| //===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines an instruction selector for the ARM target. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARM.h" |
| #include "ARMBaseInstrInfo.h" |
| #include "ARMTargetMachine.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "Utils/ARMBaseInfo.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Target/TargetOptions.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "arm-isel" |
| |
| static cl::opt<bool> |
| DisableShifterOp("disable-shifter-op", cl::Hidden, |
| cl::desc("Disable isel of shifter-op"), |
| cl::init(false)); |
| |
| //===--------------------------------------------------------------------===// |
| /// ARMDAGToDAGISel - ARM specific code to select ARM machine |
| /// instructions for SelectionDAG operations. |
| /// |
| namespace { |
| |
| class ARMDAGToDAGISel : public SelectionDAGISel { |
| /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can |
| /// make the right decision when generating code for different targets. |
| const ARMSubtarget *Subtarget; |
| |
| public: |
| explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm, CodeGenOpt::Level OptLevel) |
| : SelectionDAGISel(tm, OptLevel) {} |
| |
| bool runOnMachineFunction(MachineFunction &MF) override { |
| // Reset the subtarget each time through. |
| Subtarget = &MF.getSubtarget<ARMSubtarget>(); |
| SelectionDAGISel::runOnMachineFunction(MF); |
| return true; |
| } |
| |
| StringRef getPassName() const override { return "ARM Instruction Selection"; } |
| |
| void PreprocessISelDAG() override; |
| |
| /// getI32Imm - Return a target constant of type i32 with the specified |
| /// value. |
| inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { |
| return CurDAG->getTargetConstant(Imm, dl, MVT::i32); |
| } |
| |
| void Select(SDNode *N) override; |
| |
| bool hasNoVMLxHazardUse(SDNode *N) const; |
| bool isShifterOpProfitable(const SDValue &Shift, |
| ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt); |
| bool SelectRegShifterOperand(SDValue N, SDValue &A, |
| SDValue &B, SDValue &C, |
| bool CheckProfitability = true); |
| bool SelectImmShifterOperand(SDValue N, SDValue &A, |
| SDValue &B, bool CheckProfitability = true); |
| bool SelectShiftRegShifterOperand(SDValue N, SDValue &A, |
| SDValue &B, SDValue &C) { |
| // Don't apply the profitability check |
| return SelectRegShifterOperand(N, A, B, C, false); |
| } |
| bool SelectShiftImmShifterOperand(SDValue N, SDValue &A, |
| SDValue &B) { |
| // Don't apply the profitability check |
| return SelectImmShifterOperand(N, A, B, false); |
| } |
| |
| bool SelectAddLikeOr(SDNode *Parent, SDValue N, SDValue &Out); |
| |
| bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm); |
| bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc); |
| |
| bool SelectCMOVPred(SDValue N, SDValue &Pred, SDValue &Reg) { |
| const ConstantSDNode *CN = cast<ConstantSDNode>(N); |
| Pred = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(N), MVT::i32); |
| Reg = CurDAG->getRegister(ARM::CPSR, MVT::i32); |
| return true; |
| } |
| |
| bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N, |
| SDValue &Offset, SDValue &Opc); |
| bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N, |
| SDValue &Offset, SDValue &Opc); |
| bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N, |
| SDValue &Offset, SDValue &Opc); |
| bool SelectAddrOffsetNone(SDValue N, SDValue &Base); |
| bool SelectAddrMode3(SDValue N, SDValue &Base, |
| SDValue &Offset, SDValue &Opc); |
| bool SelectAddrMode3Offset(SDNode *Op, SDValue N, |
| SDValue &Offset, SDValue &Opc); |
| bool IsAddressingMode5(SDValue N, SDValue &Base, SDValue &Offset, |
| int Lwb, int Upb, bool FP16); |
| bool SelectAddrMode5(SDValue N, SDValue &Base, SDValue &Offset); |
| bool SelectAddrMode5FP16(SDValue N, SDValue &Base, SDValue &Offset); |
| bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align); |
| bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset); |
| |
| bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label); |
| |
| // Thumb Addressing Modes: |
| bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset); |
| bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base, |
| SDValue &OffImm); |
| bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base, |
| SDValue &OffImm); |
| bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base, |
| SDValue &OffImm); |
| bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base, |
| SDValue &OffImm); |
| bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm); |
| |
| // Thumb 2 Addressing Modes: |
| bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm); |
| bool SelectT2AddrModeImm8(SDValue N, SDValue &Base, |
| SDValue &OffImm); |
| bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N, |
| SDValue &OffImm); |
| bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base, |
| SDValue &OffReg, SDValue &ShImm); |
| bool SelectT2AddrModeExclusive(SDValue N, SDValue &Base, SDValue &OffImm); |
| |
| inline bool is_so_imm(unsigned Imm) const { |
| return ARM_AM::getSOImmVal(Imm) != -1; |
| } |
| |
| inline bool is_so_imm_not(unsigned Imm) const { |
| return ARM_AM::getSOImmVal(~Imm) != -1; |
| } |
| |
| inline bool is_t2_so_imm(unsigned Imm) const { |
| return ARM_AM::getT2SOImmVal(Imm) != -1; |
| } |
| |
| inline bool is_t2_so_imm_not(unsigned Imm) const { |
| return ARM_AM::getT2SOImmVal(~Imm) != -1; |
| } |
| |
| // Include the pieces autogenerated from the target description. |
| #include "ARMGenDAGISel.inc" |
| |
| private: |
| void transferMemOperands(SDNode *Src, SDNode *Dst); |
| |
| /// Indexed (pre/post inc/dec) load matching code for ARM. |
| bool tryARMIndexedLoad(SDNode *N); |
| bool tryT1IndexedLoad(SDNode *N); |
| bool tryT2IndexedLoad(SDNode *N); |
| |
| /// SelectVLD - Select NEON load intrinsics. NumVecs should be |
| /// 1, 2, 3 or 4. The opcode arrays specify the instructions used for |
| /// loads of D registers and even subregs and odd subregs of Q registers. |
| /// For NumVecs <= 2, QOpcodes1 is not used. |
| void SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs, |
| const uint16_t *DOpcodes, const uint16_t *QOpcodes0, |
| const uint16_t *QOpcodes1); |
| |
| /// SelectVST - Select NEON store intrinsics. NumVecs should |
| /// be 1, 2, 3 or 4. The opcode arrays specify the instructions used for |
| /// stores of D registers and even subregs and odd subregs of Q registers. |
| /// For NumVecs <= 2, QOpcodes1 is not used. |
| void SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs, |
| const uint16_t *DOpcodes, const uint16_t *QOpcodes0, |
| const uint16_t *QOpcodes1); |
| |
| /// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should |
| /// be 2, 3 or 4. The opcode arrays specify the instructions used for |
| /// load/store of D registers and Q registers. |
| void SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating, |
| unsigned NumVecs, const uint16_t *DOpcodes, |
| const uint16_t *QOpcodes); |
| |
| /// SelectVLDDup - Select NEON load-duplicate intrinsics. NumVecs |
| /// should be 1, 2, 3 or 4. The opcode array specifies the instructions used |
| /// for loading D registers. |
| void SelectVLDDup(SDNode *N, bool IsIntrinsic, bool isUpdating, |
| unsigned NumVecs, const uint16_t *DOpcodes, |
| const uint16_t *QOpcodes0 = nullptr, |
| const uint16_t *QOpcodes1 = nullptr); |
| |
| /// Try to select SBFX/UBFX instructions for ARM. |
| bool tryV6T2BitfieldExtractOp(SDNode *N, bool isSigned); |
| |
| // Select special operations if node forms integer ABS pattern |
| bool tryABSOp(SDNode *N); |
| |
| bool tryReadRegister(SDNode *N); |
| bool tryWriteRegister(SDNode *N); |
| |
| bool tryInlineAsm(SDNode *N); |
| |
| void SelectCMPZ(SDNode *N, bool &SwitchEQNEToPLMI); |
| |
| void SelectCMP_SWAP(SDNode *N); |
| |
| /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for |
| /// inline asm expressions. |
| bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, |
| std::vector<SDValue> &OutOps) override; |
| |
| // Form pairs of consecutive R, S, D, or Q registers. |
| SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1); |
| SDNode *createSRegPairNode(EVT VT, SDValue V0, SDValue V1); |
| SDNode *createDRegPairNode(EVT VT, SDValue V0, SDValue V1); |
| SDNode *createQRegPairNode(EVT VT, SDValue V0, SDValue V1); |
| |
| // Form sequences of 4 consecutive S, D, or Q registers. |
| SDNode *createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3); |
| SDNode *createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3); |
| SDNode *createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3); |
| |
| // Get the alignment operand for a NEON VLD or VST instruction. |
| SDValue GetVLDSTAlign(SDValue Align, const SDLoc &dl, unsigned NumVecs, |
| bool is64BitVector); |
| |
| /// Returns the number of instructions required to materialize the given |
| /// constant in a register, or 3 if a literal pool load is needed. |
| unsigned ConstantMaterializationCost(unsigned Val) const; |
| |
| /// Checks if N is a multiplication by a constant where we can extract out a |
| /// power of two from the constant so that it can be used in a shift, but only |
| /// if it simplifies the materialization of the constant. Returns true if it |
| /// is, and assigns to PowerOfTwo the power of two that should be extracted |
| /// out and to NewMulConst the new constant to be multiplied by. |
| bool canExtractShiftFromMul(const SDValue &N, unsigned MaxShift, |
| unsigned &PowerOfTwo, SDValue &NewMulConst) const; |
| |
| /// Replace N with M in CurDAG, in a way that also ensures that M gets |
| /// selected when N would have been selected. |
| void replaceDAGValue(const SDValue &N, SDValue M); |
| }; |
| } |
| |
| /// isInt32Immediate - This method tests to see if the node is a 32-bit constant |
| /// operand. If so Imm will receive the 32-bit value. |
| static bool isInt32Immediate(SDNode *N, unsigned &Imm) { |
| if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { |
| Imm = cast<ConstantSDNode>(N)->getZExtValue(); |
| return true; |
| } |
| return false; |
| } |
| |
| // isInt32Immediate - This method tests to see if a constant operand. |
| // If so Imm will receive the 32 bit value. |
| static bool isInt32Immediate(SDValue N, unsigned &Imm) { |
| return isInt32Immediate(N.getNode(), Imm); |
| } |
| |
| // isOpcWithIntImmediate - This method tests to see if the node is a specific |
| // opcode and that it has a immediate integer right operand. |
| // If so Imm will receive the 32 bit value. |
| static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { |
| return N->getOpcode() == Opc && |
| isInt32Immediate(N->getOperand(1).getNode(), Imm); |
| } |
| |
| /// Check whether a particular node is a constant value representable as |
| /// (N * Scale) where (N in [\p RangeMin, \p RangeMax). |
| /// |
| /// \param ScaledConstant [out] - On success, the pre-scaled constant value. |
| static bool isScaledConstantInRange(SDValue Node, int Scale, |
| int RangeMin, int RangeMax, |
| int &ScaledConstant) { |
| assert(Scale > 0 && "Invalid scale!"); |
| |
| // Check that this is a constant. |
| const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node); |
| if (!C) |
| return false; |
| |
| ScaledConstant = (int) C->getZExtValue(); |
| if ((ScaledConstant % Scale) != 0) |
| return false; |
| |
| ScaledConstant /= Scale; |
| return ScaledConstant >= RangeMin && ScaledConstant < RangeMax; |
| } |
| |
| void ARMDAGToDAGISel::PreprocessISelDAG() { |
| if (!Subtarget->hasV6T2Ops()) |
| return; |
| |
| bool isThumb2 = Subtarget->isThumb(); |
| for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), |
| E = CurDAG->allnodes_end(); I != E; ) { |
| SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues. |
| |
| if (N->getOpcode() != ISD::ADD) |
| continue; |
| |
| // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with |
| // leading zeros, followed by consecutive set bits, followed by 1 or 2 |
| // trailing zeros, e.g. 1020. |
| // Transform the expression to |
| // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number |
| // of trailing zeros of c2. The left shift would be folded as an shifter |
| // operand of 'add' and the 'and' and 'srl' would become a bits extraction |
| // node (UBFX). |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| unsigned And_imm = 0; |
| if (!isOpcWithIntImmediate(N1.getNode(), ISD::AND, And_imm)) { |
| if (isOpcWithIntImmediate(N0.getNode(), ISD::AND, And_imm)) |
| std::swap(N0, N1); |
| } |
| if (!And_imm) |
| continue; |
| |
| // Check if the AND mask is an immediate of the form: 000.....1111111100 |
| unsigned TZ = countTrailingZeros(And_imm); |
| if (TZ != 1 && TZ != 2) |
| // Be conservative here. Shifter operands aren't always free. e.g. On |
| // Swift, left shifter operand of 1 / 2 for free but others are not. |
| // e.g. |
| // ubfx r3, r1, #16, #8 |
| // ldr.w r3, [r0, r3, lsl #2] |
| // vs. |
| // mov.w r9, #1020 |
| // and.w r2, r9, r1, lsr #14 |
| // ldr r2, [r0, r2] |
| continue; |
| And_imm >>= TZ; |
| if (And_imm & (And_imm + 1)) |
| continue; |
| |
| // Look for (and (srl X, c1), c2). |
| SDValue Srl = N1.getOperand(0); |
| unsigned Srl_imm = 0; |
| if (!isOpcWithIntImmediate(Srl.getNode(), ISD::SRL, Srl_imm) || |
| (Srl_imm <= 2)) |
| continue; |
| |
| // Make sure first operand is not a shifter operand which would prevent |
| // folding of the left shift. |
| SDValue CPTmp0; |
| SDValue CPTmp1; |
| SDValue CPTmp2; |
| if (isThumb2) { |
| if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1)) |
| continue; |
| } else { |
| if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1) || |
| SelectRegShifterOperand(N0, CPTmp0, CPTmp1, CPTmp2)) |
| continue; |
| } |
| |
| // Now make the transformation. |
| Srl = CurDAG->getNode(ISD::SRL, SDLoc(Srl), MVT::i32, |
| Srl.getOperand(0), |
| CurDAG->getConstant(Srl_imm + TZ, SDLoc(Srl), |
| MVT::i32)); |
| N1 = CurDAG->getNode(ISD::AND, SDLoc(N1), MVT::i32, |
| Srl, |
| CurDAG->getConstant(And_imm, SDLoc(Srl), MVT::i32)); |
| N1 = CurDAG->getNode(ISD::SHL, SDLoc(N1), MVT::i32, |
| N1, CurDAG->getConstant(TZ, SDLoc(Srl), MVT::i32)); |
| CurDAG->UpdateNodeOperands(N, N0, N1); |
| } |
| } |
| |
| /// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS |
| /// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at |
| /// least on current ARM implementations) which should be avoidded. |
| bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const { |
| if (OptLevel == CodeGenOpt::None) |
| return true; |
| |
| if (!Subtarget->hasVMLxHazards()) |
| return true; |
| |
| if (!N->hasOneUse()) |
| return false; |
| |
| SDNode *Use = *N->use_begin(); |
| if (Use->getOpcode() == ISD::CopyToReg) |
| return true; |
| if (Use->isMachineOpcode()) { |
| const ARMBaseInstrInfo *TII = static_cast<const ARMBaseInstrInfo *>( |
| CurDAG->getSubtarget().getInstrInfo()); |
| |
| const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode()); |
| if (MCID.mayStore()) |
| return true; |
| unsigned Opcode = MCID.getOpcode(); |
| if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD) |
| return true; |
| // vmlx feeding into another vmlx. We actually want to unfold |
| // the use later in the MLxExpansion pass. e.g. |
| // vmla |
| // vmla (stall 8 cycles) |
| // |
| // vmul (5 cycles) |
| // vadd (5 cycles) |
| // vmla |
| // This adds up to about 18 - 19 cycles. |
| // |
| // vmla |
| // vmul (stall 4 cycles) |
| // vadd adds up to about 14 cycles. |
| return TII->isFpMLxInstruction(Opcode); |
| } |
| |
| return false; |
| } |
| |
| bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift, |
| ARM_AM::ShiftOpc ShOpcVal, |
| unsigned ShAmt) { |
| if (!Subtarget->isLikeA9() && !Subtarget->isSwift()) |
| return true; |
| if (Shift.hasOneUse()) |
| return true; |
| // R << 2 is free. |
| return ShOpcVal == ARM_AM::lsl && |
| (ShAmt == 2 || (Subtarget->isSwift() && ShAmt == 1)); |
| } |
| |
| unsigned ARMDAGToDAGISel::ConstantMaterializationCost(unsigned Val) const { |
| if (Subtarget->isThumb()) { |
| if (Val <= 255) return 1; // MOV |
| if (Subtarget->hasV6T2Ops() && |
| (Val <= 0xffff || ARM_AM::getT2SOImmValSplatVal(Val) != -1)) |
| return 1; // MOVW |
| if (Val <= 510) return 2; // MOV + ADDi8 |
| if (~Val <= 255) return 2; // MOV + MVN |
| if (ARM_AM::isThumbImmShiftedVal(Val)) return 2; // MOV + LSL |
| } else { |
| if (ARM_AM::getSOImmVal(Val) != -1) return 1; // MOV |
| if (ARM_AM::getSOImmVal(~Val) != -1) return 1; // MVN |
| if (Subtarget->hasV6T2Ops() && Val <= 0xffff) return 1; // MOVW |
| if (ARM_AM::isSOImmTwoPartVal(Val)) return 2; // two instrs |
| } |
| if (Subtarget->useMovt(*MF)) return 2; // MOVW + MOVT |
| return 3; // Literal pool load |
| } |
| |
| bool ARMDAGToDAGISel::canExtractShiftFromMul(const SDValue &N, |
| unsigned MaxShift, |
| unsigned &PowerOfTwo, |
| SDValue &NewMulConst) const { |
| assert(N.getOpcode() == ISD::MUL); |
| assert(MaxShift > 0); |
| |
| // If the multiply is used in more than one place then changing the constant |
| // will make other uses incorrect, so don't. |
| if (!N.hasOneUse()) return false; |
| // Check if the multiply is by a constant |
| ConstantSDNode *MulConst = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| if (!MulConst) return false; |
| // If the constant is used in more than one place then modifying it will mean |
| // we need to materialize two constants instead of one, which is a bad idea. |
| if (!MulConst->hasOneUse()) return false; |
| unsigned MulConstVal = MulConst->getZExtValue(); |
| if (MulConstVal == 0) return false; |
| |
| // Find the largest power of 2 that MulConstVal is a multiple of |
| PowerOfTwo = MaxShift; |
| while ((MulConstVal % (1 << PowerOfTwo)) != 0) { |
| --PowerOfTwo; |
| if (PowerOfTwo == 0) return false; |
| } |
| |
| // Only optimise if the new cost is better |
| unsigned NewMulConstVal = MulConstVal / (1 << PowerOfTwo); |
| NewMulConst = CurDAG->getConstant(NewMulConstVal, SDLoc(N), MVT::i32); |
| unsigned OldCost = ConstantMaterializationCost(MulConstVal); |
| unsigned NewCost = ConstantMaterializationCost(NewMulConstVal); |
| return NewCost < OldCost; |
| } |
| |
| void ARMDAGToDAGISel::replaceDAGValue(const SDValue &N, SDValue M) { |
