
| SDValue InFlag; |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain and |
| // flag operands which copy the outgoing args into registers. The InFlag in |
| // necessary since all emitted instructions must be stuck together. |
| for (auto &Reg : RegsToPass) { |
| Chain = DAG.getCopyToReg(Chain, CLI.DL, Reg.first, Reg.second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // If the callee is a GlobalAddress node (quite common, every direct call is) |
| // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. |
| // Likewise ExternalSymbol -> TargetExternalSymbol. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), CLI.DL, PtrVT, |
| G->getOffset(), 0); |
| } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0); |
| fail(CLI.DL, DAG, Twine("A call to built-in function '" |
| + StringRef(E->getSymbol()) |
| + "' is not supported.")); |
| } |
| |
| // Returns a chain & a flag for retval copy to use. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are |
| // known live into the call. |
| for (auto &Reg : RegsToPass) |
| Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); |
| |
| if (InFlag.getNode()) |
| Ops.push_back(InFlag); |
| |
| Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops); |
| InFlag = Chain.getValue(1); |
| |
| // Create the CALLSEQ_END node. |
| Chain = DAG.getCALLSEQ_END( |
| Chain, DAG.getConstant(NumBytes, CLI.DL, PtrVT, true), |
| DAG.getConstant(0, CLI.DL, PtrVT, true), InFlag, CLI.DL); |
| InFlag = Chain.getValue(1); |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, CLI.DL, DAG, |
| InVals); |
| } |
| |
| SDValue |
| BPFTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &DL, SelectionDAG &DAG) const { |
| unsigned Opc = BPFISD::RET_FLAG; |
| |
| // CCValAssign - represent the assignment of the return value to a location |
| SmallVector<CCValAssign, 16> RVLocs; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // CCState - Info about the registers and stack slot. |
| CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); |
| |
| if (MF.getFunction().getReturnType()->isAggregateType()) { |
| fail(DL, DAG, "only integer returns supported"); |
| return DAG.getNode(Opc, DL, MVT::Other, Chain); |
| } |
| |
| // Analize return values. |
| CCInfo.AnalyzeReturn(Outs, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64); |
| |
| SDValue Flag; |
| SmallVector<SDValue, 4> RetOps(1, Chain); |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag); |
| |
| // Guarantee that all emitted copies are stuck together, |
| // avoiding something bad. |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| |
| RetOps[0] = Chain; // Update chain. |
| |
| // Add the flag if we have it. |
| if (Flag.getNode()) |
| RetOps.push_back(Flag); |
| |
| return DAG.getNode(Opc, DL, MVT::Other, RetOps); |
| } |
| |
| SDValue BPFTargetLowering::LowerCallResult( |
| SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); |
| |
| if (Ins.size() >= 2) { |
| fail(DL, DAG, "only small returns supported"); |
| for (unsigned i = 0, e = Ins.size(); i != e; ++i) |
| InVals.push_back(DAG.getConstant(0, DL, Ins[i].VT)); |
| return DAG.getCopyFromReg(Chain, DL, 1, Ins[0].VT, InFlag).getValue(1); |
| } |
| |
| CCInfo.AnalyzeCallResult(Ins, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (auto &Val : RVLocs) { |
| Chain = DAG.getCopyFromReg(Chain, DL, Val.getLocReg(), |
| Val.getValVT(), InFlag).getValue(1); |
| InFlag = Chain.getValue(2); |
| InVals.push_back(Chain.getValue(0)); |
| } |
| |
| return Chain; |
| } |
| |
| static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { |
| switch (CC) { |
| default: |
| break; |
| case ISD::SETULT: |
| case ISD::SETULE: |
| case ISD::SETLT: |
| case ISD::SETLE: |
| CC = ISD::getSetCCSwappedOperands(CC); |
| std::swap(LHS, RHS); |
| break; |
| } |
| } |
| |
| SDValue BPFTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| SDValue LHS = Op.getOperand(2); |
| SDValue RHS = Op.getOperand(3); |
| SDValue Dest = Op.getOperand(4); |
| SDLoc DL(Op); |
| |
| if (!getHasJmpExt()) |
| NegateCC(LHS, RHS, CC); |
| |
| return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS, |
| DAG.getConstant(CC, DL, MVT::i64), Dest); |
| } |
| |
| SDValue BPFTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| SDValue TrueV = Op.getOperand(2); |
| SDValue FalseV = Op.getOperand(3); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| SDLoc DL(Op); |
