| //===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file implements the targeting of the Machinelegalizer class for ARM. |
| /// \todo This should be generated by TableGen. |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARMLegalizerInfo.h" |
| #include "ARMCallLowering.h" |
| #include "ARMSubtarget.h" |
| #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" |
| #include "llvm/CodeGen/LowLevelType.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Type.h" |
| |
| using namespace llvm; |
| using namespace LegalizeActions; |
| |
| /// FIXME: The following static functions are SizeChangeStrategy functions |
| /// that are meant to temporarily mimic the behaviour of the old legalization |
| /// based on doubling/halving non-legal types as closely as possible. This is |
| /// not entirly possible as only legalizing the types that are exactly a power |
| /// of 2 times the size of the legal types would require specifying all those |
| /// sizes explicitly. |
| /// In practice, not specifying those isn't a problem, and the below functions |
| /// should disappear quickly as we add support for legalizing non-power-of-2 |
| /// sized types further. |
| static void |
| addAndInterleaveWithUnsupported(LegalizerInfo::SizeAndActionsVec &result, |
| const LegalizerInfo::SizeAndActionsVec &v) { |
| for (unsigned i = 0; i < v.size(); ++i) { |
| result.push_back(v[i]); |
| if (i + 1 < v[i].first && i + 1 < v.size() && |
| v[i + 1].first != v[i].first + 1) |
| result.push_back({v[i].first + 1, Unsupported}); |
| } |
| } |
| |
| static LegalizerInfo::SizeAndActionsVec |
| widen_8_16(const LegalizerInfo::SizeAndActionsVec &v) { |
| assert(v.size() >= 1); |
| assert(v[0].first > 17); |
| LegalizerInfo::SizeAndActionsVec result = {{1, Unsupported}, |
| {8, WidenScalar}, |
| {9, Unsupported}, |
| {16, WidenScalar}, |
| {17, Unsupported}}; |
| addAndInterleaveWithUnsupported(result, v); |
| auto Largest = result.back().first; |
| result.push_back({Largest + 1, Unsupported}); |
| return result; |
| } |
| |
| static bool AEABI(const ARMSubtarget &ST) { |
| return ST.isTargetAEABI() || ST.isTargetGNUAEABI() || ST.isTargetMuslAEABI(); |
| } |
| |
| ARMLegalizerInfo::ARMLegalizerInfo(const ARMSubtarget &ST) { |
| using namespace TargetOpcode; |
| |
| const LLT p0 = LLT::pointer(0, 32); |
| |
| const LLT s1 = LLT::scalar(1); |
| const LLT s8 = LLT::scalar(8); |
| const LLT s16 = LLT::scalar(16); |
| const LLT s32 = LLT::scalar(32); |
| const LLT s64 = LLT::scalar(64); |
| |
| getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0}); |
| getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0}); |
| |
| getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR}) |
| .legalFor({s32}) |
| .minScalar(0, s32); |
| |
| if (ST.hasDivideInARMMode()) |
| getActionDefinitionsBuilder({G_SDIV, G_UDIV}) |
| .legalFor({s32}) |
| .clampScalar(0, s32, s32); |
| else |
| getActionDefinitionsBuilder({G_SDIV, G_UDIV}) |
| .libcallFor({s32}) |
| .clampScalar(0, s32, s32); |
| |
| for (unsigned Op : {G_SREM, G_UREM}) { |
| setLegalizeScalarToDifferentSizeStrategy(Op, 0, widen_8_16); |
| if (ST.hasDivideInARMMode()) |
| setAction({Op, s32}, Lower); |
| else if (AEABI(ST)) |
| setAction({Op, s32}, Custom); |
| else |
| setAction({Op, s32}, Libcall); |
| } |
| |
| getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT}) |
| .legalForCartesianProduct({s32}, {s1, s8, s16}); |
| |
| getActionDefinitionsBuilder(G_INTTOPTR).legalFor({{p0, s32}}); |
| getActionDefinitionsBuilder(G_PTRTOINT).legalFor({{s32, p0}}); |
| |
| getActionDefinitionsBuilder({G_ASHR, G_LSHR, G_SHL}).legalFor({s32}); |
| |
| getActionDefinitionsBuilder(G_GEP).legalFor({{p0, s32}}); |
| |
| getActionDefinitionsBuilder(G_SELECT).legalForCartesianProduct({s32, p0}, |
| {s1}); |
| |
| getActionDefinitionsBuilder(G_BRCOND).legalFor({s1}); |
| |
| getActionDefinitionsBuilder(G_CONSTANT) |
| .legalFor({s32, p0}) |
| .clampScalar(0, s32, s32); |
| |
| getActionDefinitionsBuilder(G_ICMP) |
| .legalForCartesianProduct({s1}, {s32, p0}) |
| .minScalar(1, s32); |
| |
| // We're keeping these builders around because we'll want to add support for |