| CurDAG->RepositionNode(N.getNode()->getIterator(), M.getNode()); |
| ReplaceUses(N, M); |
| } |
| |
| bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N, |
| SDValue &BaseReg, |
| SDValue &Opc, |
| bool CheckProfitability) { |
| if (DisableShifterOp) |
| return false; |
| |
| // If N is a multiply-by-constant and it's profitable to extract a shift and |
| // use it in a shifted operand do so. |
| if (N.getOpcode() == ISD::MUL) { |
| unsigned PowerOfTwo = 0; |
| SDValue NewMulConst; |
| if (canExtractShiftFromMul(N, 31, PowerOfTwo, NewMulConst)) { |
| HandleSDNode Handle(N); |
| SDLoc Loc(N); |
| replaceDAGValue(N.getOperand(1), NewMulConst); |
| BaseReg = Handle.getValue(); |
| Opc = CurDAG->getTargetConstant( |
| ARM_AM::getSORegOpc(ARM_AM::lsl, PowerOfTwo), Loc, MVT::i32); |
| return true; |
| } |
| } |
| |
| ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode()); |
| |
| // Don't match base register only case. That is matched to a separate |
| // lower complexity pattern with explicit register operand. |
| if (ShOpcVal == ARM_AM::no_shift) return false; |
| |
| BaseReg = N.getOperand(0); |
| unsigned ShImmVal = 0; |
| ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| if (!RHS) return false; |
| ShImmVal = RHS->getZExtValue() & 31; |
| Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal), |
| SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N, |
| SDValue &BaseReg, |
| SDValue &ShReg, |
| SDValue &Opc, |
| bool CheckProfitability) { |
| if (DisableShifterOp) |
| return false; |
| |
| ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode()); |
| |
| // Don't match base register only case. That is matched to a separate |
| // lower complexity pattern with explicit register operand. |
| if (ShOpcVal == ARM_AM::no_shift) return false; |
| |
| BaseReg = N.getOperand(0); |
| unsigned ShImmVal = 0; |
| ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| if (RHS) return false; |
| |
| ShReg = N.getOperand(1); |
| if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal)) |
| return false; |
| Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal), |
| SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| // Determine whether an ISD::OR's operands are suitable to turn the operation |
| // into an addition, which often has more compact encodings. |
| bool ARMDAGToDAGISel::SelectAddLikeOr(SDNode *Parent, SDValue N, SDValue &Out) { |
| assert(Parent->getOpcode() == ISD::OR && "unexpected parent"); |
| Out = N; |
| return CurDAG->haveNoCommonBitsSet(N, Parent->getOperand(1)); |
| } |
| |
| |
| bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N, |
| SDValue &Base, |
| SDValue &OffImm) { |
| // Match simple R + imm12 operands. |
| |
| // Base only. |
| if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && |
| !CurDAG->isBaseWithConstantOffset(N)) { |
| if (N.getOpcode() == ISD::FrameIndex) { |
| // Match frame index. |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex( |
| FI, TLI->getPointerTy(CurDAG->getDataLayout())); |
| OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| if (N.getOpcode() == ARMISD::Wrapper && |
| N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress && |
| N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol && |
| N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) { |
| Base = N.getOperand(0); |
| } else |
| Base = N; |
| OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| int RHSC = (int)RHS->getSExtValue(); |
| if (N.getOpcode() == ISD::SUB) |
| RHSC = -RHSC; |
| |
| if (RHSC > -0x1000 && RHSC < 0x1000) { // 12 bits |
| Base = N.getOperand(0); |
| if (Base.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(Base)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex( |
| FI, TLI->getPointerTy(CurDAG->getDataLayout())); |
| } |
| OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32); |
| return true; |
| } |
| } |
| |
| // Base only. |
| Base = N; |
| OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| |
| |
| bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, |
| SDValue &Opc) { |
| if (N.getOpcode() == ISD::MUL && |
| ((!Subtarget->isLikeA9() && !Subtarget->isSwift()) || N.hasOneUse())) { |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| // X * [3,5,9] -> X + X * [2,4,8] etc. |
| int RHSC = (int)RHS->getZExtValue(); |
| if (RHSC & 1) { |
| RHSC = RHSC & ~1; |
| ARM_AM::AddrOpc AddSub = ARM_AM::add; |
| if (RHSC < 0) { |
| AddSub = ARM_AM::sub; |
| RHSC = - RHSC; |
| } |
| if (isPowerOf2_32(RHSC)) { |
| unsigned ShAmt = Log2_32(RHSC); |
| Base = Offset = N.getOperand(0); |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, |
| ARM_AM::lsl), |
| SDLoc(N), MVT::i32); |
| return true; |
| } |
| } |
| } |
| } |
| |
| if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && |
| // ISD::OR that is equivalent to an ISD::ADD. |
| !CurDAG->isBaseWithConstantOffset(N)) |
| return false; |
| |
| // Leave simple R +/- imm12 operands for LDRi12 |
| if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) { |
| int RHSC; |
| if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1, |
| -0x1000+1, 0x1000, RHSC)) // 12 bits. |
| return false; |
| } |
| |
| // Otherwise this is R +/- [possibly shifted] R. |
| ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add; |
| ARM_AM::ShiftOpc ShOpcVal = |
| ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode()); |
| unsigned ShAmt = 0; |
| |
| Base = N.getOperand(0); |
| Offset = N.getOperand(1); |
| |
| if (ShOpcVal != ARM_AM::no_shift) { |
| // Check to see if the RHS of the shift is a constant, if not, we can't fold |
| // it. |
| if (ConstantSDNode *Sh = |
| dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) { |
| ShAmt = Sh->getZExtValue(); |
| if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt)) |
| Offset = N.getOperand(1).getOperand(0); |
| else { |
| ShAmt = 0; |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } else { |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } |
| |
| // Try matching (R shl C) + (R). |
| if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift && |
| !(Subtarget->isLikeA9() || Subtarget->isSwift() || |
| N.getOperand(0).hasOneUse())) { |
| ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode()); |
| if (ShOpcVal != ARM_AM::no_shift) { |
| // Check to see if the RHS of the shift is a constant, if not, we can't |
| // fold it. |
| if (ConstantSDNode *Sh = |
| dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) { |
| ShAmt = Sh->getZExtValue(); |
| if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) { |
| Offset = N.getOperand(0).getOperand(0); |
| Base = N.getOperand(1); |
| } else { |
| ShAmt = 0; |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } else { |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } |
| } |
| |
| // If Offset is a multiply-by-constant and it's profitable to extract a shift |
| // and use it in a shifted operand do so. |
| if (Offset.getOpcode() == ISD::MUL && N.hasOneUse()) { |
| unsigned PowerOfTwo = 0; |
| SDValue NewMulConst; |
| if (canExtractShiftFromMul(Offset, 31, PowerOfTwo, NewMulConst)) { |
| HandleSDNode Handle(Offset); |
| replaceDAGValue(Offset.getOperand(1), NewMulConst); |
| Offset = Handle.getValue(); |
| ShAmt = PowerOfTwo; |
| ShOpcVal = ARM_AM::lsl; |
| } |
| } |
| |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal), |
| SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N, |
| SDValue &Offset, SDValue &Opc) { |
| unsigned Opcode = Op->getOpcode(); |
| ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) |
| ? cast<LoadSDNode>(Op)->getAddressingMode() |
| : cast<StoreSDNode>(Op)->getAddressingMode(); |
| ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) |
| ? ARM_AM::add : ARM_AM::sub; |
| int Val; |
| if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) |
| return false; |
| |
| Offset = N; |
| ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode()); |
| unsigned ShAmt = 0; |
| if (ShOpcVal != ARM_AM::no_shift) { |
| // Check to see if the RHS of the shift is a constant, if not, we can't fold |
| // it. |
| if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| ShAmt = Sh->getZExtValue(); |
| if (isShifterOpProfitable(N, ShOpcVal, ShAmt)) |
| Offset = N.getOperand(0); |
| else { |
| ShAmt = 0; |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } else { |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } |
| |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal), |
| SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N, |
| SDValue &Offset, SDValue &Opc) { |
| unsigned Opcode = Op->getOpcode(); |
| ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) |
| ? cast<LoadSDNode>(Op)->getAddressingMode() |
| : cast<StoreSDNode>(Op)->getAddressingMode(); |
| ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) |
| ? ARM_AM::add : ARM_AM::sub; |
| int Val; |
| if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits. |
| if (AddSub == ARM_AM::sub) Val *= -1; |
| Offset = CurDAG->getRegister(0, MVT::i32); |
| Opc = CurDAG->getTargetConstant(Val, SDLoc(Op), MVT::i32); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N, |
| SDValue &Offset, SDValue &Opc) { |
| unsigned Opcode = Op->getOpcode(); |
| ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) |
| ? cast<LoadSDNode>(Op)->getAddressingMode() |
| : cast<StoreSDNode>(Op)->getAddressingMode(); |
| ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) |
| ? ARM_AM::add : ARM_AM::sub; |
| int Val; |
| if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits. |
| Offset = CurDAG->getRegister(0, MVT::i32); |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val, |
| ARM_AM::no_shift), |
| SDLoc(Op), MVT::i32); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) { |
| Base = N; |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N, |
| SDValue &Base, SDValue &Offset, |
| SDValue &Opc) { |
| if (N.getOpcode() == ISD::SUB) { |
| // X - C is canonicalize to X + -C, no need to handle it here. |
| Base = N.getOperand(0); |
| Offset = N.getOperand(1); |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0), SDLoc(N), |
| MVT::i32); |
| return true; |
| } |
| |
| if (!CurDAG->isBaseWithConstantOffset(N)) { |
| Base = N; |
| if (N.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex( |
| FI, TLI->getPointerTy(CurDAG->getDataLayout())); |
| } |
| Offset = CurDAG->getRegister(0, MVT::i32); |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), SDLoc(N), |
| MVT::i32); |
| return true; |
| } |
| |
| // If the RHS is +/- imm8, fold into addr mode. |
| int RHSC; |
| if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1, |
| -256 + 1, 256, RHSC)) { // 8 bits. |
| Base = N.getOperand(0); |
| if (Base.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(Base)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex( |
| FI, TLI->getPointerTy(CurDAG->getDataLayout())); |
| } |
| Offset = CurDAG->getRegister(0, MVT::i32); |
| |
| ARM_AM::AddrOpc AddSub = ARM_AM::add; |
| if (RHSC < 0) { |
| AddSub = ARM_AM::sub; |
| RHSC = -RHSC; |
| } |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC), SDLoc(N), |
| MVT::i32); |
| return true; |
| } |
| |
| Base = N.getOperand(0); |
| Offset = N.getOperand(1); |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), SDLoc(N), |
| MVT::i32); |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N, |
| SDValue &Offset, SDValue &Opc) { |
| unsigned Opcode = Op->getOpcode(); |
| ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) |
| ? cast<LoadSDNode>(Op)->getAddressingMode() |
| : cast<StoreSDNode>(Op)->getAddressingMode(); |
| ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) |
| ? ARM_AM::add : ARM_AM::sub; |
| int Val; |
| if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits. |
| Offset = CurDAG->getRegister(0, MVT::i32); |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), SDLoc(Op), |
| MVT::i32); |
| return true; |
| } |
| |
| Offset = N; |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), SDLoc(Op), |
| MVT::i32); |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::IsAddressingMode5(SDValue N, SDValue &Base, SDValue &Offset, |
| int Lwb, int Upb, bool FP16) { |
| if (!CurDAG->isBaseWithConstantOffset(N)) { |
| Base = N; |
| if (N.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex( |
| FI, TLI->getPointerTy(CurDAG->getDataLayout())); |
| } else if (N.getOpcode() == ARMISD::Wrapper && |
| N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress && |
| N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol && |
| N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) { |
| Base = N.getOperand(0); |
| } |
| Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0), |
| SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| // If the RHS is +/- imm8, fold into addr mode. |
| int RHSC; |
| const int Scale = FP16 ? 2 : 4; |
| |
| if (isScaledConstantInRange(N.getOperand(1), Scale, Lwb, Upb, RHSC)) { |
| Base = N.getOperand(0); |
| if (Base.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(Base)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex( |
| FI, TLI->getPointerTy(CurDAG->getDataLayout())); |
| } |
| |
| ARM_AM::AddrOpc AddSub = ARM_AM::add; |
| if (RHSC < 0) { |
| AddSub = ARM_AM::sub; |
| RHSC = -RHSC; |
| } |
| |
| if (FP16) |
| Offset = CurDAG->getTargetConstant(ARM_AM::getAM5FP16Opc(AddSub, RHSC), |
| SDLoc(N), MVT::i32); |
| else |
| Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC), |
| SDLoc(N), MVT::i32); |
| |
| return true; |
| } |
| |
| Base = N; |
| |
| if (FP16) |
| Offset = CurDAG->getTargetConstant(ARM_AM::getAM5FP16Opc(ARM_AM::add, 0), |
| SDLoc(N), MVT::i32); |
| else |
| Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0), |
| SDLoc(N), MVT::i32); |
| |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N, |
| SDValue &Base, SDValue &Offset) { |
| int Lwb = -256 + 1; |
| int Upb = 256; |
| return IsAddressingMode5(N, Base, Offset, Lwb, Upb, /*FP16=*/ false); |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrMode5FP16(SDValue N, |
| SDValue &Base, SDValue &Offset) { |
| int Lwb = -512 + 1; |
| int Upb = 512; |
| return IsAddressingMode5(N, Base, Offset, Lwb, Upb, /*FP16=*/ true); |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr, |
| SDValue &Align) { |
| Addr = N; |
| |
| unsigned Alignment = 0; |
| |
| MemSDNode *MemN = cast<MemSDNode>(Parent); |
| |
| if (isa<LSBaseSDNode>(MemN) || |
| ((MemN->getOpcode() == ARMISD::VST1_UPD || |
| MemN->getOpcode() == ARMISD::VLD1_UPD) && |
| MemN->getConstantOperandVal(MemN->getNumOperands() - 1) == 1)) { |
| // This case occurs only for VLD1-lane/dup and VST1-lane instructions. |
| // The maximum alignment is equal to the memory size being referenced. |
| unsigned MMOAlign = MemN->getAlignment(); |
| unsigned MemSize = MemN->getMemoryVT().getSizeInBits() / 8; |
| if (MMOAlign >= MemSize && MemSize > 1) |
| Alignment = MemSize; |
| } else { |
| // All other uses of addrmode6 are for intrinsics. For now just record |
| // the raw alignment value; it will be refined later based on the legal |
| // alignment operands for the intrinsic. |
| Alignment = MemN->getAlignment(); |
| } |
| |
| Align = CurDAG->getTargetConstant(Alignment, SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N, |
| SDValue &Offset) { |
| LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op); |
| ISD::MemIndexedMode AM = LdSt->getAddressingMode(); |
| if (AM != ISD::POST_INC) |
| return false; |
| Offset = N; |
| if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) { |
| if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits()) |
| Offset = CurDAG->getRegister(0, MVT::i32); |
| } |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N, |
| SDValue &Offset, SDValue &Label) { |
| if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) { |
| Offset = N.getOperand(0); |
| SDValue N1 = N.getOperand(1); |
| Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(), |
| SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Thumb Addressing Modes |
| //===----------------------------------------------------------------------===// |
| |
| bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N, |
| SDValue &Base, SDValue &Offset){ |
| if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) { |
| ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N); |
| if (!NC || !NC->isNullValue()) |
| return false; |
| |
| Base = Offset = N; |
| return true; |
| } |
| |
| Base = N.getOperand(0); |
| Offset = N.getOperand(1); |
| return true; |
| } |
| |
| bool |
| ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, |
| SDValue &Base, SDValue &OffImm) { |
| if (!CurDAG->isBaseWithConstantOffset(N)) { |
| if (N.getOpcode() == ISD::ADD) { |
| return false; // We want to select register offset instead |
| } else if (N.getOpcode() == ARMISD::Wrapper && |
| N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress && |
| N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol && |
| N.getOperand(0).getOpcode() != ISD::TargetConstantPool && |
| N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) { |
| Base = N.getOperand(0); |
| } else { |
| Base = N; |
| } |
| |
| OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| // If the RHS is + imm5 * scale, fold into addr mode. |
| int RHSC; |
| if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) { |
| Base = N.getOperand(0); |
| OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| // Offset is too large, so use register offset instead. |
| return false; |
| } |
| |
| bool |
| ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base, |
| SDValue &OffImm) { |
| return SelectThumbAddrModeImm5S(N, 4, Base, OffImm); |
| } |
| |
| bool |
| ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base, |
| SDValue &OffImm) { |
| return SelectThumbAddrModeImm5S(N, 2, Base, OffImm); |
| } |
| |
| bool |
| ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base, |
| SDValue &OffImm) { |
| return SelectThumbAddrModeImm5S(N, 1, Base, OffImm); |
| } |
| |
| bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N, |
| SDValue &Base, SDValue &OffImm) { |
| if (N.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| // Only multiples of 4 are allowed for the offset, so the frame object |
| // alignment must be at least 4. |