| |
| if (!getHasJmpExt()) |
| NegateCC(LHS, RHS, CC); |
| |
| SDValue TargetCC = DAG.getConstant(CC, DL, LHS.getValueType()); |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); |
| SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; |
| |
| return DAG.getNode(BPFISD::SELECT_CC, DL, VTs, Ops); |
| } |
| |
| const char *BPFTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch ((BPFISD::NodeType)Opcode) { |
| case BPFISD::FIRST_NUMBER: |
| break; |
| case BPFISD::RET_FLAG: |
| return "BPFISD::RET_FLAG"; |
| case BPFISD::CALL: |
| return "BPFISD::CALL"; |
| case BPFISD::SELECT_CC: |
| return "BPFISD::SELECT_CC"; |
| case BPFISD::BR_CC: |
| return "BPFISD::BR_CC"; |
| case BPFISD::Wrapper: |
| return "BPFISD::Wrapper"; |
| case BPFISD::MEMCPY: |
| return "BPFISD::MEMCPY"; |
| } |
| return nullptr; |
| } |
| |
| SDValue BPFTargetLowering::LowerGlobalAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| auto N = cast<GlobalAddressSDNode>(Op); |
| assert(N->getOffset() == 0 && "Invalid offset for global address"); |
| |
| SDLoc DL(Op); |
| const GlobalValue *GV = N->getGlobal(); |
| SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i64); |
| |
| return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA); |
| } |
| |
| unsigned |
| BPFTargetLowering::EmitSubregExt(MachineInstr &MI, MachineBasicBlock *BB, |
| unsigned Reg, bool isSigned) const { |
| const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); |
| const TargetRegisterClass *RC = getRegClassFor(MVT::i64); |
| int RShiftOp = isSigned ? BPF::SRA_ri : BPF::SRL_ri; |
| MachineFunction *F = BB->getParent(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| MachineRegisterInfo &RegInfo = F->getRegInfo(); |
| unsigned PromotedReg0 = RegInfo.createVirtualRegister(RC); |
| unsigned PromotedReg1 = RegInfo.createVirtualRegister(RC); |
| unsigned PromotedReg2 = RegInfo.createVirtualRegister(RC); |
| BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg); |
| BuildMI(BB, DL, TII.get(BPF::SLL_ri), PromotedReg1) |
| .addReg(PromotedReg0).addImm(32); |
| BuildMI(BB, DL, TII.get(RShiftOp), PromotedReg2) |
| .addReg(PromotedReg1).addImm(32); |
| |
| return PromotedReg2; |
| } |
| |
| MachineBasicBlock * |
| BPFTargetLowering::EmitInstrWithCustomInserterMemcpy(MachineInstr &MI, |
| MachineBasicBlock *BB) |
| const { |
| MachineFunction *MF = MI.getParent()->getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| MachineInstrBuilder MIB(*MF, MI); |
| unsigned ScratchReg; |
| |
| // This function does custom insertion during lowering BPFISD::MEMCPY which |
| // only has two register operands from memcpy semantics, the copy source |
| // address and the copy destination address. |
| // |
| // Because we will expand BPFISD::MEMCPY into load/store pairs, we will need |
| // a third scratch register to serve as the destination register of load and |
| // source register of store. |
| // |
| // The scratch register here is with the Define | Dead | EarlyClobber flags. |
| // The EarlyClobber flag has the semantic property that the operand it is |
| // attached to is clobbered before the rest of the inputs are read. Hence it |
| // must be unique among the operands to the instruction. The Define flag is |
| // needed to coerce the machine verifier that an Undef value isn't a problem |
| // as we anyway is loading memory into it. The Dead flag is needed as the |
| // value in scratch isn't supposed to be used by any other instruction. |
| ScratchReg = MRI.createVirtualRegister(&BPF::GPRRegClass); |
| MIB.addReg(ScratchReg, |
| RegState::Define | RegState::Dead | RegState::EarlyClobber); |
| |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| BPFTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| unsigned Opc = MI.getOpcode(); |
| bool isSelectRROp = (Opc == BPF::Select || |
| Opc == BPF::Select_64_32 || |
| Opc == BPF::Select_32 || |
| Opc == BPF::Select_32_64); |
| |
| bool isMemcpyOp = Opc == BPF::MEMCPY; |
| |
| #ifndef NDEBUG |
| bool isSelectRIOp = (Opc == BPF::Select_Ri || |
| Opc == BPF::Select_Ri_64_32 || |
| Opc == BPF::Select_Ri_32 || |
| Opc == BPF::Select_Ri_32_64); |
| |
| |
| assert((isSelectRROp || isSelectRIOp || isMemcpyOp) && |
| "Unexpected instr type to insert"); |
| #endif |
| |
| if (isMemcpyOp) |
| return EmitInstrWithCustomInserterMemcpy(MI, BB); |
| |
| bool is32BitCmp = (Opc == BPF::Select_32 || |