| // floating point to them. |
| auto &LoadStoreBuilder = |
| getActionDefinitionsBuilder({G_LOAD, G_STORE}) |
| .legalForCartesianProduct({s1, s8, s16, s32, p0}, {p0}); |
| |
| auto &PhiBuilder = |
| getActionDefinitionsBuilder(G_PHI).legalFor({s32, p0}).minScalar(0, s32); |
| |
| if (!ST.useSoftFloat() && ST.hasVFP2()) { |
| getActionDefinitionsBuilder( |
| {G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FCONSTANT, G_FNEG}) |
| .legalFor({s32, s64}); |
| |
| LoadStoreBuilder.legalFor({{s64, p0}}); |
| PhiBuilder.legalFor({s64}); |
| |
| getActionDefinitionsBuilder(G_FCMP).legalForCartesianProduct({s1}, |
| {s32, s64}); |
| |
| getActionDefinitionsBuilder(G_MERGE_VALUES).legalFor({{s64, s32}}); |
| getActionDefinitionsBuilder(G_UNMERGE_VALUES).legalFor({{s32, s64}}); |
| |
| getActionDefinitionsBuilder(G_FPEXT).legalFor({{s64, s32}}); |
| getActionDefinitionsBuilder(G_FPTRUNC).legalFor({{s32, s64}}); |
| |
| getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI}) |
| .legalForCartesianProduct({s32}, {s32, s64}); |
| getActionDefinitionsBuilder({G_SITOFP, G_UITOFP}) |
| .legalForCartesianProduct({s32, s64}, {s32}); |
| } else { |
| getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV}) |
| .libcallFor({s32, s64}); |
| |
| LoadStoreBuilder.maxScalar(0, s32); |
| |
| for (auto Ty : {s32, s64}) |
| setAction({G_FNEG, Ty}, Lower); |
| |
| getActionDefinitionsBuilder(G_FCONSTANT).customFor({s32, s64}); |
| |
| getActionDefinitionsBuilder(G_FCMP).customForCartesianProduct({s1}, |
| {s32, s64}); |
| |
| if (AEABI(ST)) |
| setFCmpLibcallsAEABI(); |
| else |
| setFCmpLibcallsGNU(); |
| |
| getActionDefinitionsBuilder(G_FPEXT).libcallFor({{s64, s32}}); |
| getActionDefinitionsBuilder(G_FPTRUNC).libcallFor({{s32, s64}}); |
| |
| getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI}) |
| .libcallForCartesianProduct({s32}, {s32, s64}); |
| getActionDefinitionsBuilder({G_SITOFP, G_UITOFP}) |
| .libcallForCartesianProduct({s32, s64}, {s32}); |
| } |
| |
| if (!ST.useSoftFloat() && ST.hasVFP4()) |
| getActionDefinitionsBuilder(G_FMA).legalFor({s32, s64}); |
| else |
| getActionDefinitionsBuilder(G_FMA).libcallFor({s32, s64}); |
| |
| getActionDefinitionsBuilder({G_FREM, G_FPOW}).libcallFor({s32, s64}); |
| |
| computeTables(); |
| verify(*ST.getInstrInfo()); |
| } |
| |
| void ARMLegalizerInfo::setFCmpLibcallsAEABI() { |
| // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be |
| // default-initialized. |
| FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1); |
| FCmp32Libcalls[CmpInst::FCMP_OEQ] = { |
| {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp32Libcalls[CmpInst::FCMP_OGE] = { |
| {RTLIB::OGE_F32, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp32Libcalls[CmpInst::FCMP_OGT] = { |
| {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp32Libcalls[CmpInst::FCMP_OLE] = { |
| {RTLIB::OLE_F32, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp32Libcalls[CmpInst::FCMP_OLT] = { |
| {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}}; |
| FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_EQ}}; |
| FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_EQ}}; |
| FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_EQ}}; |
| FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_EQ}}; |
| FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_EQ}}; |
| FCmp32Libcalls[CmpInst::FCMP_UNO] = { |
| {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp32Libcalls[CmpInst::FCMP_ONE] = { |
| {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}, |
| {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp32Libcalls[CmpInst::FCMP_UEQ] = { |
| {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}, |
| {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}}; |
| |
| FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1); |
| FCmp64Libcalls[CmpInst::FCMP_OEQ] = { |
| {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp64Libcalls[CmpInst::FCMP_OGE] = { |
| {RTLIB::OGE_F64, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp64Libcalls[CmpInst::FCMP_OGT] = { |