| MachineFrameInfo &MFI = MF->getFrameInfo(); |
| if (MFI.getObjectAlignment(FI) < 4) |
| MFI.setObjectAlignment(FI, 4); |
| Base = CurDAG->getTargetFrameIndex( |
| FI, TLI->getPointerTy(CurDAG->getDataLayout())); |
| OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| if (!CurDAG->isBaseWithConstantOffset(N)) |
| return false; |
| |
| RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0)); |
| if (N.getOperand(0).getOpcode() == ISD::FrameIndex || |
| (LHSR && LHSR->getReg() == ARM::SP)) { |
| // If the RHS is + imm8 * scale, fold into addr mode. |
| int RHSC; |
| if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) { |
| Base = N.getOperand(0); |
| if (Base.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(Base)->getIndex(); |
| // For LHS+RHS to result in an offset that's a multiple of 4 the object |
| // indexed by the LHS must be 4-byte aligned. |
| MachineFrameInfo &MFI = MF->getFrameInfo(); |
| if (MFI.getObjectAlignment(FI) < 4) |
| MFI.setObjectAlignment(FI, 4); |
| Base = CurDAG->getTargetFrameIndex( |
| FI, TLI->getPointerTy(CurDAG->getDataLayout())); |
| } |
| OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Thumb 2 Addressing Modes |
| //===----------------------------------------------------------------------===// |
| |
| |
| bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N, |
| SDValue &Base, SDValue &OffImm) { |
| // Match simple R + imm12 operands. |
| |
| // Base only. |
| if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && |
| !CurDAG->isBaseWithConstantOffset(N)) { |
| if (N.getOpcode() == ISD::FrameIndex) { |
| // Match frame index. |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex( |
| FI, TLI->getPointerTy(CurDAG->getDataLayout())); |
| OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| if (N.getOpcode() == ARMISD::Wrapper && |
| N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress && |
| N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol && |
| N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) { |
| Base = N.getOperand(0); |
| if (Base.getOpcode() == ISD::TargetConstantPool) |
| return false; // We want to select t2LDRpci instead. |
| } else |
| Base = N; |
| OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| if (SelectT2AddrModeImm8(N, Base, OffImm)) |
| // Let t2LDRi8 handle (R - imm8). |
| return false; |
| |
| int RHSC = (int)RHS->getZExtValue(); |
| if (N.getOpcode() == ISD::SUB) |
| RHSC = -RHSC; |
| |
| if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned) |
| Base = N.getOperand(0); |
| if (Base.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(Base)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex( |
| FI, TLI->getPointerTy(CurDAG->getDataLayout())); |
| } |
| OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32); |
| return true; |
| } |
| } |
| |
| // Base only. |
| Base = N; |
| OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N, |
| SDValue &Base, SDValue &OffImm) { |
| // Match simple R - imm8 operands. |
| if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && |
| !CurDAG->isBaseWithConstantOffset(N)) |
| return false; |
| |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| int RHSC = (int)RHS->getSExtValue(); |
| if (N.getOpcode() == ISD::SUB) |
| RHSC = -RHSC; |
| |
| if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative) |
| Base = N.getOperand(0); |
| if (Base.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(Base)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex( |
| FI, TLI->getPointerTy(CurDAG->getDataLayout())); |
| } |
| OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N, |
| SDValue &OffImm){ |
| unsigned Opcode = Op->getOpcode(); |
| ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) |
| ? cast<LoadSDNode>(Op)->getAddressingMode() |
| : cast<StoreSDNode>(Op)->getAddressingMode(); |
| int RHSC; |
| if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits. |
| OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC)) |
| ? CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32) |
| : CurDAG->getTargetConstant(-RHSC, SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N, |
| SDValue &Base, |
| SDValue &OffReg, SDValue &ShImm) { |
| // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12. |
| if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) |
| return false; |
| |
| // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8. |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| int RHSC = (int)RHS->getZExtValue(); |
| if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned) |
| return false; |
| else if (RHSC < 0 && RHSC >= -255) // 8 bits |
| return false; |
| } |
| |
| // Look for (R + R) or (R + (R << [1,2,3])). |
| unsigned ShAmt = 0; |
| Base = N.getOperand(0); |
| OffReg = N.getOperand(1); |
| |
| // Swap if it is ((R << c) + R). |
| ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode()); |
| if (ShOpcVal != ARM_AM::lsl) { |
| ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode()); |
| if (ShOpcVal == ARM_AM::lsl) |
| std::swap(Base, OffReg); |
| } |
| |
| if (ShOpcVal == ARM_AM::lsl) { |
| // Check to see if the RHS of the shift is a constant, if not, we can't fold |
| // it. |
| if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) { |
| ShAmt = Sh->getZExtValue(); |
| if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt)) |
| OffReg = OffReg.getOperand(0); |
| else { |
| ShAmt = 0; |
| } |
| } |
| } |
| |
| // If OffReg is a multiply-by-constant and it's profitable to extract a shift |
| // and use it in a shifted operand do so. |
| if (OffReg.getOpcode() == ISD::MUL && N.hasOneUse()) { |
| unsigned PowerOfTwo = 0; |
| SDValue NewMulConst; |
| if (canExtractShiftFromMul(OffReg, 3, PowerOfTwo, NewMulConst)) { |
| HandleSDNode Handle(OffReg); |
| replaceDAGValue(OffReg.getOperand(1), NewMulConst); |
| OffReg = Handle.getValue(); |
| ShAmt = PowerOfTwo; |
| } |
| } |
| |
| ShImm = CurDAG->getTargetConstant(ShAmt, SDLoc(N), MVT::i32); |
| |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N, SDValue &Base, |
| SDValue &OffImm) { |
| // This *must* succeed since it's used for the irreplaceable ldrex and strex |
| // instructions. |
| Base = N; |
| OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32); |
| |
| if (N.getOpcode() != ISD::ADD || !CurDAG->isBaseWithConstantOffset(N)) |
| return true; |
| |
| ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| if (!RHS) |
| return true; |
| |
| uint32_t RHSC = (int)RHS->getZExtValue(); |
| if (RHSC > 1020 || RHSC % 4 != 0) |
| return true; |
| |
| Base = N.getOperand(0); |
| if (Base.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(Base)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex( |
| FI, TLI->getPointerTy(CurDAG->getDataLayout())); |
| } |
| |
| OffImm = CurDAG->getTargetConstant(RHSC/4, SDLoc(N), MVT::i32); |
| return true; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| |
| /// getAL - Returns a ARMCC::AL immediate node. |
| static inline SDValue getAL(SelectionDAG *CurDAG, const SDLoc &dl) { |
| return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, dl, MVT::i32); |
| } |
| |
| void ARMDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = cast<MemSDNode>(N)->getMemOperand(); |
| cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1); |
| } |
| |
| bool ARMDAGToDAGISel::tryARMIndexedLoad(SDNode *N) { |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| ISD::MemIndexedMode AM = LD->getAddressingMode(); |
| if (AM == ISD::UNINDEXED) |
| return false; |
| |
| EVT LoadedVT = LD->getMemoryVT(); |
| SDValue Offset, AMOpc; |
| bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); |
| unsigned Opcode = 0; |
| bool Match = false; |
| if (LoadedVT == MVT::i32 && isPre && |
| SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) { |
| Opcode = ARM::LDR_PRE_IMM; |
| Match = true; |
| } else if (LoadedVT == MVT::i32 && !isPre && |
| SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) { |
| Opcode = ARM::LDR_POST_IMM; |
| Match = true; |
| } else if (LoadedVT == MVT::i32 && |
| SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) { |
| Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG; |
| Match = true; |
| |
| } else if (LoadedVT == MVT::i16 && |
| SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) { |
| Match = true; |
| Opcode = (LD->getExtensionType() == ISD::SEXTLOAD) |
| ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST) |
| : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST); |
| } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) { |
| if (LD->getExtensionType() == ISD::SEXTLOAD) { |
| if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) { |
| Match = true; |
| Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST; |
| } |
| } else { |
| if (isPre && |
| SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) { |
| Match = true; |
| Opcode = ARM::LDRB_PRE_IMM; |
| } else if (!isPre && |
| SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) { |
| Match = true; |
| Opcode = ARM::LDRB_POST_IMM; |
| } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) { |
| Match = true; |
| Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG; |
| } |
| } |
| } |
| |
| if (Match) { |
| if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) { |
| SDValue Chain = LD->getChain(); |
| SDValue Base = LD->getBasePtr(); |
| SDValue Ops[]= { Base, AMOpc, getAL(CurDAG, SDLoc(N)), |
| CurDAG->getRegister(0, MVT::i32), Chain }; |
| SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32, |
| MVT::Other, Ops); |
| transferMemOperands(N, New); |
| ReplaceNode(N, New); |
| return true; |
| } else { |
| SDValue Chain = LD->getChain(); |
| SDValue Base = LD->getBasePtr(); |
| SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG, SDLoc(N)), |
| CurDAG->getRegister(0, MVT::i32), Chain }; |
| SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32, |
| MVT::Other, Ops); |
| transferMemOperands(N, New); |
| ReplaceNode(N, New); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool ARMDAGToDAGISel::tryT1IndexedLoad(SDNode *N) { |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| EVT LoadedVT = LD->getMemoryVT(); |
| ISD::MemIndexedMode AM = LD->getAddressingMode(); |
| if (AM != ISD::POST_INC || LD->getExtensionType() != ISD::NON_EXTLOAD || |
| LoadedVT.getSimpleVT().SimpleTy != MVT::i32) |
| return false; |
| |
| auto *COffs = dyn_cast<ConstantSDNode>(LD->getOffset()); |
| if (!COffs || COffs->getZExtValue() != 4) |
| return false; |
| |
| // A T1 post-indexed load is just a single register LDM: LDM r0!, {r1}. |
| // The encoding of LDM is not how the rest of ISel expects a post-inc load to |
| // look however, so we use a pseudo here and switch it for a tLDMIA_UPD after |
| // ISel. |
| SDValue Chain = LD->getChain(); |
| SDValue Base = LD->getBasePtr(); |
| SDValue Ops[]= { Base, getAL(CurDAG, SDLoc(N)), |
| CurDAG->getRegister(0, MVT::i32), Chain }; |
| SDNode *New = CurDAG->getMachineNode(ARM::tLDR_postidx, SDLoc(N), MVT::i32, |
| MVT::i32, MVT::Other, Ops); |
| transferMemOperands(N, New); |
| ReplaceNode(N, New); |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::tryT2IndexedLoad(SDNode *N) { |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| ISD::MemIndexedMode AM = LD->getAddressingMode(); |
| if (AM == ISD::UNINDEXED) |
| return false; |
| |
| EVT LoadedVT = LD->getMemoryVT(); |
| bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD; |
| SDValue Offset; |
| bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); |
| unsigned Opcode = 0; |
| bool Match = false; |
| if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) { |
| switch (LoadedVT.getSimpleVT().SimpleTy) { |
| case MVT::i32: |
| Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST; |
| break; |
| case MVT::i16: |
| if (isSExtLd) |
| Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST; |
| else |
| Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST; |
| break; |
| case MVT::i8: |
| case MVT::i1: |
| if (isSExtLd) |
| Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST; |
| else |
| Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST; |
| break; |
| default: |
| return false; |
| } |
| Match = true; |
| } |
| |
| if (Match) { |
| SDValue Chain = LD->getChain(); |
| SDValue Base = LD->getBasePtr(); |
| SDValue Ops[]= { Base, Offset, getAL(CurDAG, SDLoc(N)), |
| CurDAG->getRegister(0, MVT::i32), Chain }; |
| SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32, |
| MVT::Other, Ops); |
| transferMemOperands(N, New); |
| ReplaceNode(N, New); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Form a GPRPair pseudo register from a pair of GPR regs. |
| SDNode *ARMDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) { |
| SDLoc dl(V0.getNode()); |
| SDValue RegClass = |
| CurDAG->getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32); |
| SDValue SubReg0 = CurDAG->getTargetConstant(ARM::gsub_0, dl, MVT::i32); |
| SDValue SubReg1 = CurDAG->getTargetConstant(ARM::gsub_1, dl, MVT::i32); |
| const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 }; |
| return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops); |
| } |
| |
| /// Form a D register from a pair of S registers. |
| SDNode *ARMDAGToDAGISel::createSRegPairNode(EVT VT, SDValue V0, SDValue V1) { |
| SDLoc dl(V0.getNode()); |
| SDValue RegClass = |
| CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, dl, MVT::i32); |
| SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, dl, MVT::i32); |
| SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, dl, MVT::i32); |
| const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 }; |
| return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops); |
| } |
| |
| /// Form a quad register from a pair of D registers. |
| SDNode *ARMDAGToDAGISel::createDRegPairNode(EVT VT, SDValue V0, SDValue V1) { |
| SDLoc dl(V0.getNode()); |
| SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, dl, |
| MVT::i32); |
| SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, dl, MVT::i32); |
| SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, dl, MVT::i32); |
| const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 }; |
| return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops); |
| } |
| |
| /// Form 4 consecutive D registers from a pair of Q registers. |
| SDNode *ARMDAGToDAGISel::createQRegPairNode(EVT VT, SDValue V0, SDValue V1) { |
| SDLoc dl(V0.getNode()); |
| SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, dl, |
| MVT::i32); |
| SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, dl, MVT::i32); |
| SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, dl, MVT::i32); |
| const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 }; |
| return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops); |
| } |
| |
| /// Form 4 consecutive S registers. |
| SDNode *ARMDAGToDAGISel::createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, |
| SDValue V2, SDValue V3) { |
| SDLoc dl(V0.getNode()); |
| SDValue RegClass = |
| CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, dl, MVT::i32); |
| SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, dl, MVT::i32); |
| SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, dl, MVT::i32); |
| SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, dl, MVT::i32); |
| SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, dl, MVT::i32); |
| const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, |
| V2, SubReg2, V3, SubReg3 }; |
| return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops); |
| } |
| |
| /// Form 4 consecutive D registers. |
| SDNode *ARMDAGToDAGISel::createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, |
| SDValue V2, SDValue V3) { |
| SDLoc dl(V0.getNode()); |
| SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, dl, |
| MVT::i32); |
| SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, dl, MVT::i32); |
| SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, dl, MVT::i32); |
| SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, dl, MVT::i32); |
| SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, dl, MVT::i32); |
| const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, |
| V2, SubReg2, V3, SubReg3 }; |
| return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops); |
| } |
| |
| /// Form 4 consecutive Q registers. |
| SDNode *ARMDAGToDAGISel::createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, |
| SDValue V2, SDValue V3) { |
| SDLoc dl(V0.getNode()); |
| SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, dl, |
| MVT::i32); |
| SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, dl, MVT::i32); |
| SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, dl, MVT::i32); |
| SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, dl, MVT::i32); |
| SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, dl, MVT::i32); |
| const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, |
| V2, SubReg2, V3, SubReg3 }; |
| return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops); |
| } |
| |
| /// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand |
| /// of a NEON VLD or VST instruction. The supported values depend on the |
| /// number of registers being loaded. |
| SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, const SDLoc &dl, |
| unsigned NumVecs, bool is64BitVector) { |
| unsigned NumRegs = NumVecs; |
| if (!is64BitVector && NumVecs < 3) |
| NumRegs *= 2; |
| |
| unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue(); |
| if (Alignment >= 32 && NumRegs == 4) |
| Alignment = 32; |
| else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4)) |
| Alignment = 16; |
| else if (Alignment >= 8) |
| Alignment = 8; |
| else |
| Alignment = 0; |
| |
| return CurDAG->getTargetConstant(Alignment, dl, MVT::i32); |
| } |
| |
| static bool isVLDfixed(unsigned Opc) |
| { |
| switch (Opc) { |
| default: return false; |
| case ARM::VLD1d8wb_fixed : return true; |
| case ARM::VLD1d16wb_fixed : return true; |
| case ARM::VLD1d64Qwb_fixed : return true; |
| case ARM::VLD1d32wb_fixed : return true; |
| case ARM::VLD1d64wb_fixed : return true; |
| case ARM::VLD1d64TPseudoWB_fixed : return true; |
| case ARM::VLD1d64QPseudoWB_fixed : return true; |