| Opc == BPF::Select_32_64 || |
| Opc == BPF::Select_Ri_32 || |
| Opc == BPF::Select_Ri_32_64); |
| |
| // To "insert" a SELECT instruction, we actually have to insert the diamond |
| // control-flow pattern. The incoming instruction knows the destination vreg |
| // to set, the condition code register to branch on, the true/false values to |
| // select between, and a branch opcode to use. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator I = ++BB->getIterator(); |
| |
| // ThisMBB: |
| // ... |
| // TrueVal = ... |
| // jmp_XX r1, r2 goto Copy1MBB |
| // fallthrough --> Copy0MBB |
| MachineBasicBlock *ThisMBB = BB; |
| MachineFunction *F = BB->getParent(); |
| MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *Copy1MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| |
| F->insert(I, Copy0MBB); |
| F->insert(I, Copy1MBB); |
| // Update machine-CFG edges by transferring all successors of the current |
| // block to the new block which will contain the Phi node for the select. |
| Copy1MBB->splice(Copy1MBB->begin(), BB, |
| std::next(MachineBasicBlock::iterator(MI)), BB->end()); |
| Copy1MBB->transferSuccessorsAndUpdatePHIs(BB); |
| // Next, add the true and fallthrough blocks as its successors. |
| BB->addSuccessor(Copy0MBB); |
| BB->addSuccessor(Copy1MBB); |
| |
| // Insert Branch if Flag |
| int CC = MI.getOperand(3).getImm(); |
| int NewCC; |
| switch (CC) { |
| case ISD::SETGT: |
| NewCC = isSelectRROp ? BPF::JSGT_rr : BPF::JSGT_ri; |
| break; |
| case ISD::SETUGT: |
| NewCC = isSelectRROp ? BPF::JUGT_rr : BPF::JUGT_ri; |
| break; |
| case ISD::SETGE: |
| NewCC = isSelectRROp ? BPF::JSGE_rr : BPF::JSGE_ri; |
| break; |
| case ISD::SETUGE: |
| NewCC = isSelectRROp ? BPF::JUGE_rr : BPF::JUGE_ri; |
| break; |
| case ISD::SETEQ: |
| NewCC = isSelectRROp ? BPF::JEQ_rr : BPF::JEQ_ri; |
| break; |
| case ISD::SETNE: |
| NewCC = isSelectRROp ? BPF::JNE_rr : BPF::JNE_ri; |
| break; |
| case ISD::SETLT: |
| NewCC = isSelectRROp ? BPF::JSLT_rr : BPF::JSLT_ri; |
| break; |
| case ISD::SETULT: |
| NewCC = isSelectRROp ? BPF::JULT_rr : BPF::JULT_ri; |
| break; |
| case ISD::SETLE: |
| NewCC = isSelectRROp ? BPF::JSLE_rr : BPF::JSLE_ri; |
| break; |
| case ISD::SETULE: |
| NewCC = isSelectRROp ? BPF::JULE_rr : BPF::JULE_ri; |
| break; |
| default: |
| report_fatal_error("unimplemented select CondCode " + Twine(CC)); |
| } |
| |
| unsigned LHS = MI.getOperand(1).getReg(); |
| bool isSignedCmp = (CC == ISD::SETGT || |
| CC == ISD::SETGE || |
| CC == ISD::SETLT || |
| CC == ISD::SETLE); |
| |
| // eBPF at the moment only has 64-bit comparison. Any 32-bit comparison need |
| // to be promoted, however if the 32-bit comparison operands are destination |
| // registers then they are implicitly zero-extended already, there is no |
| // need of explicit zero-extend sequence for them. |
| // |
| // We simply do extension for all situations in this method, but we will |
| // try to remove those unnecessary in BPFMIPeephole pass. |
| if (is32BitCmp) |
| LHS = EmitSubregExt(MI, BB, LHS, isSignedCmp); |
| |
| if (isSelectRROp) { |
| unsigned RHS = MI.getOperand(2).getReg(); |
| |
| if (is32BitCmp) |
| RHS = EmitSubregExt(MI, BB, RHS, isSignedCmp); |
| |
| BuildMI(BB, DL, TII.get(NewCC)).addReg(LHS).addReg(RHS).addMBB(Copy1MBB); |
| } else { |
| int64_t imm32 = MI.getOperand(2).getImm(); |
| // sanity check before we build J*_ri instruction. |
| assert (isInt<32>(imm32)); |
| BuildMI(BB, DL, TII.get(NewCC)) |
| .addReg(LHS).addImm(imm32).addMBB(Copy1MBB); |
| } |
| |
| // Copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to Copy1MBB |
| BB = Copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(Copy1MBB); |
| |
| // Copy1MBB: |
| // %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ] |
| // ... |
| BB = Copy1MBB; |
| BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI.getOperand(0).getReg()) |
| .addReg(MI.getOperand(5).getReg()) |
| .addMBB(Copy0MBB) |
| .addReg(MI.getOperand(4).getReg()) |
| .addMBB(ThisMBB); |
| |
| MI.eraseFromParent(); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| EVT BPFTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, |
| EVT VT) const { |
| return getHasAlu32() ? MVT::i32 : MVT::i64; |
| } |
| |
| MVT BPFTargetLowering::getScalarShiftAmountTy(const DataLayout &DL, |
| EVT VT) const { |
| return (getHasAlu32() && VT == MVT::i32) ? MVT::i32 : MVT::i64; |
| } |