| {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp64Libcalls[CmpInst::FCMP_OLE] = { |
| {RTLIB::OLE_F64, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp64Libcalls[CmpInst::FCMP_OLT] = { |
| {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}}; |
| FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_EQ}}; |
| FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_EQ}}; |
| FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_EQ}}; |
| FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_EQ}}; |
| FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_EQ}}; |
| FCmp64Libcalls[CmpInst::FCMP_UNO] = { |
| {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp64Libcalls[CmpInst::FCMP_ONE] = { |
| {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}, |
| {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}}; |
| FCmp64Libcalls[CmpInst::FCMP_UEQ] = { |
| {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}, |
| {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}}; |
| } |
| |
| void ARMLegalizerInfo::setFCmpLibcallsGNU() { |
| // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be |
| // default-initialized. |
| FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1); |
| FCmp32Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}}; |
| FCmp32Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F32, CmpInst::ICMP_SGE}}; |
| FCmp32Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}}; |
| FCmp32Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F32, CmpInst::ICMP_SLE}}; |
| FCmp32Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F32, CmpInst::ICMP_SLT}}; |
| FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}}; |
| FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_SGE}}; |
| FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_SGT}}; |
| FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SLE}}; |
| FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_SLT}}; |
| FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_NE}}; |
| FCmp32Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F32, CmpInst::ICMP_NE}}; |
| FCmp32Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}, |
| {RTLIB::OLT_F32, CmpInst::ICMP_SLT}}; |
| FCmp32Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}, |
| {RTLIB::UO_F32, CmpInst::ICMP_NE}}; |
| |
| FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1); |
| FCmp64Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}}; |
| FCmp64Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F64, CmpInst::ICMP_SGE}}; |
| FCmp64Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}}; |
| FCmp64Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F64, CmpInst::ICMP_SLE}}; |
| FCmp64Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F64, CmpInst::ICMP_SLT}}; |
| FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}}; |
| FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_SGE}}; |
| FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_SGT}}; |
| FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SLE}}; |
| FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_SLT}}; |
| FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_NE}}; |
| FCmp64Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F64, CmpInst::ICMP_NE}}; |
| FCmp64Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}, |
| {RTLIB::OLT_F64, CmpInst::ICMP_SLT}}; |
| FCmp64Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}, |
| {RTLIB::UO_F64, CmpInst::ICMP_NE}}; |
| } |
| |
| ARMLegalizerInfo::FCmpLibcallsList |
| ARMLegalizerInfo::getFCmpLibcalls(CmpInst::Predicate Predicate, |
| unsigned Size) const { |
| assert(CmpInst::isFPPredicate(Predicate) && "Unsupported FCmp predicate"); |
| if (Size == 32) |
| return FCmp32Libcalls[Predicate]; |
| if (Size == 64) |
| return FCmp64Libcalls[Predicate]; |
| llvm_unreachable("Unsupported size for FCmp predicate"); |
| } |
| |
| bool ARMLegalizerInfo::legalizeCustom(MachineInstr &MI, |
| MachineRegisterInfo &MRI, |
| MachineIRBuilder &MIRBuilder) const { |
| using namespace TargetOpcode; |
| |
| MIRBuilder.setInstr(MI); |
| LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); |
| |
| switch (MI.getOpcode()) { |