| case ARM::VLD1q8wb_fixed : return true; |
| case ARM::VLD1q16wb_fixed : return true; |
| case ARM::VLD1q32wb_fixed : return true; |
| case ARM::VLD1q64wb_fixed : return true; |
| case ARM::VLD1DUPd8wb_fixed : return true; |
| case ARM::VLD1DUPd16wb_fixed : return true; |
| case ARM::VLD1DUPd32wb_fixed : return true; |
| case ARM::VLD1DUPq8wb_fixed : return true; |
| case ARM::VLD1DUPq16wb_fixed : return true; |
| case ARM::VLD1DUPq32wb_fixed : return true; |
| case ARM::VLD2d8wb_fixed : return true; |
| case ARM::VLD2d16wb_fixed : return true; |
| case ARM::VLD2d32wb_fixed : return true; |
| case ARM::VLD2q8PseudoWB_fixed : return true; |
| case ARM::VLD2q16PseudoWB_fixed : return true; |
| case ARM::VLD2q32PseudoWB_fixed : return true; |
| case ARM::VLD2DUPd8wb_fixed : return true; |
| case ARM::VLD2DUPd16wb_fixed : return true; |
| case ARM::VLD2DUPd32wb_fixed : return true; |
| } |
| } |
| |
| static bool isVSTfixed(unsigned Opc) |
| { |
| switch (Opc) { |
| default: return false; |
| case ARM::VST1d8wb_fixed : return true; |
| case ARM::VST1d16wb_fixed : return true; |
| case ARM::VST1d32wb_fixed : return true; |
| case ARM::VST1d64wb_fixed : return true; |
| case ARM::VST1q8wb_fixed : return true; |
| case ARM::VST1q16wb_fixed : return true; |
| case ARM::VST1q32wb_fixed : return true; |
| case ARM::VST1q64wb_fixed : return true; |
| case ARM::VST1d64TPseudoWB_fixed : return true; |
| case ARM::VST1d64QPseudoWB_fixed : return true; |
| case ARM::VST2d8wb_fixed : return true; |
| case ARM::VST2d16wb_fixed : return true; |
| case ARM::VST2d32wb_fixed : return true; |
| case ARM::VST2q8PseudoWB_fixed : return true; |
| case ARM::VST2q16PseudoWB_fixed : return true; |
| case ARM::VST2q32PseudoWB_fixed : return true; |
| } |
| } |
| |
| // Get the register stride update opcode of a VLD/VST instruction that |
| // is otherwise equivalent to the given fixed stride updating instruction. |
| static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) { |
| assert((isVLDfixed(Opc) || isVSTfixed(Opc)) |
| && "Incorrect fixed stride updating instruction."); |
| switch (Opc) { |
| default: break; |
| case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register; |
| case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register; |
| case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register; |
| case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register; |
| case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register; |
| case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register; |
| case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register; |
| case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register; |
| case ARM::VLD1d64Twb_fixed: return ARM::VLD1d64Twb_register; |
| case ARM::VLD1d64Qwb_fixed: return ARM::VLD1d64Qwb_register; |
| case ARM::VLD1d64TPseudoWB_fixed: return ARM::VLD1d64TPseudoWB_register; |
| case ARM::VLD1d64QPseudoWB_fixed: return ARM::VLD1d64QPseudoWB_register; |
| case ARM::VLD1DUPd8wb_fixed : return ARM::VLD1DUPd8wb_register; |
| case ARM::VLD1DUPd16wb_fixed : return ARM::VLD1DUPd16wb_register; |
| case ARM::VLD1DUPd32wb_fixed : return ARM::VLD1DUPd32wb_register; |
| case ARM::VLD1DUPq8wb_fixed : return ARM::VLD1DUPq8wb_register; |
| case ARM::VLD1DUPq16wb_fixed : return ARM::VLD1DUPq16wb_register; |
| case ARM::VLD1DUPq32wb_fixed : return ARM::VLD1DUPq32wb_register; |
| |
| case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register; |
| case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register; |
| case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register; |
| case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register; |
| case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register; |
| case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register; |
| case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register; |
| case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register; |
| case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register; |
| case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register; |
| |
| case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register; |
| case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register; |
| case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register; |
| case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register; |
| case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register; |
| case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register; |
| |
| case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register; |
| case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register; |
| case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register; |
| case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register; |
| case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register; |
| case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register; |
| |
| case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register; |
| case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register; |
| case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register; |
| } |
| return Opc; // If not one we handle, return it unchanged. |
| } |
| |
| /// Returns true if the given increment is a Constant known to be equal to the |
| /// access size performed by a NEON load/store. This means the "[rN]!" form can |
| /// be used. |
| static bool isPerfectIncrement(SDValue Inc, EVT VecTy, unsigned NumVecs) { |
| auto C = dyn_cast<ConstantSDNode>(Inc); |
| return C && C->getZExtValue() == VecTy.getSizeInBits() / 8 * NumVecs; |
| } |
| |
| void ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs, |
| const uint16_t *DOpcodes, |
| const uint16_t *QOpcodes0, |
| const uint16_t *QOpcodes1) { |
| assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range"); |
| SDLoc dl(N); |
| |
| SDValue MemAddr, Align; |
| bool IsIntrinsic = !isUpdating; // By coincidence, all supported updating |
| // nodes are not intrinsics. |
| unsigned AddrOpIdx = IsIntrinsic ? 2 : 1; |
| if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align)) |
| return; |
| |
| SDValue Chain = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| bool is64BitVector = VT.is64BitVector(); |
| Align = GetVLDSTAlign(Align, dl, NumVecs, is64BitVector); |
| |
| unsigned OpcodeIndex; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("unhandled vld type"); |
| // Double-register operations: |
| case MVT::v8i8: OpcodeIndex = 0; break; |
| case MVT::v4i16: OpcodeIndex = 1; break; |
| case MVT::v2f32: |
| case MVT::v2i32: OpcodeIndex = 2; break; |
| case MVT::v1i64: OpcodeIndex = 3; break; |
| // Quad-register operations: |
| case MVT::v16i8: OpcodeIndex = 0; break; |
| case MVT::v8i16: OpcodeIndex = 1; break; |
| case MVT::v4f32: |
| case MVT::v4i32: OpcodeIndex = 2; break; |
| case MVT::v2f64: |
| case MVT::v2i64: OpcodeIndex = 3; break; |
| } |
| |
| EVT ResTy; |
| if (NumVecs == 1) |
| ResTy = VT; |
| else { |
| unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs; |
| if (!is64BitVector) |
| ResTyElts *= 2; |
| ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts); |
| } |
| std::vector<EVT> ResTys; |
| ResTys.push_back(ResTy); |
| if (isUpdating) |
| ResTys.push_back(MVT::i32); |
| ResTys.push_back(MVT::Other); |
| |
| SDValue Pred = getAL(CurDAG, dl); |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| SDNode *VLd; |
| SmallVector<SDValue, 7> Ops; |
| |
| // Double registers and VLD1/VLD2 quad registers are directly supported. |
| if (is64BitVector || NumVecs <= 2) { |
| unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] : |
| QOpcodes0[OpcodeIndex]); |
| Ops.push_back(MemAddr); |
| Ops.push_back(Align); |
| if (isUpdating) { |
| SDValue Inc = N->getOperand(AddrOpIdx + 1); |
| bool IsImmUpdate = isPerfectIncrement(Inc, VT, NumVecs); |
| if (!IsImmUpdate) { |
| // We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so |
| // check for the opcode rather than the number of vector elements. |
| if (isVLDfixed(Opc)) |
| Opc = getVLDSTRegisterUpdateOpcode(Opc); |
| Ops.push_back(Inc); |
| // VLD1/VLD2 fixed increment does not need Reg0 so only include it in |
| // the operands if not such an opcode. |
| } else if (!isVLDfixed(Opc)) |
| Ops.push_back(Reg0); |
| } |
| Ops.push_back(Pred); |
| Ops.push_back(Reg0); |
| Ops.push_back(Chain); |
| VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); |
| |
| } else { |
| // Otherwise, quad registers are loaded with two separate instructions, |
| // where one loads the even registers and the other loads the odd registers. |
| EVT AddrTy = MemAddr.getValueType(); |
| |
| // Load the even subregs. This is always an updating load, so that it |
| // provides the address to the second load for the odd subregs. |
| SDValue ImplDef = |
| SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0); |
| const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain }; |
| SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl, |
| ResTy, AddrTy, MVT::Other, OpsA); |
| Chain = SDValue(VLdA, 2); |
| |
| // Load the odd subregs. |
| Ops.push_back(SDValue(VLdA, 1)); |
| Ops.push_back(Align); |
| if (isUpdating) { |
| SDValue Inc = N->getOperand(AddrOpIdx + 1); |
| assert(isa<ConstantSDNode>(Inc.getNode()) && |
| "only constant post-increment update allowed for VLD3/4"); |
| (void)Inc; |
| Ops.push_back(Reg0); |
| } |
| Ops.push_back(SDValue(VLdA, 0)); |
| Ops.push_back(Pred); |
| Ops.push_back(Reg0); |
| Ops.push_back(Chain); |
| VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, Ops); |
| } |
| |
| // Transfer memoperands. |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); |
| cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1); |
| |
| if (NumVecs == 1) { |
| ReplaceNode(N, VLd); |
| return; |
| } |
| |
| // Extract out the subregisters. |
| SDValue SuperReg = SDValue(VLd, 0); |
| static_assert(ARM::dsub_7 == ARM::dsub_0 + 7 && |
| ARM::qsub_3 == ARM::qsub_0 + 3, |
| "Unexpected subreg numbering"); |
| unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0); |
| for (unsigned Vec = 0; Vec < NumVecs; ++Vec) |
| ReplaceUses(SDValue(N, Vec), |
| CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg)); |
| ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1)); |
| if (isUpdating) |
| ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2)); |
| CurDAG->RemoveDeadNode(N); |
| } |
| |
| void ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs, |
| const uint16_t *DOpcodes, |
| const uint16_t *QOpcodes0, |
| const uint16_t *QOpcodes1) { |
| assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range"); |
| SDLoc dl(N); |
| |
| SDValue MemAddr, Align; |
| bool IsIntrinsic = !isUpdating; // By coincidence, all supported updating |
| // nodes are not intrinsics. |
| unsigned AddrOpIdx = IsIntrinsic ? 2 : 1; |
| unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1) |
| if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align)) |
| return; |
| |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); |
| |
| SDValue Chain = N->getOperand(0); |
| EVT VT = N->getOperand(Vec0Idx).getValueType(); |
| bool is64BitVector = VT.is64BitVector(); |
| Align = GetVLDSTAlign(Align, dl, NumVecs, is64BitVector); |
| |
| unsigned OpcodeIndex; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("unhandled vst type"); |
| // Double-register operations: |
| case MVT::v8i8: OpcodeIndex = 0; break; |
| case MVT::v4f16: |
| case MVT::v4i16: OpcodeIndex = 1; break; |
| case MVT::v2f32: |
| case MVT::v2i32: OpcodeIndex = 2; break; |
| case MVT::v1i64: OpcodeIndex = 3; break; |
| // Quad-register operations: |
| case MVT::v16i8: OpcodeIndex = 0; break; |
| case MVT::v8f16: |
| case MVT::v8i16: OpcodeIndex = 1; break; |
| case MVT::v4f32: |
| case MVT::v4i32: OpcodeIndex = 2; break; |
| case MVT::v2f64: |
| case MVT::v2i64: OpcodeIndex = 3; break; |
| } |
| |
| std::vector<EVT> ResTys; |
| if (isUpdating) |
| ResTys.push_back(MVT::i32); |
| ResTys.push_back(MVT::Other); |
| |
| SDValue Pred = getAL(CurDAG, dl); |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| SmallVector<SDValue, 7> Ops; |
| |
| // Double registers and VST1/VST2 quad registers are directly supported. |
| if (is64BitVector || NumVecs <= 2) { |
| SDValue SrcReg; |
| if (NumVecs == 1) { |
| SrcReg = N->getOperand(Vec0Idx); |
| } else if (is64BitVector) { |
| // Form a REG_SEQUENCE to force register allocation. |
| SDValue V0 = N->getOperand(Vec0Idx + 0); |
| SDValue V1 = N->getOperand(Vec0Idx + 1); |
| if (NumVecs == 2) |
| SrcReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0); |
| else { |
| SDValue V2 = N->getOperand(Vec0Idx + 2); |
| // If it's a vst3, form a quad D-register and leave the last part as |
| // an undef. |
| SDValue V3 = (NumVecs == 3) |
| ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0) |
| : N->getOperand(Vec0Idx + 3); |
| SrcReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0); |
| } |
| } else { |
| // Form a QQ register. |
| SDValue Q0 = N->getOperand(Vec0Idx); |
| SDValue Q1 = N->getOperand(Vec0Idx + 1); |
| SrcReg = SDValue(createQRegPairNode(MVT::v4i64, Q0, Q1), 0); |
| } |
| |
| unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] : |
| QOpcodes0[OpcodeIndex]); |
| Ops.push_back(MemAddr); |
| Ops.push_back(Align); |
| if (isUpdating) { |
| SDValue Inc = N->getOperand(AddrOpIdx + 1); |
| bool IsImmUpdate = isPerfectIncrement(Inc, VT, NumVecs); |
| if (!IsImmUpdate) { |
| // We use a VST1 for v1i64 even if the pseudo says VST2/3/4, so |
| // check for the opcode rather than the number of vector elements. |
| if (isVSTfixed(Opc)) |
| Opc = getVLDSTRegisterUpdateOpcode(Opc); |
| Ops.push_back(Inc); |
| } |
| // VST1/VST2 fixed increment does not need Reg0 so only include it in |
| // the operands if not such an opcode. |
| else if (!isVSTfixed(Opc)) |
| Ops.push_back(Reg0); |
| } |
| Ops.push_back(SrcReg); |
| Ops.push_back(Pred); |
| Ops.push_back(Reg0); |
| Ops.push_back(Chain); |
| SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); |
| |
| // Transfer memoperands. |
| cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1); |
| |
| ReplaceNode(N, VSt); |
| return; |
| } |
| |
| // Otherwise, quad registers are stored with two separate instructions, |
| // where one stores the even registers and the other stores the odd registers. |
| |
| // Form the QQQQ REG_SEQUENCE. |
| SDValue V0 = N->getOperand(Vec0Idx + 0); |
| SDValue V1 = N->getOperand(Vec0Idx + 1); |
| SDValue V2 = N->getOperand(Vec0Idx + 2); |
| SDValue V3 = (NumVecs == 3) |
| ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0) |
| : N->getOperand(Vec0Idx + 3); |
| SDValue RegSeq = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0); |
| |
| // Store the even D registers. This is always an updating store, so that it |
| // provides the address to the second store for the odd subregs. |
| const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain }; |
| SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl, |
| MemAddr.getValueType(), |
| MVT::Other, OpsA); |
| cast<MachineSDNode>(VStA)->setMemRefs(MemOp, MemOp + 1); |
| Chain = SDValue(VStA, 1); |
| |
| // Store the odd D registers. |
| Ops.push_back(SDValue(VStA, 0)); |
| Ops.push_back(Align); |
| if (isUpdating) { |
| SDValue Inc = N->getOperand(AddrOpIdx + 1); |
| assert(isa<ConstantSDNode>(Inc.getNode()) && |
| "only constant post-increment update allowed for VST3/4"); |
| (void)Inc; |
| Ops.push_back(Reg0); |
| } |
| Ops.push_back(RegSeq); |
| Ops.push_back(Pred); |
| Ops.push_back(Reg0); |
| Ops.push_back(Chain); |
| SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, |
| Ops); |
| cast<MachineSDNode>(VStB)->setMemRefs(MemOp, MemOp + 1); |
| ReplaceNode(N, VStB); |
| } |
| |
| void ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating, |
| unsigned NumVecs, |
| const uint16_t *DOpcodes, |
| const uint16_t *QOpcodes) { |
| assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range"); |
| SDLoc dl(N); |
| |
| SDValue MemAddr, Align; |
| bool IsIntrinsic = !isUpdating; // By coincidence, all supported updating |
| // nodes are not intrinsics. |
| unsigned AddrOpIdx = IsIntrinsic ? 2 : 1; |
| unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1) |
| if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align)) |
| return; |
| |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); |
| |
| SDValue Chain = N->getOperand(0); |
| unsigned Lane = |
| cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue(); |
| EVT VT = N->getOperand(Vec0Idx).getValueType(); |
| bool is64BitVector = VT.is64BitVector(); |
| |
| unsigned Alignment = 0; |
| if (NumVecs != 3) { |
| Alignment = cast<ConstantSDNode>(Align)->getZExtValue(); |
| unsigned NumBytes = NumVecs * VT.getScalarSizeInBits() / 8; |
| if (Alignment > NumBytes) |
| Alignment = NumBytes; |
| if (Alignment < 8 && Alignment < NumBytes) |
| Alignment = 0; |
| // Alignment must be a power of two; make sure of that. |
| Alignment = (Alignment & -Alignment); |
| if (Alignment == 1) |
| Alignment = 0; |
| } |
| Align = CurDAG->getTargetConstant(Alignment, dl, MVT::i32); |
| |
| unsigned OpcodeIndex; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("unhandled vld/vst lane type"); |
| // Double-register operations: |
| case MVT::v8i8: OpcodeIndex = 0; break; |
| case MVT::v4i16: OpcodeIndex = 1; break; |
| case MVT::v2f32: |
| case MVT::v2i32: OpcodeIndex = 2; break; |
| // Quad-register operations: |
| case MVT::v8i16: OpcodeIndex = 0; break; |
| case MVT::v4f32: |
| case MVT::v4i32: OpcodeIndex = 1; break; |
| } |
| |
| std::vector<EVT> ResTys; |
| if (IsLoad) { |
| unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs; |
| if (!is64BitVector) |
| ResTyElts *= 2; |
| ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), |
| MVT::i64, ResTyElts)); |
| } |
| if (isUpdating) |
| ResTys.push_back(MVT::i32); |
| ResTys.push_back(MVT::Other); |
| |
| SDValue Pred = getAL(CurDAG, dl); |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(MemAddr); |
| Ops.push_back(Align); |
| if (isUpdating) { |
| SDValue Inc = N->getOperand(AddrOpIdx + 1); |
| bool IsImmUpdate = |
| isPerfectIncrement(Inc, VT.getVectorElementType(), NumVecs); |
| Ops.push_back(IsImmUpdate ? Reg0 : Inc); |
| } |
| |
| SDValue SuperReg; |
| SDValue V0 = N->getOperand(Vec0Idx + 0); |
| SDValue V1 = N->getOperand(Vec0Idx + 1); |
| if (NumVecs == 2) { |
| if (is64BitVector) |
| SuperReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0); |
| else |
| SuperReg = SDValue(createQRegPairNode(MVT::v4i64, V0, V1), 0); |
| } else { |
| SDValue V2 = N->getOperand(Vec0Idx + 2); |
| SDValue V3 = (NumVecs == 3) |
| ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0) |
| : N->getOperand(Vec0Idx + 3); |
| if (is64BitVector) |
| SuperReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0); |
| else |
| SuperReg = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0); |
| } |
| Ops.push_back(SuperReg); |
| Ops.push_back(getI32Imm(Lane, dl)); |
| Ops.push_back(Pred); |
| Ops.push_back(Reg0); |
| Ops.push_back(Chain); |
| |
| unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] : |
| QOpcodes[OpcodeIndex]); |
| SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); |
| cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1); |
| if (!IsLoad) { |
| ReplaceNode(N, VLdLn); |
| return; |
| } |
| |
| // Extract the subregisters. |
| SuperReg = SDValue(VLdLn, 0); |
| static_assert(ARM::dsub_7 == ARM::dsub_0 + 7 && |
| ARM::qsub_3 == ARM::qsub_0 + 3, |
| "Unexpected subreg numbering"); |
| unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0; |
| for (unsigned Vec = 0; Vec < NumVecs; ++Vec) |
| ReplaceUses(SDValue(N, Vec), |
| CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg)); |
| ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1)); |
| if (isUpdating) |
| ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2)); |
| CurDAG->RemoveDeadNode(N); |
| } |
| |
| void ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool IsIntrinsic, |
| bool isUpdating, unsigned NumVecs, |
| const uint16_t *DOpcodes, |
| const uint16_t *QOpcodes0, |
| const uint16_t *QOpcodes1) { |
| assert(NumVecs >= 1 && NumVecs <= 4 && "VLDDup NumVecs out-of-range"); |
| SDLoc dl(N); |
| |
| SDValue MemAddr, Align; |
| unsigned AddrOpIdx = IsIntrinsic ? 2 : 1; |
| if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align)) |
| return; |
| |
| SDValue Chain = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| bool is64BitVector = VT.is64BitVector(); |
| |
| unsigned Alignment = 0; |
| if (NumVecs != 3) { |
| Alignment = cast<ConstantSDNode>(Align)->getZExtValue(); |
| unsigned NumBytes = NumVecs * VT.getScalarSizeInBits() / 8; |
| if (Alignment > NumBytes) |
| Alignment = NumBytes; |
| if (Alignment < 8 && Alignment < NumBytes) |
| Alignment = 0; |
| // Alignment must be a power of two; make sure of that. |
| Alignment = (Alignment & -Alignment); |
| if (Alignment == 1) |
| Alignment = 0; |
| } |
| Align = CurDAG->getTargetConstant(Alignment, dl, MVT::i32); |
| |
| unsigned OpcodeIndex; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("unhandled vld-dup type"); |
| case MVT::v8i8: |
| case MVT::v16i8: OpcodeIndex = 0; break; |
| case MVT::v4i16: |
| case MVT::v8i16: OpcodeIndex = 1; break; |
| case MVT::v2f32: |
| case MVT::v2i32: |
| case MVT::v4f32: |
| case MVT::v4i32: OpcodeIndex = 2; break; |
| case MVT::v1f64: |
| case MVT::v1i64: OpcodeIndex = 3; break; |
| } |
| |
| unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs; |
| if (!is64BitVector) |
| ResTyElts *= 2; |
| EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts); |
| |
| std::vector<EVT> ResTys; |
| ResTys.push_back(ResTy); |
| if (isUpdating) |
| ResTys.push_back(MVT::i32); |
| ResTys.push_back(MVT::Other); |
| |
| SDValue Pred = getAL(CurDAG, dl); |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| |
| SDNode *VLdDup; |
| if (is64BitVector || NumVecs == 1) { |
| SmallVector<SDValue, 6> Ops; |
| Ops.push_back(MemAddr); |
| Ops.push_back(Align); |
| unsigned Opc = is64BitVector ? DOpcodes[OpcodeIndex] : |
| QOpcodes0[OpcodeIndex]; |
| if (isUpdating) { |
| // fixed-stride update instructions don't have an explicit writeback |
| // operand. It's implicit in the opcode itself. |
| SDValue Inc = N->getOperand(2); |
| bool IsImmUpdate = |
| isPerfectIncrement(Inc, VT.getVectorElementType(), NumVecs); |
| if (NumVecs <= 2 && !IsImmUpdate) |
| Opc = getVLDSTRegisterUpdateOpcode(Opc); |
| if (!IsImmUpdate) |
| Ops.push_back(Inc); |
| // FIXME: VLD3 and VLD4 haven't been updated to that form yet. |
| else if (NumVecs > 2) |
| Ops.push_back(Reg0); |
| } |
| Ops.push_back(Pred); |
| Ops.push_back(Reg0); |
| Ops.push_back(Chain); |
| VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); |
| } else if (NumVecs == 2) { |
| const SDValue OpsA[] = { MemAddr, Align, Pred, Reg0, Chain }; |
| SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], |
| dl, ResTys, OpsA); |
| |
| Chain = SDValue(VLdA, 1); |
| const SDValue OpsB[] = { MemAddr, Align, Pred, Reg0, Chain }; |
| VLdDup = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, OpsB); |
| } else { |
| SDValue ImplDef = |
| SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0); |
| const SDValue OpsA[] = { MemAddr, Align, ImplDef, Pred, Reg0, Chain }; |
| SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], |
| dl, ResTys, OpsA); |
| |
| SDValue SuperReg = SDValue(VLdA, 0); |
| Chain = SDValue(VLdA, 1); |
| const SDValue OpsB[] = { MemAddr, Align, SuperReg, Pred, Reg0, Chain }; |
| VLdDup = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, OpsB); |
| } |
| |
| // Transfer memoperands. |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); |
| cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1); |
| |
| // Extract the subregisters. |
| if (NumVecs == 1) { |
| ReplaceUses(SDValue(N, 0), SDValue(VLdDup, 0)); |
| } else { |
| SDValue SuperReg = SDValue(VLdDup, 0); |
| static_assert(ARM::dsub_7 == ARM::dsub_0 + 7, "Unexpected subreg numbering"); |
| unsigned SubIdx = is64BitVector ? ARM::dsub_0 : ARM::qsub_0; |
| for (unsigned Vec = 0; Vec != NumVecs; ++Vec) { |
| ReplaceUses(SDValue(N, Vec), |
| CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg)); |
| } |
| } |
| ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1)); |
| if (isUpdating) |
| ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2)); |
| CurDAG->RemoveDeadNode(N); |
| } |
| |
| bool ARMDAGToDAGISel::tryV6T2BitfieldExtractOp(SDNode *N, bool isSigned) { |
| if (!Subtarget->hasV6T2Ops()) |
| return false; |
| |
| unsigned Opc = isSigned |
| ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX) |
| : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX); |
| SDLoc dl(N); |
| |
| // For unsigned extracts, check for a shift right and mask |
| unsigned And_imm = 0; |
| if (N->getOpcode() == ISD::AND) { |
| if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) { |
| |
| // The immediate is a mask of the low bits iff imm & (imm+1) == 0 |
| if (And_imm & (And_imm + 1)) |
| return false; |
| |
| unsigned Srl_imm = 0; |
| if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL, |
| Srl_imm)) { |
| assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!"); |
| |
| // Note: The width operand is encoded as width-1. |
| unsigned Width = countTrailingOnes(And_imm) - 1; |
| unsigned LSB = Srl_imm; |
| |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| |
| if ((LSB + Width + 1) == N->getValueType(0).getSizeInBits()) { |
| // It's cheaper to use a right shift to extract the top bits. |
| if (Subtarget->isThumb()) { |
| Opc = isSigned ? ARM::t2ASRri : ARM::t2LSRri; |
| SDValue Ops[] = { N->getOperand(0).getOperand(0), |
| CurDAG->getTargetConstant(LSB, dl, MVT::i32), |
| getAL(CurDAG, dl), Reg0, Reg0 }; |
| CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops); |
| return true; |
| } |
| |
| // ARM models shift instructions as MOVsi with shifter operand. |
| ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(ISD::SRL); |
| SDValue ShOpc = |
| CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, LSB), dl, |
| MVT::i32); |
| SDValue Ops[] = { N->getOperand(0).getOperand(0), ShOpc, |
| getAL(CurDAG, dl), Reg0, Reg0 }; |
| CurDAG->SelectNodeTo(N, ARM::MOVsi, MVT::i32, Ops); |
| return true; |
| } |
| |
| assert(LSB + Width + 1 <= 32 && "Shouldn't create an invalid ubfx"); |
| SDValue Ops[] = { N->getOperand(0).getOperand(0), |
| CurDAG->getTargetConstant(LSB, dl, MVT::i32), |
| CurDAG->getTargetConstant(Width, dl, MVT::i32), |
| getAL(CurDAG, dl), Reg0 }; |
| CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Otherwise, we're looking for a shift of a shift |
| unsigned Shl_imm = 0; |
| if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) { |
| assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!"); |
| unsigned Srl_imm = 0; |
| if (isInt32Immediate(N->getOperand(1), Srl_imm)) { |
| assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!"); |
| // Note: The width operand is encoded as width-1. |
| unsigned Width = 32 - Srl_imm - 1; |
| int LSB = Srl_imm - Shl_imm; |
| if (LSB < 0) |
| return false; |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| assert(LSB + Width + 1 <= 32 && "Shouldn't create an invalid ubfx"); |
| SDValue Ops[] = { N->getOperand(0).getOperand(0), |
| CurDAG->getTargetConstant(LSB, dl, MVT::i32), |
| CurDAG->getTargetConstant(Width, dl, MVT::i32), |
| getAL(CurDAG, dl), Reg0 }; |
| CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops); |
| return true; |
| } |
| } |
| |
| // Or we are looking for a shift of an and, with a mask operand |
| if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, And_imm) && |
| isShiftedMask_32(And_imm)) { |
| unsigned Srl_imm = 0; |
| unsigned LSB = countTrailingZeros(And_imm); |
| // Shift must be the same as the ands lsb |
| if (isInt32Immediate(N->getOperand(1), Srl_imm) && Srl_imm == LSB) { |
| assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!"); |
| unsigned MSB = 31 - countLeadingZeros(And_imm); |
| // Note: The width operand is encoded as width-1. |
| unsigned Width = MSB - LSB; |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| assert(Srl_imm + Width + 1 <= 32 && "Shouldn't create an invalid ubfx"); |
| SDValue Ops[] = { N->getOperand(0).getOperand(0), |
| CurDAG->getTargetConstant(Srl_imm, dl, MVT::i32), |
| CurDAG->getTargetConstant(Width, dl, MVT::i32), |
| getAL(CurDAG, dl), Reg0 }; |
| CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops); |
| return true; |
| } |
| } |
| |
| if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); |
| unsigned LSB = 0; |
| if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL, LSB) && |
| !isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRA, LSB)) |
| return false; |
| |
| if (LSB + Width > 32) |
| return false; |
| |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| assert(LSB + Width <= 32 && "Shouldn't create an invalid ubfx"); |
| SDValue Ops[] = { N->getOperand(0).getOperand(0), |
| CurDAG->getTargetConstant(LSB, dl, MVT::i32), |
| CurDAG->getTargetConstant(Width - 1, dl, MVT::i32), |
| getAL(CurDAG, dl), Reg0 }; |
| CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Target-specific DAG combining for ISD::XOR. |
| /// Target-independent combining lowers SELECT_CC nodes of the form |
| /// select_cc setg[ge] X, 0, X, -X |
| /// select_cc setgt X, -1, X, -X |
| /// select_cc setl[te] X, 0, -X, X |
| /// select_cc setlt X, 1, -X, X |
| /// which represent Integer ABS into: |
| /// Y = sra (X, size(X)-1); xor (add (X, Y), Y) |
| /// ARM instruction selection detects the latter and matches it to |
| /// ARM::ABS or ARM::t2ABS machine node. |
| bool ARMDAGToDAGISel::tryABSOp(SDNode *N){ |
| SDValue XORSrc0 = N->getOperand(0); |
| SDValue XORSrc1 = N->getOperand(1); |
| EVT VT = N->getValueType(0); |
| |
| if (Subtarget->isThumb1Only()) |
| return false; |
| |
| if (XORSrc0.getOpcode() != ISD::ADD || XORSrc1.getOpcode() != ISD::SRA) |
| return false; |
| |
| SDValue ADDSrc0 = XORSrc0.getOperand(0); |
| SDValue ADDSrc1 = XORSrc0.getOperand(1); |
| SDValue SRASrc0 = XORSrc1.getOperand(0); |
| SDValue SRASrc1 = XORSrc1.getOperand(1); |
| ConstantSDNode *SRAConstant = dyn_cast<ConstantSDNode>(SRASrc1); |
| EVT XType = SRASrc0.getValueType(); |
| unsigned Size = XType.getSizeInBits() - 1; |
| |
| if (ADDSrc1 == XORSrc1 && ADDSrc0 == SRASrc0 && |
| XType.isInteger() && SRAConstant != nullptr && |
| Size == SRAConstant->getZExtValue()) { |
| unsigned Opcode = Subtarget->isThumb2() ? ARM::t2ABS : ARM::ABS; |
| CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// We've got special pseudo-instructions for these |
| void ARMDAGToDAGISel::SelectCMP_SWAP(SDNode *N) { |
| unsigned Opcode; |
| EVT MemTy = cast<MemSDNode>(N)->getMemoryVT(); |
| if (MemTy == MVT::i8) |
| Opcode = ARM::CMP_SWAP_8; |
| else if (MemTy == MVT::i16) |
| Opcode = ARM::CMP_SWAP_16; |
| else if (MemTy == MVT::i32) |
| Opcode = ARM::CMP_SWAP_32; |
| else |
| llvm_unreachable("Unknown AtomicCmpSwap type"); |
| |
| SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3), |
| N->getOperand(0)}; |
| SDNode *CmpSwap = CurDAG->getMachineNode( |
| Opcode, SDLoc(N), |
| CurDAG->getVTList(MVT::i32, MVT::i32, MVT::Other), Ops); |
| |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = cast<MemSDNode>(N)->getMemOperand(); |
| cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1); |
| |
| ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0)); |
| ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2)); |
| CurDAG->RemoveDeadNode(N); |
| } |
| |
| static Optional<std::pair<unsigned, unsigned>> |
| getContiguousRangeOfSetBits(const APInt &A) { |
| unsigned FirstOne = A.getBitWidth() - A.countLeadingZeros() - 1; |
| unsigned LastOne = A.countTrailingZeros(); |
| if (A.countPopulation() != (FirstOne - LastOne + 1)) |
| return Optional<std::pair<unsigned,unsigned>>(); |
| return std::make_pair(FirstOne, LastOne); |
| } |
| |
| void ARMDAGToDAGISel::SelectCMPZ(SDNode *N, bool &SwitchEQNEToPLMI) { |
| assert(N->getOpcode() == ARMISD::CMPZ); |
| SwitchEQNEToPLMI = false; |
| |
| if (!Subtarget->isThumb()) |
| // FIXME: Work out whether it is profitable to do this in A32 mode - LSL and |
| // LSR don't exist as standalone instructions - they need the barrel shifter. |
| return; |
| |
| // select (cmpz (and X, C), #0) -> (LSLS X) or (LSRS X) or (LSRS (LSLS X)) |
| SDValue And = N->getOperand(0); |
| if (!And->hasOneUse()) |
| return; |
| |
| SDValue Zero = N->getOperand(1); |
| if (!isa<ConstantSDNode>(Zero) || !cast<ConstantSDNode>(Zero)->isNullValue() || |
| And->getOpcode() != ISD::AND) |
| return; |
| SDValue X = And.getOperand(0); |
| auto C = dyn_cast<ConstantSDNode>(And.getOperand(1)); |
| |
| if (!C) |
| return; |
| auto Range = getContiguousRangeOfSetBits(C->getAPIntValue()); |
| if (!Range) |
| return; |
| |
| // There are several ways to lower this: |
| SDNode *NewN; |
| SDLoc dl(N); |
| |
| auto EmitShift = [&](unsigned Opc, SDValue Src, unsigned Imm) -> SDNode* { |
| if (Subtarget->isThumb2()) { |
| Opc = (Opc == ARM::tLSLri) ? ARM::t2LSLri : ARM::t2LSRri; |
| SDValue Ops[] = { Src, CurDAG->getTargetConstant(Imm, dl, MVT::i32), |
| getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32), |
| CurDAG->getRegister(0, MVT::i32) }; |
| return CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops); |
| } else { |
| SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32), Src, |
| CurDAG->getTargetConstant(Imm, dl, MVT::i32), |
| getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32)}; |
| return CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops); |
| } |
| }; |
| |
| if (Range->second == 0) { |
| // 1. Mask includes the LSB -> Simply shift the top N bits off |
| NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first); |
| ReplaceNode(And.getNode(), NewN); |
| } else if (Range->first == 31) { |
| // 2. Mask includes the MSB -> Simply shift the bottom N bits off |
| NewN = EmitShift(ARM::tLSRri, X, Range->second); |
| ReplaceNode(And.getNode(), NewN); |
| } else if (Range->first == Range->second) { |
| // 3. Only one bit is set. We can shift this into the sign bit and use a |
| // PL/MI comparison. |
| NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first); |
| ReplaceNode(And.getNode(), NewN); |
| |
| SwitchEQNEToPLMI = true; |
| } else if (!Subtarget->hasV6T2Ops()) { |
| // 4. Do a double shift to clear bottom and top bits, but only in |
| // thumb-1 mode as in thumb-2 we can use UBFX. |
| NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first); |
| NewN = EmitShift(ARM::tLSRri, SDValue(NewN, 0), |
| Range->second + (31 - Range->first)); |
| ReplaceNode(And.getNode(), NewN); |
| } |
| |
| } |
| |
| void ARMDAGToDAGISel::Select(SDNode *N) { |
| SDLoc dl(N); |
| |
| if (N->isMachineOpcode()) { |
| N->setNodeId(-1); |
| return; // Already selected. |
| } |
| |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::WRITE_REGISTER: |
| if (tryWriteRegister(N)) |
| return; |
| break; |
| case ISD::READ_REGISTER: |
| if (tryReadRegister(N)) |
| return; |
| break; |
| case ISD::INLINEASM: |
| if (tryInlineAsm(N)) |
| return; |
| break; |
| case ISD::XOR: |
| // Select special operations if XOR node forms integer ABS pattern |
| if (tryABSOp(N)) |
| return; |
| // Other cases are autogenerated. |
| break; |
| case ISD::Constant: { |
| unsigned Val = cast<ConstantSDNode>(N)->getZExtValue(); |
| // If we can't materialize the constant we need to use a literal pool |
| if (ConstantMaterializationCost(Val) > 2) { |
| SDValue CPIdx = CurDAG->getTargetConstantPool( |
| ConstantInt::get(Type::getInt32Ty(*CurDAG->getContext()), Val), |
| TLI->getPointerTy(CurDAG->getDataLayout())); |
| |
| SDNode *ResNode; |
| if (Subtarget->isThumb()) { |
| SDValue Ops[] = { |
| CPIdx, |
| getAL(CurDAG, dl), |
| CurDAG->getRegister(0, MVT::i32), |
| CurDAG->getEntryNode() |
| }; |
| ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other, |
| Ops); |
| } else { |
| SDValue Ops[] = { |
| CPIdx, |
| CurDAG->getTargetConstant(0, dl, MVT::i32), |
| getAL(CurDAG, dl), |
| CurDAG->getRegister(0, MVT::i32), |
| CurDAG->getEntryNode() |
| }; |
| ResNode = CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other, |
| Ops); |
| } |
| // Annotate the Node with memory operand information so that MachineInstr |
| // queries work properly. This e.g. gives the register allocation the |