| default: |
| return false; |
| case G_SREM: |
| case G_UREM: { |
| unsigned OriginalResult = MI.getOperand(0).getReg(); |
| auto Size = MRI.getType(OriginalResult).getSizeInBits(); |
| if (Size != 32) |
| return false; |
| |
| auto Libcall = |
| MI.getOpcode() == G_SREM ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; |
| |
| // Our divmod libcalls return a struct containing the quotient and the |
| // remainder. We need to create a virtual register for it. |
| Type *ArgTy = Type::getInt32Ty(Ctx); |
| StructType *RetTy = StructType::get(Ctx, {ArgTy, ArgTy}, /* Packed */ true); |
| auto RetVal = MRI.createGenericVirtualRegister( |
| getLLTForType(*RetTy, MIRBuilder.getMF().getDataLayout())); |
| |
| auto Status = createLibcall(MIRBuilder, Libcall, {RetVal, RetTy}, |
| {{MI.getOperand(1).getReg(), ArgTy}, |
| {MI.getOperand(2).getReg(), ArgTy}}); |
| if (Status != LegalizerHelper::Legalized) |
| return false; |
| |
| // The remainder is the second result of divmod. Split the return value into |
| // a new, unused register for the quotient and the destination of the |
| // original instruction for the remainder. |
| MIRBuilder.buildUnmerge( |
| {MRI.createGenericVirtualRegister(LLT::scalar(32)), OriginalResult}, |
| RetVal); |
| break; |
| } |
| case G_FCMP: { |
| assert(MRI.getType(MI.getOperand(2).getReg()) == |
| MRI.getType(MI.getOperand(3).getReg()) && |
| "Mismatched operands for G_FCMP"); |
| auto OpSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); |
| |
| auto OriginalResult = MI.getOperand(0).getReg(); |
| auto Predicate = |
| static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); |
| auto Libcalls = getFCmpLibcalls(Predicate, OpSize); |
| |
| if (Libcalls.empty()) { |
| assert((Predicate == CmpInst::FCMP_TRUE || |
| Predicate == CmpInst::FCMP_FALSE) && |
| "Predicate needs libcalls, but none specified"); |
| MIRBuilder.buildConstant(OriginalResult, |
| Predicate == CmpInst::FCMP_TRUE ? 1 : 0); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| assert((OpSize == 32 || OpSize == 64) && "Unsupported operand size"); |
| auto *ArgTy = OpSize == 32 ? Type::getFloatTy(Ctx) : Type::getDoubleTy(Ctx); |
| auto *RetTy = Type::getInt32Ty(Ctx); |
| |
| SmallVector<unsigned, 2> Results; |
| for (auto Libcall : Libcalls) { |
| auto LibcallResult = MRI.createGenericVirtualRegister(LLT::scalar(32)); |
| auto Status = |
| createLibcall(MIRBuilder, Libcall.LibcallID, {LibcallResult, RetTy}, |
| {{MI.getOperand(2).getReg(), ArgTy}, |
| {MI.getOperand(3).getReg(), ArgTy}}); |
| |
| if (Status != LegalizerHelper::Legalized) |
| return false; |
| |
| auto ProcessedResult = |
| Libcalls.size() == 1 |
| ? OriginalResult |
| : MRI.createGenericVirtualRegister(MRI.getType(OriginalResult)); |
| |
| // We have a result, but we need to transform it into a proper 1-bit 0 or |
| // 1, taking into account the different peculiarities of the values |
| // returned by the comparison functions. |
| CmpInst::Predicate ResultPred = Libcall.Predicate; |
| if (ResultPred == CmpInst::BAD_ICMP_PREDICATE) { |
| // We have a nice 0 or 1, and we just need to truncate it back to 1 bit |
| // to keep the types consistent. |
| MIRBuilder.buildTrunc(ProcessedResult, LibcallResult); |
| } else { |
| // We need to compare against 0. |
| assert(CmpInst::isIntPredicate(ResultPred) && "Unsupported predicate"); |
| auto Zero = MRI.createGenericVirtualRegister(LLT::scalar(32)); |
| MIRBuilder.buildConstant(Zero, 0); |
| MIRBuilder.buildICmp(ResultPred, ProcessedResult, LibcallResult, Zero); |
| } |
| Results.push_back(ProcessedResult); |
| } |
| |
| if (Results.size() != 1) { |
| assert(Results.size() == 2 && "Unexpected number of results"); |
| MIRBuilder.buildOr(OriginalResult, Results[0], Results[1]); |
| } |
| break; |
| } |
| case G_FCONSTANT: { |
| // Convert to integer constants, while preserving the binary representation. |
| auto AsInteger = |
| MI.getOperand(1).getFPImm()->getValueAPF().bitcastToAPInt(); |
| MIRBuilder.buildConstant(MI.getOperand(0).getReg(), |
| *ConstantInt::get(Ctx, AsInteger)); |
| break; |
| } |
| } |
| |
| MI.eraseFromParent(); |
| return true; |
| } |