| // required information for rematerialization. |
| MachineFunction& MF = CurDAG->getMachineFunction(); |
| MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1); |
| MemOp[0] = MF.getMachineMemOperand( |
| MachinePointerInfo::getConstantPool(MF), |
| MachineMemOperand::MOLoad, 4, 4); |
| |
| cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp+1); |
| |
| ReplaceNode(N, ResNode); |
| return; |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::FrameIndex: { |
| // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm. |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| SDValue TFI = CurDAG->getTargetFrameIndex( |
| FI, TLI->getPointerTy(CurDAG->getDataLayout())); |
| if (Subtarget->isThumb1Only()) { |
| // Set the alignment of the frame object to 4, to avoid having to generate |
| // more than one ADD |
| MachineFrameInfo &MFI = MF->getFrameInfo(); |
| if (MFI.getObjectAlignment(FI) < 4) |
| MFI.setObjectAlignment(FI, 4); |
| CurDAG->SelectNodeTo(N, ARM::tADDframe, MVT::i32, TFI, |
| CurDAG->getTargetConstant(0, dl, MVT::i32)); |
| return; |
| } else { |
| unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ? |
| ARM::t2ADDri : ARM::ADDri); |
| SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, dl, MVT::i32), |
| getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32), |
| CurDAG->getRegister(0, MVT::i32) }; |
| CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops); |
| return; |
| } |
| } |
| case ISD::SRL: |
| if (tryV6T2BitfieldExtractOp(N, false)) |
| return; |
| break; |
| case ISD::SIGN_EXTEND_INREG: |
| case ISD::SRA: |
| if (tryV6T2BitfieldExtractOp(N, true)) |
| return; |
| break; |
| case ISD::MUL: |
| if (Subtarget->isThumb1Only()) |
| break; |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) { |
| unsigned RHSV = C->getZExtValue(); |
| if (!RHSV) break; |
| if (isPowerOf2_32(RHSV-1)) { // 2^n+1? |
| unsigned ShImm = Log2_32(RHSV-1); |
| if (ShImm >= 32) |
| break; |
| SDValue V = N->getOperand(0); |
| ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm); |
| SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, dl, MVT::i32); |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| if (Subtarget->isThumb()) { |
| SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG, dl), Reg0, Reg0 }; |
| CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops); |
| return; |
| } else { |
| SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG, dl), Reg0, |
| Reg0 }; |
| CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops); |
| return; |
| } |
| } |
| if (isPowerOf2_32(RHSV+1)) { // 2^n-1? |
| unsigned ShImm = Log2_32(RHSV+1); |
| if (ShImm >= 32) |
| break; |
| SDValue V = N->getOperand(0); |
| ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm); |
| SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, dl, MVT::i32); |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| if (Subtarget->isThumb()) { |
| SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG, dl), Reg0, Reg0 }; |
| CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops); |
| return; |
| } else { |
| SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG, dl), Reg0, |
| Reg0 }; |
| CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops); |
| return; |
| } |
| } |
| } |
| break; |
| case ISD::AND: { |
| // Check for unsigned bitfield extract |
| if (tryV6T2BitfieldExtractOp(N, false)) |
| return; |
| |
| // If an immediate is used in an AND node, it is possible that the immediate |
| // can be more optimally materialized when negated. If this is the case we |
| // can negate the immediate and use a BIC instead. |
| auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (N1C && N1C->hasOneUse() && Subtarget->isThumb()) { |
| uint32_t Imm = (uint32_t) N1C->getZExtValue(); |
| |
| // In Thumb2 mode, an AND can take a 12-bit immediate. If this |
| // immediate can be negated and fit in the immediate operand of |
| // a t2BIC, don't do any manual transform here as this can be |
| // handled by the generic ISel machinery. |
| bool PreferImmediateEncoding = |
| Subtarget->hasThumb2() && (is_t2_so_imm(Imm) || is_t2_so_imm_not(Imm)); |
| if (!PreferImmediateEncoding && |
| ConstantMaterializationCost(Imm) > |
| ConstantMaterializationCost(~Imm)) { |
| // The current immediate costs more to materialize than a negated |
| // immediate, so negate the immediate and use a BIC. |
| SDValue NewImm = |
| CurDAG->getConstant(~N1C->getZExtValue(), dl, MVT::i32); |
| // If the new constant didn't exist before, reposition it in the topological |
| // ordering so it is just before N. Otherwise, don't touch its location. |
| if (NewImm->getNodeId() == -1) |
| CurDAG->RepositionNode(N->getIterator(), NewImm.getNode()); |
| |
| if (!Subtarget->hasThumb2()) { |
| SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32), |
| N->getOperand(0), NewImm, getAL(CurDAG, dl), |
| CurDAG->getRegister(0, MVT::i32)}; |
| ReplaceNode(N, CurDAG->getMachineNode(ARM::tBIC, dl, MVT::i32, Ops)); |
| return; |
| } else { |
| SDValue Ops[] = {N->getOperand(0), NewImm, getAL(CurDAG, dl), |
| CurDAG->getRegister(0, MVT::i32), |
| CurDAG->getRegister(0, MVT::i32)}; |
| ReplaceNode(N, |
| CurDAG->getMachineNode(ARM::t2BICrr, dl, MVT::i32, Ops)); |
| return; |
| } |
| } |
| } |
| |
| // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits |
| // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits |
| // are entirely contributed by c2 and lower 16-bits are entirely contributed |
| // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)). |
| // Select it to: "movt x, ((c1 & 0xffff) >> 16) |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i32) |
| break; |
| unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2()) |
| ? ARM::t2MOVTi16 |
| : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0); |
| if (!Opc) |
| break; |
| SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); |
| N1C = dyn_cast<ConstantSDNode>(N1); |
| if (!N1C) |
| break; |
| if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) { |
| SDValue N2 = N0.getOperand(1); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); |
| if (!N2C) |
| break; |
| unsigned N1CVal = N1C->getZExtValue(); |
| unsigned N2CVal = N2C->getZExtValue(); |
| if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) && |
| (N1CVal & 0xffffU) == 0xffffU && |
| (N2CVal & 0xffffU) == 0x0U) { |
| SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16, |
| dl, MVT::i32); |
| SDValue Ops[] = { N0.getOperand(0), Imm16, |
| getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32) }; |
| ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops)); |
| return; |
| } |
| } |
| |
| break; |
| } |
| case ARMISD::UMAAL: { |
| unsigned Opc = Subtarget->isThumb() ? ARM::t2UMAAL : ARM::UMAAL; |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1), |
| N->getOperand(2), N->getOperand(3), |
| getAL(CurDAG, dl), |
| CurDAG->getRegister(0, MVT::i32) }; |
| ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::i32, Ops)); |
| return; |
| } |
| case ARMISD::UMLAL:{ |
| if (Subtarget->isThumb()) { |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), |
| N->getOperand(3), getAL(CurDAG, dl), |
| CurDAG->getRegister(0, MVT::i32)}; |
| ReplaceNode( |
| N, CurDAG->getMachineNode(ARM::t2UMLAL, dl, MVT::i32, MVT::i32, Ops)); |
| return; |
| }else{ |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), |
| N->getOperand(3), getAL(CurDAG, dl), |
| CurDAG->getRegister(0, MVT::i32), |
| CurDAG->getRegister(0, MVT::i32) }; |
| ReplaceNode(N, CurDAG->getMachineNode( |
| Subtarget->hasV6Ops() ? ARM::UMLAL : ARM::UMLALv5, dl, |
| MVT::i32, MVT::i32, Ops)); |
| return; |
| } |
| } |
| case ARMISD::SMLAL:{ |
| if (Subtarget->isThumb()) { |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), |
| N->getOperand(3), getAL(CurDAG, dl), |
| CurDAG->getRegister(0, MVT::i32)}; |
| ReplaceNode( |
| N, CurDAG->getMachineNode(ARM::t2SMLAL, dl, MVT::i32, MVT::i32, Ops)); |
| return; |
| }else{ |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), |
| N->getOperand(3), getAL(CurDAG, dl), |
| CurDAG->getRegister(0, MVT::i32), |
| CurDAG->getRegister(0, MVT::i32) }; |
| ReplaceNode(N, CurDAG->getMachineNode( |
| Subtarget->hasV6Ops() ? ARM::SMLAL : ARM::SMLALv5, dl, |
| MVT::i32, MVT::i32, Ops)); |
| return; |
| } |
| } |
| case ARMISD::SUBE: { |
| if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP()) |
| break; |
| // Look for a pattern to match SMMLS |
| // (sube a, (smul_loHi a, b), (subc 0, (smul_LOhi(a, b)))) |
| if (N->getOperand(1).getOpcode() != ISD::SMUL_LOHI || |
| N->getOperand(2).getOpcode() != ARMISD::SUBC || |
| !SDValue(N, 1).use_empty()) |
| break; |
| |
| if (Subtarget->isThumb()) |
| assert(Subtarget->hasThumb2() && |
| "This pattern should not be generated for Thumb"); |
| |
| SDValue SmulLoHi = N->getOperand(1); |
| SDValue Subc = N->getOperand(2); |
| auto *Zero = dyn_cast<ConstantSDNode>(Subc.getOperand(0)); |
| |
| if (!Zero || Zero->getZExtValue() != 0 || |
| Subc.getOperand(1) != SmulLoHi.getValue(0) || |
| N->getOperand(1) != SmulLoHi.getValue(1) || |
| N->getOperand(2) != Subc.getValue(1)) |
| break; |
| |
| unsigned Opc = Subtarget->isThumb2() ? ARM::t2SMMLS : ARM::SMMLS; |
| SDValue Ops[] = { SmulLoHi.getOperand(0), SmulLoHi.getOperand(1), |
| N->getOperand(0), getAL(CurDAG, dl), |
| CurDAG->getRegister(0, MVT::i32) }; |
| ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops)); |
| return; |
| } |
| case ISD::LOAD: { |
| if (Subtarget->isThumb() && Subtarget->hasThumb2()) { |
| if (tryT2IndexedLoad(N)) |
| return; |
| } else if (Subtarget->isThumb()) { |
| if (tryT1IndexedLoad(N)) |
| return; |
| } else if (tryARMIndexedLoad(N)) |
| return; |
| // Other cases are autogenerated. |
| break; |
| } |
| case ARMISD::BRCOND: { |
| // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) |
| // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc) |
| // Pattern complexity = 6 cost = 1 size = 0 |
| |
| // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) |
| // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc) |
| // Pattern complexity = 6 cost = 1 size = 0 |
| |
| // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) |
| // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc) |
| // Pattern complexity = 6 cost = 1 size = 0 |
| |
| unsigned Opc = Subtarget->isThumb() ? |
| ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc; |
| SDValue Chain = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| SDValue N3 = N->getOperand(3); |
| SDValue InFlag = N->getOperand(4); |
| assert(N1.getOpcode() == ISD::BasicBlock); |
| assert(N2.getOpcode() == ISD::Constant); |
| assert(N3.getOpcode() == ISD::Register); |
| |
| unsigned CC = (unsigned) cast<ConstantSDNode>(N2)->getZExtValue(); |
| |
| if (InFlag.getOpcode() == ARMISD::CMPZ) { |
| bool SwitchEQNEToPLMI; |
| SelectCMPZ(InFlag.getNode(), SwitchEQNEToPLMI); |
| InFlag = N->getOperand(4); |
| |
| if (SwitchEQNEToPLMI) { |
| switch ((ARMCC::CondCodes)CC) { |
| default: llvm_unreachable("CMPZ must be either NE or EQ!"); |
| case ARMCC::NE: |
| CC = (unsigned)ARMCC::MI; |
| break; |
| case ARMCC::EQ: |
| CC = (unsigned)ARMCC::PL; |
| break; |
| } |
| } |
| } |
| |
| SDValue Tmp2 = CurDAG->getTargetConstant(CC, dl, MVT::i32); |
| SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag }; |
| SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, |
| MVT::Glue, Ops); |
| Chain = SDValue(ResNode, 0); |
| if (N->getNumValues() == 2) { |
| InFlag = SDValue(ResNode, 1); |
| ReplaceUses(SDValue(N, 1), InFlag); |
| } |
| ReplaceUses(SDValue(N, 0), |
| SDValue(Chain.getNode(), Chain.getResNo())); |
| CurDAG->RemoveDeadNode(N); |
| return; |
| } |
| |
| case ARMISD::CMPZ: { |
| // select (CMPZ X, #-C) -> (CMPZ (ADDS X, #C), #0) |
| // This allows us to avoid materializing the expensive negative constant. |
| // The CMPZ #0 is useless and will be peepholed away but we need to keep it |
| // for its glue output. |
| SDValue X = N->getOperand(0); |
| auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1).getNode()); |
| if (C && C->getSExtValue() < 0 && Subtarget->isThumb()) { |
| int64_t Addend = -C->getSExtValue(); |
| |
| SDNode *Add = nullptr; |
| // ADDS can be better than CMN if the immediate fits in a |
| // 16-bit ADDS, which means either [0,256) for tADDi8 or [0,8) for tADDi3. |
| // Outside that range we can just use a CMN which is 32-bit but has a |
| // 12-bit immediate range. |
| if (Addend < 1<<8) { |
| if (Subtarget->isThumb2()) { |
| SDValue Ops[] = { X, CurDAG->getTargetConstant(Addend, dl, MVT::i32), |
| getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32), |
| CurDAG->getRegister(0, MVT::i32) }; |
| Add = CurDAG->getMachineNode(ARM::t2ADDri, dl, MVT::i32, Ops); |
| } else { |
| unsigned Opc = (Addend < 1<<3) ? ARM::tADDi3 : ARM::tADDi8; |
| SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32), X, |
| CurDAG->getTargetConstant(Addend, dl, MVT::i32), |
| getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32)}; |
| Add = CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops); |
| } |
| } |
| if (Add) { |
| SDValue Ops2[] = {SDValue(Add, 0), CurDAG->getConstant(0, dl, MVT::i32)}; |
| CurDAG->MorphNodeTo(N, ARMISD::CMPZ, CurDAG->getVTList(MVT::Glue), Ops2); |
| } |
| } |
| // Other cases are autogenerated. |
| break; |
| } |
| |
| case ARMISD::CMOV: { |
| SDValue InFlag = N->getOperand(4); |
| |
| if (InFlag.getOpcode() == ARMISD::CMPZ) { |
| bool SwitchEQNEToPLMI; |
| SelectCMPZ(InFlag.getNode(), SwitchEQNEToPLMI); |
| |
| if (SwitchEQNEToPLMI) { |
| SDValue ARMcc = N->getOperand(2); |
| ARMCC::CondCodes CC = |
| (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue(); |
| |
| switch (CC) { |
| default: llvm_unreachable("CMPZ must be either NE or EQ!"); |
| case ARMCC::NE: |
| CC = ARMCC::MI; |
| break; |
| case ARMCC::EQ: |
| CC = ARMCC::PL; |
| break; |
| } |
| SDValue NewARMcc = CurDAG->getConstant((unsigned)CC, dl, MVT::i32); |
| SDValue Ops[] = {N->getOperand(0), N->getOperand(1), NewARMcc, |
| N->getOperand(3), N->getOperand(4)}; |
| CurDAG->MorphNodeTo(N, ARMISD::CMOV, N->getVTList(), Ops); |
| } |
| |
| } |
| // Other cases are autogenerated. |
| break; |
| } |
| |
| case ARMISD::VZIP: { |
| unsigned Opc = 0; |
| EVT VT = N->getValueType(0); |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return; |
| case MVT::v8i8: Opc = ARM::VZIPd8; break; |
| case MVT::v4i16: Opc = ARM::VZIPd16; break; |
| case MVT::v2f32: |
| // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm. |
| case MVT::v2i32: Opc = ARM::VTRNd32; break; |
| case MVT::v16i8: Opc = ARM::VZIPq8; break; |
| case MVT::v8i16: Opc = ARM::VZIPq16; break; |
| case MVT::v4f32: |
| case MVT::v4i32: Opc = ARM::VZIPq32; break; |
| } |
| SDValue Pred = getAL(CurDAG, dl); |
| SDValue PredReg = CurDAG->getRegister(0, MVT::i32); |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; |
| ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops)); |
| return; |
| } |
| case ARMISD::VUZP: { |
| unsigned Opc = 0; |
| EVT VT = N->getValueType(0); |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return; |
| case MVT::v8i8: Opc = ARM::VUZPd8; break; |
| case MVT::v4i16: Opc = ARM::VUZPd16; break; |
| case MVT::v2f32: |
| // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm. |
| case MVT::v2i32: Opc = ARM::VTRNd32; break; |
| case MVT::v16i8: Opc = ARM::VUZPq8; break; |
| case MVT::v8i16: Opc = ARM::VUZPq16; break; |
| case MVT::v4f32: |
| case MVT::v4i32: Opc = ARM::VUZPq32; break; |
| } |
| SDValue Pred = getAL(CurDAG, dl); |
| SDValue PredReg = CurDAG->getRegister(0, MVT::i32); |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; |
| ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops)); |
| return; |
| } |
| case ARMISD::VTRN: { |
| unsigned Opc = 0; |
| EVT VT = N->getValueType(0); |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return; |
| case MVT::v8i8: Opc = ARM::VTRNd8; break; |
| case MVT::v4i16: Opc = ARM::VTRNd16; break; |
| case MVT::v2f32: |
| case MVT::v2i32: Opc = ARM::VTRNd32; break; |
| case MVT::v16i8: Opc = ARM::VTRNq8; break; |
| case MVT::v8i16: Opc = ARM::VTRNq16; break; |
| case MVT::v4f32: |
| case MVT::v4i32: Opc = ARM::VTRNq32; break; |
| } |
| SDValue Pred = getAL(CurDAG, dl); |
| SDValue PredReg = CurDAG->getRegister(0, MVT::i32); |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; |
| ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops)); |
| return; |
| } |
| case ARMISD::BUILD_VECTOR: { |
| EVT VecVT = N->getValueType(0); |
| EVT EltVT = VecVT.getVectorElementType(); |
| unsigned NumElts = VecVT.getVectorNumElements(); |
| if (EltVT == MVT::f64) { |
| assert(NumElts == 2 && "unexpected type for BUILD_VECTOR"); |
| ReplaceNode( |
| N, createDRegPairNode(VecVT, N->getOperand(0), N->getOperand(1))); |
| return; |
| } |
| assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR"); |
| if (NumElts == 2) { |
| ReplaceNode( |
| N, createSRegPairNode(VecVT, N->getOperand(0), N->getOperand(1))); |
| return; |
| } |
| assert(NumElts == 4 && "unexpected type for BUILD_VECTOR"); |
| ReplaceNode(N, |
| createQuadSRegsNode(VecVT, N->getOperand(0), N->getOperand(1), |
| N->getOperand(2), N->getOperand(3))); |
| return; |
| } |
| |
| case ARMISD::VLD1DUP: { |
| static const uint16_t DOpcodes[] = { ARM::VLD1DUPd8, ARM::VLD1DUPd16, |
| ARM::VLD1DUPd32 }; |
| static const uint16_t QOpcodes[] = { ARM::VLD1DUPq8, ARM::VLD1DUPq16, |
| ARM::VLD1DUPq32 }; |
| SelectVLDDup(N, /* IsIntrinsic= */ false, false, 1, DOpcodes, QOpcodes); |
| return; |
| } |
| |
| case ARMISD::VLD2DUP: { |
| static const uint16_t Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16, |
| ARM::VLD2DUPd32 }; |
| SelectVLDDup(N, /* IsIntrinsic= */ false, false, 2, Opcodes); |
| return; |
| } |
| |
| case ARMISD::VLD3DUP: { |
| static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo, |
| ARM::VLD3DUPd16Pseudo, |
| ARM::VLD3DUPd32Pseudo }; |
| SelectVLDDup(N, /* IsIntrinsic= */ false, false, 3, Opcodes); |
| return; |
| } |
| |
| case ARMISD::VLD4DUP: { |
| static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo, |
| ARM::VLD4DUPd16Pseudo, |
| ARM::VLD4DUPd32Pseudo }; |
| SelectVLDDup(N, /* IsIntrinsic= */ false, false, 4, Opcodes); |
| return; |
| } |
| |
| case ARMISD::VLD1DUP_UPD: { |
| static const uint16_t DOpcodes[] = { ARM::VLD1DUPd8wb_fixed, |
| ARM::VLD1DUPd16wb_fixed, |
| ARM::VLD1DUPd32wb_fixed }; |
| static const uint16_t QOpcodes[] = { ARM::VLD1DUPq8wb_fixed, |
| ARM::VLD1DUPq16wb_fixed, |
| ARM::VLD1DUPq32wb_fixed }; |
| SelectVLDDup(N, /* IsIntrinsic= */ false, true, 1, DOpcodes, QOpcodes); |
| return; |
| } |
| |
| case ARMISD::VLD2DUP_UPD: { |
| static const uint16_t Opcodes[] = { ARM::VLD2DUPd8wb_fixed, |
| ARM::VLD2DUPd16wb_fixed, |
| ARM::VLD2DUPd32wb_fixed }; |
| SelectVLDDup(N, /* IsIntrinsic= */ false, true, 2, Opcodes); |
| return; |
| } |
| |
| case ARMISD::VLD3DUP_UPD: { |
| static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD, |
| ARM::VLD3DUPd16Pseudo_UPD, |
| ARM::VLD3DUPd32Pseudo_UPD }; |
| SelectVLDDup(N, /* IsIntrinsic= */ false, true, 3, Opcodes); |
| return; |
| } |
| |
| case ARMISD::VLD4DUP_UPD: { |
| static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD, |
| ARM::VLD4DUPd16Pseudo_UPD, |
| ARM::VLD4DUPd32Pseudo_UPD }; |
| SelectVLDDup(N, /* IsIntrinsic= */ false, true, 4, Opcodes); |
| return; |
| } |
| |
| case ARMISD::VLD1_UPD: { |
| static const uint16_t DOpcodes[] = { ARM::VLD1d8wb_fixed, |
| ARM::VLD1d16wb_fixed, |
| ARM::VLD1d32wb_fixed, |
| ARM::VLD1d64wb_fixed }; |
| static const uint16_t QOpcodes[] = { ARM::VLD1q8wb_fixed, |
| ARM::VLD1q16wb_fixed, |
| ARM::VLD1q32wb_fixed, |
| ARM::VLD1q64wb_fixed }; |
| SelectVLD(N, true, 1, DOpcodes, QOpcodes, nullptr); |
| return; |
| } |
| |
| case ARMISD::VLD2_UPD: { |
| static const uint16_t DOpcodes[] = { ARM::VLD2d8wb_fixed, |
| ARM::VLD2d16wb_fixed, |
| ARM::VLD2d32wb_fixed, |
| ARM::VLD1q64wb_fixed}; |
| static const uint16_t QOpcodes[] = { ARM::VLD2q8PseudoWB_fixed, |
| ARM::VLD2q16PseudoWB_fixed, |
| ARM::VLD2q32PseudoWB_fixed }; |
| SelectVLD(N, true, 2, DOpcodes, QOpcodes, nullptr); |
| return; |
| } |
| |
| case ARMISD::VLD3_UPD: { |
| static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo_UPD, |
| ARM::VLD3d16Pseudo_UPD, |
| ARM::VLD3d32Pseudo_UPD, |
| ARM::VLD1d64TPseudoWB_fixed}; |
| static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD, |
| ARM::VLD3q16Pseudo_UPD, |
| ARM::VLD3q32Pseudo_UPD }; |
| static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD, |
| ARM::VLD3q16oddPseudo_UPD, |
| ARM::VLD3q32oddPseudo_UPD }; |
| SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1); |
| return; |
| } |
| |
| case ARMISD::VLD4_UPD: { |
| static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo_UPD, |
| ARM::VLD4d16Pseudo_UPD, |
| ARM::VLD4d32Pseudo_UPD, |
| ARM::VLD1d64QPseudoWB_fixed}; |
| static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD, |
| ARM::VLD4q16Pseudo_UPD, |
| ARM::VLD4q32Pseudo_UPD }; |
| static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD, |
| ARM::VLD4q16oddPseudo_UPD, |
| ARM::VLD4q32oddPseudo_UPD }; |
| SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1); |
| return; |
| } |
| |
| case ARMISD::VLD2LN_UPD: { |
| static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD, |
| ARM::VLD2LNd16Pseudo_UPD, |
| ARM::VLD2LNd32Pseudo_UPD }; |
| static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD, |
| ARM::VLD2LNq32Pseudo_UPD }; |
| SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes); |
| return; |
| } |
| |
| case ARMISD::VLD3LN_UPD: { |
| static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD, |
| ARM::VLD3LNd16Pseudo_UPD, |
| ARM::VLD3LNd32Pseudo_UPD }; |
| static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD, |
| ARM::VLD3LNq32Pseudo_UPD }; |
| SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes); |
| return; |
| } |
| |
| case ARMISD::VLD4LN_UPD: { |
| static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD, |
| ARM::VLD4LNd16Pseudo_UPD, |
| ARM::VLD4LNd32Pseudo_UPD }; |
| static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD, |
| ARM::VLD4LNq32Pseudo_UPD }; |
| SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes); |
| return; |
| } |
| |
| case ARMISD::VST1_UPD: { |
| static const uint16_t DOpcodes[] = { ARM::VST1d8wb_fixed, |
| ARM::VST1d16wb_fixed, |
| ARM::VST1d32wb_fixed, |
| ARM::VST1d64wb_fixed }; |
| static const uint16_t QOpcodes[] = { ARM::VST1q8wb_fixed, |
| ARM::VST1q16wb_fixed, |
| ARM::VST1q32wb_fixed, |
| ARM::VST1q64wb_fixed }; |
| SelectVST(N, true, 1, DOpcodes, QOpcodes, nullptr); |
| return; |
| } |
| |
| case ARMISD::VST2_UPD: { |
| static const uint16_t DOpcodes[] = { ARM::VST2d8wb_fixed, |
| ARM::VST2d16wb_fixed, |
| ARM::VST2d32wb_fixed, |
| ARM::VST1q64wb_fixed}; |
| static const uint16_t QOpcodes[] = { ARM::VST2q8PseudoWB_fixed, |
| ARM::VST2q16PseudoWB_fixed, |
| ARM::VST2q32PseudoWB_fixed }; |
| SelectVST(N, true, 2, DOpcodes, QOpcodes, nullptr); |
| return; |
| } |
| |
| case ARMISD::VST3_UPD: { |
| static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo_UPD, |
| ARM::VST3d16Pseudo_UPD, |
| ARM::VST3d32Pseudo_UPD, |
| ARM::VST1d64TPseudoWB_fixed}; |
| static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD, |
| ARM::VST3q16Pseudo_UPD, |
| ARM::VST3q32Pseudo_UPD }; |
| static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD, |
| ARM::VST3q16oddPseudo_UPD, |
| ARM::VST3q32oddPseudo_UPD }; |
| SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1); |
| return; |
| } |
| |
| case ARMISD::VST4_UPD: { |
| static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo_UPD, |
| ARM::VST4d16Pseudo_UPD, |
| ARM::VST4d32Pseudo_UPD, |
| ARM::VST1d64QPseudoWB_fixed}; |
| static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD, |
| ARM::VST4q16Pseudo_UPD, |
| ARM::VST4q32Pseudo_UPD }; |
| static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD, |
| ARM::VST4q16oddPseudo_UPD, |
| ARM::VST4q32oddPseudo_UPD }; |
| SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1); |
| return; |
| } |
| |
| case ARMISD::VST2LN_UPD: { |
| static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD, |
| ARM::VST2LNd16Pseudo_UPD, |
| ARM::VST2LNd32Pseudo_UPD }; |
| static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD, |
| ARM::VST2LNq32Pseudo_UPD }; |
| SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes); |
| return; |
| } |
| |
| case ARMISD::VST3LN_UPD: { |
| static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD, |
| ARM::VST3LNd16Pseudo_UPD, |
| ARM::VST3LNd32Pseudo_UPD }; |
| static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD, |
| ARM::VST3LNq32Pseudo_UPD }; |
| SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes); |
| return; |
| } |
| |
| case ARMISD::VST4LN_UPD: { |
| static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD, |
| ARM::VST4LNd16Pseudo_UPD, |
| ARM::VST4LNd32Pseudo_UPD }; |
| static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD, |
| ARM::VST4LNq32Pseudo_UPD }; |
| SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes); |
| return; |
| } |
| |
| case ISD::INTRINSIC_VOID: |
| case ISD::INTRINSIC_W_CHAIN: { |
| unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| switch (IntNo) { |
| default: |
| break; |
| |
| case Intrinsic::arm_mrrc: |
| case Intrinsic::arm_mrrc2: { |
| SDLoc dl(N); |
| SDValue Chain = N->getOperand(0); |
| unsigned Opc; |
| |
| if (Subtarget->isThumb()) |
| Opc = (IntNo == Intrinsic::arm_mrrc ? ARM::t2MRRC : ARM::t2MRRC2); |
| else |
| Opc = (IntNo == Intrinsic::arm_mrrc ? ARM::MRRC : ARM::MRRC2); |
| |
| SmallVector<SDValue, 5> Ops; |
| Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(), dl)); /* coproc */ |
| Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(3))->getZExtValue(), dl)); /* opc */ |
| Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(4))->getZExtValue(), dl)); /* CRm */ |
| |
| // The mrrc2 instruction in ARM doesn't allow predicates, the top 4 bits of the encoded |
| // instruction will always be '1111' but it is possible in assembly language to specify |
| // AL as a predicate to mrrc2 but it doesn't make any difference to the encoded instruction. |
| if (Opc != ARM::MRRC2) { |
| Ops.push_back(getAL(CurDAG, dl)); |
| Ops.push_back(CurDAG->getRegister(0, MVT::i32)); |
| } |
| |
| Ops.push_back(Chain); |
| |
| // Writes to two registers. |
| const EVT RetType[] = {MVT::i32, MVT::i32, MVT::Other}; |
| |
| ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, RetType, Ops)); |
| return; |
| } |
| case Intrinsic::arm_ldaexd: |
| case Intrinsic::arm_ldrexd: { |
| SDLoc dl(N); |
| SDValue Chain = N->getOperand(0); |
| SDValue MemAddr = N->getOperand(2); |
| bool isThumb = Subtarget->isThumb() && Subtarget->hasV8MBaselineOps(); |
| |
| bool IsAcquire = IntNo == Intrinsic::arm_ldaexd; |
| unsigned NewOpc = isThumb ? (IsAcquire ? ARM::t2LDAEXD : ARM::t2LDREXD) |
| : (IsAcquire ? ARM::LDAEXD : ARM::LDREXD); |
| |
| // arm_ldrexd returns a i64 value in {i32, i32} |
| std::vector<EVT> ResTys; |
| if (isThumb) { |
| ResTys.push_back(MVT::i32); |
| ResTys.push_back(MVT::i32); |
| } else |
| ResTys.push_back(MVT::Untyped); |
| ResTys.push_back(MVT::Other); |
| |
| // Place arguments in the right order. |
| SDValue Ops[] = {MemAddr, getAL(CurDAG, dl), |
| CurDAG->getRegister(0, MVT::i32), Chain}; |
| SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops); |
| // Transfer memoperands. |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); |
| cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1); |
| |
| // Remap uses. |
| SDValue OutChain = isThumb ? SDValue(Ld, 2) : SDValue(Ld, 1); |
| if (!SDValue(N, 0).use_empty()) { |
| SDValue Result; |
| if (isThumb) |
| Result = SDValue(Ld, 0); |
| else { |
| SDValue SubRegIdx = |
| CurDAG->getTargetConstant(ARM::gsub_0, dl, MVT::i32); |
| SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, |
| dl, MVT::i32, SDValue(Ld, 0), SubRegIdx); |
| Result = SDValue(ResNode,0); |
| } |
| ReplaceUses(SDValue(N, 0), Result); |
| } |
| if (!SDValue(N, 1).use_empty()) { |
| SDValue Result; |
| if (isThumb) |
| Result = SDValue(Ld, 1); |
| else { |
| SDValue SubRegIdx = |
| CurDAG->getTargetConstant(ARM::gsub_1, dl, MVT::i32); |
| SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, |
| dl, MVT::i32, SDValue(Ld, 0), SubRegIdx); |
| Result = SDValue(ResNode,0); |
| } |
| ReplaceUses(SDValue(N, 1), Result); |
| } |
| ReplaceUses(SDValue(N, 2), OutChain); |
| CurDAG->RemoveDeadNode(N); |
| return; |
| } |
| case Intrinsic::arm_stlexd: |
| case Intrinsic::arm_strexd: { |
| SDLoc dl(N); |
| SDValue Chain = N->getOperand(0); |
| SDValue Val0 = N->getOperand(2); |
| SDValue Val1 = N->getOperand(3); |
| SDValue MemAddr = N->getOperand(4); |
| |
| // Store exclusive double return a i32 value which is the return status |
| // of the issued store. |
| const EVT ResTys[] = {MVT::i32, MVT::Other}; |
| |
| bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2(); |
| // Place arguments in the right order. |
| SmallVector<SDValue, 7> Ops; |
| if (isThumb) { |
| Ops.push_back(Val0); |
| Ops.push_back(Val1); |
| } else |
| // arm_strexd uses GPRPair. |
| Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, Val0, Val1), 0)); |
| Ops.push_back(MemAddr); |
| Ops.push_back(getAL(CurDAG, dl)); |
| Ops.push_back(CurDAG->getRegister(0, MVT::i32)); |
| Ops.push_back(Chain); |
| |
| bool IsRelease = IntNo == Intrinsic::arm_stlexd; |
| unsigned NewOpc = isThumb ? (IsRelease ? ARM::t2STLEXD : ARM::t2STREXD) |
| : (IsRelease ? ARM::STLEXD : ARM::STREXD); |
| |
| SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops); |
| // Transfer memoperands. |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); |
| cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1); |
| |
| ReplaceNode(N, St); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vld1: { |
| static const uint16_t DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16, |
| ARM::VLD1d32, ARM::VLD1d64 }; |
| static const uint16_t QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16, |
| ARM::VLD1q32, ARM::VLD1q64}; |
| SelectVLD(N, false, 1, DOpcodes, QOpcodes, nullptr); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vld1x2: { |
| static const uint16_t DOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16, |
| ARM::VLD1q32, ARM::VLD1q64 }; |
| static const uint16_t QOpcodes[] = { ARM::VLD1d8QPseudo, |
| ARM::VLD1d16QPseudo, |
| ARM::VLD1d32QPseudo, |
| ARM::VLD1d64QPseudo }; |
| SelectVLD(N, false, 2, DOpcodes, QOpcodes, nullptr); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vld1x3: { |
| static const uint16_t DOpcodes[] = { ARM::VLD1d8TPseudo, |
| ARM::VLD1d16TPseudo, |
| ARM::VLD1d32TPseudo, |
| ARM::VLD1d64TPseudo }; |
| static const uint16_t QOpcodes0[] = { ARM::VLD1q8LowTPseudo_UPD, |
| ARM::VLD1q16LowTPseudo_UPD, |
| ARM::VLD1q32LowTPseudo_UPD, |
| ARM::VLD1q64LowTPseudo_UPD }; |
| static const uint16_t QOpcodes1[] = { ARM::VLD1q8HighTPseudo, |
| ARM::VLD1q16HighTPseudo, |
| ARM::VLD1q32HighTPseudo, |
| ARM::VLD1q64HighTPseudo }; |
| SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vld1x4: { |
| static const uint16_t DOpcodes[] = { ARM::VLD1d8QPseudo, |
| ARM::VLD1d16QPseudo, |
| ARM::VLD1d32QPseudo, |
| ARM::VLD1d64QPseudo }; |
| static const uint16_t QOpcodes0[] = { ARM::VLD1q8LowQPseudo_UPD, |
| ARM::VLD1q16LowQPseudo_UPD, |
| ARM::VLD1q32LowQPseudo_UPD, |
| ARM::VLD1q64LowQPseudo_UPD }; |
| static const uint16_t QOpcodes1[] = { ARM::VLD1q8HighQPseudo, |
| ARM::VLD1q16HighQPseudo, |
| ARM::VLD1q32HighQPseudo, |
| ARM::VLD1q64HighQPseudo }; |
| SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vld2: { |
| static const uint16_t DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16, |
| ARM::VLD2d32, ARM::VLD1q64 }; |
| static const uint16_t QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo, |
| ARM::VLD2q32Pseudo }; |
| SelectVLD(N, false, 2, DOpcodes, QOpcodes, nullptr); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vld3: { |
| static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo, |
| ARM::VLD3d16Pseudo, |
| ARM::VLD3d32Pseudo, |
| ARM::VLD1d64TPseudo }; |
| static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD, |
| ARM::VLD3q16Pseudo_UPD, |
| ARM::VLD3q32Pseudo_UPD }; |
| static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo, |
| ARM::VLD3q16oddPseudo, |
| ARM::VLD3q32oddPseudo }; |
| SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vld4: { |
| static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo, |
| ARM::VLD4d16Pseudo, |
| ARM::VLD4d32Pseudo, |
| ARM::VLD1d64QPseudo }; |
| static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD, |
| ARM::VLD4q16Pseudo_UPD, |
| ARM::VLD4q32Pseudo_UPD }; |
| static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo, |
| ARM::VLD4q16oddPseudo, |
| ARM::VLD4q32oddPseudo }; |
| SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vld2dup: { |
| static const uint16_t DOpcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16, |
| ARM::VLD2DUPd32, ARM::VLD1q64 }; |
| static const uint16_t QOpcodes0[] = { ARM::VLD2DUPq8EvenPseudo, |
| ARM::VLD2DUPq16EvenPseudo, |
| ARM::VLD2DUPq32EvenPseudo }; |
| static const uint16_t QOpcodes1[] = { ARM::VLD2DUPq8OddPseudo, |
| ARM::VLD2DUPq16OddPseudo, |
| ARM::VLD2DUPq32OddPseudo }; |
| SelectVLDDup(N, /* IsIntrinsic= */ true, false, 2, |
| DOpcodes, QOpcodes0, QOpcodes1); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vld3dup: { |
| static const uint16_t DOpcodes[] = { ARM::VLD3DUPd8Pseudo, |
| ARM::VLD3DUPd16Pseudo, |
| ARM::VLD3DUPd32Pseudo, |
| ARM::VLD1d64TPseudo }; |
| static const uint16_t QOpcodes0[] = { ARM::VLD3DUPq8EvenPseudo, |
| ARM::VLD3DUPq16EvenPseudo, |
| ARM::VLD3DUPq32EvenPseudo }; |
| static const uint16_t QOpcodes1[] = { ARM::VLD3DUPq8OddPseudo, |
| ARM::VLD3DUPq16OddPseudo, |
| ARM::VLD3DUPq32OddPseudo }; |
| SelectVLDDup(N, /* IsIntrinsic= */ true, false, 3, |
| DOpcodes, QOpcodes0, QOpcodes1); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vld4dup: { |
| static const uint16_t DOpcodes[] = { ARM::VLD4DUPd8Pseudo, |
| ARM::VLD4DUPd16Pseudo, |
| ARM::VLD4DUPd32Pseudo, |
| ARM::VLD1d64QPseudo }; |
| static const uint16_t QOpcodes0[] = { ARM::VLD4DUPq8EvenPseudo, |
| ARM::VLD4DUPq16EvenPseudo, |
| ARM::VLD4DUPq32EvenPseudo }; |
| static const uint16_t QOpcodes1[] = { ARM::VLD4DUPq8OddPseudo, |
| ARM::VLD4DUPq16OddPseudo, |
| ARM::VLD4DUPq32OddPseudo }; |
| SelectVLDDup(N, /* IsIntrinsic= */ true, false, 4, |
| DOpcodes, QOpcodes0, QOpcodes1); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vld2lane: { |
| static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo, |
| ARM::VLD2LNd16Pseudo, |
| ARM::VLD2LNd32Pseudo }; |
| static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo, |
| ARM::VLD2LNq32Pseudo }; |
| SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vld3lane: { |
| static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo, |
| ARM::VLD3LNd16Pseudo, |
| ARM::VLD3LNd32Pseudo }; |
| static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo, |
| ARM::VLD3LNq32Pseudo }; |
| SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vld4lane: { |
| static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo, |
| ARM::VLD4LNd16Pseudo, |
| ARM::VLD4LNd32Pseudo }; |
| static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo, |
| ARM::VLD4LNq32Pseudo }; |
| SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vst1: { |
| static const uint16_t DOpcodes[] = { ARM::VST1d8, ARM::VST1d16, |
| ARM::VST1d32, ARM::VST1d64 }; |
| static const uint16_t QOpcodes[] = { ARM::VST1q8, ARM::VST1q16, |
| ARM::VST1q32, ARM::VST1q64 }; |
| SelectVST(N, false, 1, DOpcodes, QOpcodes, nullptr); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vst1x2: { |
| static const uint16_t DOpcodes[] = { ARM::VST1q8, ARM::VST1q16, |
| ARM::VST1q32, ARM::VST1q64 }; |
| static const uint16_t QOpcodes[] = { ARM::VST1d8QPseudo, |
| ARM::VST1d16QPseudo, |
| ARM::VST1d32QPseudo, |
| ARM::VST1d64QPseudo }; |
| SelectVST(N, false, 2, DOpcodes, QOpcodes, nullptr); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vst1x3: { |
| static const uint16_t DOpcodes[] = { ARM::VST1d8TPseudo, |
| ARM::VST1d16TPseudo, |
| ARM::VST1d32TPseudo, |
| ARM::VST1d64TPseudo }; |
| static const uint16_t QOpcodes0[] = { ARM::VST1q8LowTPseudo_UPD, |
| ARM::VST1q16LowTPseudo_UPD, |
| ARM::VST1q32LowTPseudo_UPD, |
| ARM::VST1q64LowTPseudo_UPD }; |
| static const uint16_t QOpcodes1[] = { ARM::VST1q8HighTPseudo, |
| ARM::VST1q16HighTPseudo, |
| ARM::VST1q32HighTPseudo, |
| ARM::VST1q64HighTPseudo }; |
| SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vst1x4: { |
| static const uint16_t DOpcodes[] = { ARM::VST1d8QPseudo, |
| ARM::VST1d16QPseudo, |
| ARM::VST1d32QPseudo, |
| ARM::VST1d64QPseudo }; |
| static const uint16_t QOpcodes0[] = { ARM::VST1q8LowQPseudo_UPD, |
| ARM::VST1q16LowQPseudo_UPD, |
| ARM::VST1q32LowQPseudo_UPD, |
| ARM::VST1q64LowQPseudo_UPD }; |
| static const uint16_t QOpcodes1[] = { ARM::VST1q8HighQPseudo, |
| ARM::VST1q16HighQPseudo, |
| ARM::VST1q32HighQPseudo, |
| ARM::VST1q64HighQPseudo }; |
| SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vst2: { |
| static const uint16_t DOpcodes[] = { ARM::VST2d8, ARM::VST2d16, |
| ARM::VST2d32, ARM::VST1q64 }; |
| static const uint16_t QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo, |
| ARM::VST2q32Pseudo }; |
| SelectVST(N, false, 2, DOpcodes, QOpcodes, nullptr); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vst3: { |
| static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo, |
| ARM::VST3d16Pseudo, |
| ARM::VST3d32Pseudo, |
| ARM::VST1d64TPseudo }; |
| static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD, |
| ARM::VST3q16Pseudo_UPD, |
| ARM::VST3q32Pseudo_UPD }; |
| static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo, |
| ARM::VST3q16oddPseudo, |
| ARM::VST3q32oddPseudo }; |
| SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vst4: { |
| static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo, |
| ARM::VST4d16Pseudo, |
| ARM::VST4d32Pseudo, |
| ARM::VST1d64QPseudo }; |
| static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD, |
| ARM::VST4q16Pseudo_UPD, |
| ARM::VST4q32Pseudo_UPD }; |
| static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo, |
| ARM::VST4q16oddPseudo, |
| ARM::VST4q32oddPseudo }; |
| SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vst2lane: { |
| static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo, |
| ARM::VST2LNd16Pseudo, |
| ARM::VST2LNd32Pseudo }; |
| static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo, |
| ARM::VST2LNq32Pseudo }; |
| SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vst3lane: { |
| static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo, |
| ARM::VST3LNd16Pseudo, |
| ARM::VST3LNd32Pseudo }; |
| static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo, |
| ARM::VST3LNq32Pseudo }; |
| SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes); |
| return; |
| } |
| |
| case Intrinsic::arm_neon_vst4lane: { |
| static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo, |
| ARM::VST4LNd16Pseudo, |
| ARM::VST4LNd32Pseudo }; |
| static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo, |
| ARM::VST4LNq32Pseudo }; |
| SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes); |
| return; |
| } |
| } |
| break; |
| } |
| |
| case ISD::ATOMIC_CMP_SWAP: |
| SelectCMP_SWAP(N); |
| return; |
| } |
| |
| SelectCode(N); |
| } |
| |
| // Inspect a register string of the form |
| // cp<coprocessor>:<opc1>:c<CRn>:c<CRm>:<opc2> (32bit) or |
| // cp<coprocessor>:<opc1>:c<CRm> (64bit) inspect the fields of the string |
| // and obtain the integer operands from them, adding these operands to the |
| // provided vector. |
| static void getIntOperandsFromRegisterString(StringRef RegString, |
| SelectionDAG *CurDAG, |
| const SDLoc &DL, |
| std::vector<SDValue> &Ops) { |
| SmallVector<StringRef, 5> Fields; |
| RegString.split(Fields, ':'); |
| |
| if (Fields.size() > 1) { |
| bool AllIntFields = true; |
| |
| for (StringRef Field : Fields) { |
| // Need to trim out leading 'cp' characters and get the integer field. |
| unsigned IntField; |
| AllIntFields &= !Field.trim("CPcp").getAsInteger(10, IntField); |
| Ops.push_back(CurDAG->getTargetConstant(IntField, DL, MVT::i32)); |
| } |
| |
| assert(AllIntFields && |
| "Unexpected non-integer value in special register string."); |
| } |
| } |
| |
| // Maps a Banked Register string to its mask value. The mask value returned is |
| // for use in the MRSbanked / MSRbanked instruction nodes as the Banked Register |
| // mask operand, which expresses which register is to be used, e.g. r8, and in |
| // which mode it is to be used, e.g. usr. Returns -1 to signify that the string |
| // was invalid. |
| static inline int getBankedRegisterMask(StringRef RegString) { |
| auto TheReg = ARMBankedReg::lookupBankedRegByName(RegString.lower()); |
| if (!TheReg) |
| return -1; |
| return TheReg->Encoding; |
| } |
| |
| // The flags here are common to those allowed for apsr in the A class cores and |
| // those allowed for the special registers in the M class cores. Returns a |
| // value representing which flags were present, -1 if invalid. |
| static inline int getMClassFlagsMask(StringRef Flags) { |
| return StringSwitch<int>(Flags) |
| .Case("", 0x2) // no flags means nzcvq for psr registers, and 0x2 is |
| // correct when flags are not permitted |
| .Case("g", 0x1) |
| .Case("nzcvq", 0x2) |
| .Case("nzcvqg", 0x3) |
| .Default(-1); |
| } |
| |
| // Maps MClass special registers string to its value for use in the |
| // t2MRS_M/t2MSR_M instruction nodes as the SYSm value operand. |
| // Returns -1 to signify that the string was invalid. |
| static int getMClassRegisterMask(StringRef Reg, const ARMSubtarget *Subtarget) { |
| auto TheReg = ARMSysReg::lookupMClassSysRegByName(Reg); |
| const FeatureBitset &FeatureBits = Subtarget->getFeatureBits(); |
| if (!TheReg || !TheReg->hasRequiredFeatures(FeatureBits)) |
| return -1; |
| return (int)(TheReg->Encoding & 0xFFF); // SYSm value |
| } |
| |
| static int getARClassRegisterMask(StringRef Reg, StringRef Flags) { |
| // The mask operand contains the special register (R Bit) in bit 4, whether |
| // the register is spsr (R bit is 1) or one of cpsr/apsr (R bit is 0), and |
| // bits 3-0 contains the fields to be accessed in the special register, set by |
| // the flags provided with the register. |
| int Mask = 0; |
| if (Reg == "apsr") { |
| // The flags permitted for apsr are the same flags that are allowed in |
| // M class registers. We get the flag value and then shift the flags into |
| // the correct place to combine with the mask. |
| Mask = getMClassFlagsMask(Flags); |
| if (Mask == -1) |
| return -1; |
| return Mask << 2; |
| } |
| |
| if (Reg != "cpsr" && Reg != "spsr") { |
| return -1; |
| } |
| |
| // This is the same as if the flags were "fc" |
| if (Flags.empty() || Flags == "all") |
| return Mask | 0x9; |
| |
| // Inspect the supplied flags string and set the bits in the mask for |
| // the relevant and valid flags allowed for cpsr and spsr. |
| for (char Flag : Flags) { |
| int FlagVal; |
| switch (Flag) { |
| case 'c': |
| FlagVal = 0x1; |
| break; |
| case 'x': |
| FlagVal = 0x2; |
| break; |
| case 's': |
| FlagVal = 0x4; |
| break; |
| case 'f': |
| FlagVal = 0x8; |
| break; |
| default: |
| FlagVal = 0; |
| } |
| |
| // This avoids allowing strings where the same flag bit appears twice. |
| if (!FlagVal || (Mask & FlagVal)) |
| return -1; |
| Mask |= FlagVal; |
| } |
| |
| // If the register is spsr then we need to set the R bit. |
| if (Reg == "spsr") |
| Mask |= 0x10; |
| |
| return Mask; |
| } |
| |
| // Lower the read_register intrinsic to ARM specific DAG nodes |
| // using the supplied metadata string to select the instruction node to use |
| // and the registers/masks to construct as operands for the node. |
| bool ARMDAGToDAGISel::tryReadRegister(SDNode *N){ |
| const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1)); |
| const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0)); |
| bool IsThumb2 = Subtarget->isThumb2(); |
| SDLoc DL(N); |
| |
| std::vector<SDValue> Ops; |
| getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops); |
| |
| if (!Ops.empty()) { |
| // If the special register string was constructed of fields (as defined |
| // in the ACLE) then need to lower to MRC node (32 bit) or |
| // MRRC node(64 bit), we can make the distinction based on the number of |
| // operands we have. |
| unsigned Opcode; |
| SmallVector<EVT, 3> ResTypes; |
| if (Ops.size() == 5){ |
| Opcode = IsThumb2 ? ARM::t2MRC : ARM::MRC; |
| ResTypes.append({ MVT::i32, MVT::Other }); |
| } else { |
| assert(Ops.size() == 3 && |
| "Invalid number of fields in special register string."); |
| Opcode = IsThumb2 ? ARM::t2MRRC : ARM::MRRC; |
| ResTypes.append({ MVT::i32, MVT::i32, MVT::Other }); |
| } |
| |
| Ops.push_back(getAL(CurDAG, DL)); |
| Ops.push_back(CurDAG->getRegister(0, MVT::i32)); |
| Ops.push_back(N->getOperand(0)); |
| ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, ResTypes, Ops)); |
| return true; |
| } |
| |
| std::string SpecialReg = RegString->getString().lower(); |
| |
| int BankedReg = getBankedRegisterMask(SpecialReg); |
| if (BankedReg != -1) { |
| Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32), |
| getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32), |
| N->getOperand(0) }; |
| ReplaceNode( |
| N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSbanked : ARM::MRSbanked, |
| DL, MVT::i32, MVT::Other, Ops)); |
| return true; |
| } |
| |
| // The VFP registers are read by creating SelectionDAG nodes with opcodes |
| // corresponding to the register that is being read from. So we switch on the |
| // string to find which opcode we need to use. |
| unsigned Opcode = StringSwitch<unsigned>(SpecialReg) |
| .Case("fpscr", ARM::VMRS) |
| .Case("fpexc", ARM::VMRS_FPEXC) |
| .Case("fpsid", ARM::VMRS_FPSID) |
| .Case("mvfr0", ARM::VMRS_MVFR0) |
| .Case("mvfr1", ARM::VMRS_MVFR1) |
| .Case("mvfr2", ARM::VMRS_MVFR2) |
| .Case("fpinst", ARM::VMRS_FPINST) |
| .Case("fpinst2", ARM::VMRS_FPINST2) |
| .Default(0); |
| |
| // If an opcode was found then we can lower the read to a VFP instruction. |
| if (Opcode) { |
| if (!Subtarget->hasVFP2()) |
| return false; |
| if (Opcode == ARM::VMRS_MVFR2 && !Subtarget->hasFPARMv8()) |
| return false; |
| |
| Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32), |
| N->getOperand(0) }; |
| ReplaceNode(N, |
| CurDAG->getMachineNode(Opcode, DL, MVT::i32, MVT::Other, Ops)); |
| return true; |
| } |
| |
| // If the target is M Class then need to validate that the register string |
| // is an acceptable value, so check that a mask can be constructed from the |
| // string. |
| if (Subtarget->isMClass()) { |
| int SYSmValue = getMClassRegisterMask(SpecialReg, Subtarget); |
| if (SYSmValue == -1) |
| return false; |
| |
| SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32), |
| getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32), |
| N->getOperand(0) }; |
| ReplaceNode( |
| N, CurDAG->getMachineNode(ARM::t2MRS_M, DL, MVT::i32, MVT::Other, Ops)); |
| return true; |
| } |
| |
| // Here we know the target is not M Class so we need to check if it is one |
| // of the remaining possible values which are apsr, cpsr or spsr. |
| if (SpecialReg == "apsr" || SpecialReg == "cpsr") { |
| Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32), |
| N->getOperand(0) }; |
| ReplaceNode(N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRS_AR : ARM::MRS, |
| DL, MVT::i32, MVT::Other, Ops)); |
| return true; |
| } |
| |
| if (SpecialReg == "spsr") { |
| Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32), |
| N->getOperand(0) }; |
| ReplaceNode( |
| N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSsys_AR : ARM::MRSsys, DL, |
| MVT::i32, MVT::Other, Ops)); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Lower the write_register intrinsic to ARM specific DAG nodes |
| // using the supplied metadata string to select the instruction node to use |
| // and the registers/masks to use in the nodes |
| bool ARMDAGToDAGISel::tryWriteRegister(SDNode *N){ |
| const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1)); |
| const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0)); |
| bool IsThumb2 = Subtarget->isThumb2(); |
| SDLoc DL(N); |
| |
| std::vector<SDValue> Ops; |
| getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops); |
| |
| if (!Ops.empty()) { |
| // If the special register string was constructed of fields (as defined |
| // in the ACLE) then need to lower to MCR node (32 bit) or |
| // MCRR node(64 bit), we can make the distinction based on the number of |
| // operands we have. |
| unsigned Opcode; |
| if (Ops.size() == 5) { |
| Opcode = IsThumb2 ? ARM::t2MCR : ARM::MCR; |
| Ops.insert(Ops.begin()+2, N->getOperand(2)); |
| } else { |
| assert(Ops.size() == 3 && |
| "Invalid number of fields in special register string."); |
| Opcode = IsThumb2 ? ARM::t2MCRR : ARM::MCRR; |
| SDValue WriteValue[] = { N->getOperand(2), N->getOperand(3) }; |
| Ops.insert(Ops.begin()+2, WriteValue, WriteValue+2); |
| } |
| |
| Ops.push_back(getAL(CurDAG, DL)); |
| Ops.push_back(CurDAG->getRegister(0, MVT::i32)); |
| Ops.push_back(N->getOperand(0)); |
| |
| ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops)); |
| return true; |
| } |
| |
| std::string SpecialReg = RegString->getString().lower(); |
| int BankedReg = getBankedRegisterMask(SpecialReg); |
| if (BankedReg != -1) { |
| Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32), N->getOperand(2), |
| getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32), |
| N->getOperand(0) }; |
| ReplaceNode( |
| N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSRbanked : ARM::MSRbanked, |
| DL, MVT::Other, Ops)); |
| return true; |
| } |
| |
| // The VFP registers are written to by creating SelectionDAG nodes with |
| // opcodes corresponding to the register that is being written. So we switch |
| // on the string to find which opcode we need to use. |
| unsigned Opcode = StringSwitch<unsigned>(SpecialReg) |
| .Case("fpscr", ARM::VMSR) |
| .Case("fpexc", ARM::VMSR_FPEXC) |
| .Case("fpsid", ARM::VMSR_FPSID) |
| .Case("fpinst", ARM::VMSR_FPINST) |
| .Case("fpinst2", ARM::VMSR_FPINST2) |
| .Default(0); |
| |
| if (Opcode) { |
| if (!Subtarget->hasVFP2()) |
| return false; |
| Ops = { N->getOperand(2), getAL(CurDAG, DL), |
| CurDAG->getRegister(0, MVT::i32), N->getOperand(0) }; |
| ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops)); |
| return true; |
| } |
| |
| std::pair<StringRef, StringRef> Fields; |
| Fields = StringRef(SpecialReg).rsplit('_'); |
| std::string Reg = Fields.first.str(); |
| StringRef Flags = Fields.second; |
| |
| // If the target was M Class then need to validate the special register value |
| // and retrieve the mask for use in the instruction node. |
| if (Subtarget->isMClass()) { |
| int SYSmValue = getMClassRegisterMask(SpecialReg, Subtarget); |
| if (SYSmValue == -1) |
| return false; |
| |
| SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32), |
| N->getOperand(2), getAL(CurDAG, DL), |
| CurDAG->getRegister(0, MVT::i32), N->getOperand(0) }; |
| ReplaceNode(N, CurDAG->getMachineNode(ARM::t2MSR_M, DL, MVT::Other, Ops)); |
| return true; |
| } |
| |
| // We then check to see if a valid mask can be constructed for one of the |
| // register string values permitted for the A and R class cores. These values |
| // are apsr, spsr and cpsr; these are also valid on older cores. |
| int Mask = getARClassRegisterMask(Reg, Flags); |
| if (Mask != -1) { |
| Ops = { CurDAG->getTargetConstant(Mask, DL, MVT::i32), N->getOperand(2), |
| getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32), |
| N->getOperand(0) }; |
| ReplaceNode(N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSR_AR : ARM::MSR, |
| DL, MVT::Other, Ops)); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool ARMDAGToDAGISel::tryInlineAsm(SDNode *N){ |
| std::vector<SDValue> AsmNodeOperands; |
| unsigned Flag, Kind; |
| bool Changed = false; |
| unsigned NumOps = N->getNumOperands(); |
| |
| // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint. |
| // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require |
| // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs |
| // respectively. Since there is no constraint to explicitly specify a |
| // reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb, |
| // the 64-bit data may be referred by H, Q, R modifiers, so we still pack |
| // them into a GPRPair. |
| |
| SDLoc dl(N); |
| SDValue Glue = N->getGluedNode() ? N->getOperand(NumOps-1) |
| : SDValue(nullptr,0); |
| |
| SmallVector<bool, 8> OpChanged; |
| // Glue node will be appended late. |
| for(unsigned i = 0, e = N->getGluedNode() ? NumOps - 1 : NumOps; i < e; ++i) { |
| SDValue op = N->getOperand(i); |
| AsmNodeOperands.push_back(op); |
| |
| if (i < InlineAsm::Op_FirstOperand) |
| continue; |
| |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(i))) { |
| Flag = C->getZExtValue(); |
| Kind = InlineAsm::getKind(Flag); |
| } |
| else |
| continue; |
| |
| // Immediate operands to inline asm in the SelectionDAG are modeled with |
| // two operands. The first is a constant of value InlineAsm::Kind_Imm, and |
| // the second is a constant with the value of the immediate. If we get here |
| // and we have a Kind_Imm, skip the next operand, and continue. |
| if (Kind == InlineAsm::Kind_Imm) { |
| SDValue op = N->getOperand(++i); |
| AsmNodeOperands.push_back(op); |
| continue; |
| } |
| |
| unsigned NumRegs = InlineAsm::getNumOperandRegisters(Flag); |
| if (NumRegs) |
| OpChanged.push_back(false); |
| |
| unsigned DefIdx = 0; |
| bool IsTiedToChangedOp = false; |
| // If it's a use that is tied with a previous def, it has no |
| // reg class constraint. |
| if (Changed && InlineAsm::isUseOperandTiedToDef(Flag, DefIdx)) |
| IsTiedToChangedOp = OpChanged[DefIdx]; |
| |
| // Memory operands to inline asm in the SelectionDAG are modeled with two |
| // operands: a constant of value InlineAsm::Kind_Mem followed by the input |
| // operand. If we get here and we have a Kind_Mem, skip the next operand (so |
| // it doesn't get misinterpreted), and continue. We do this here because |
| // it's important to update the OpChanged array correctly before moving on. |
| if (Kind == InlineAsm::Kind_Mem) { |
| SDValue op = N->getOperand(++i); |
| AsmNodeOperands.push_back(op); |
| continue; |
| } |
| |
| if (Kind != InlineAsm::Kind_RegUse && Kind != InlineAsm::Kind_RegDef |
| && Kind != InlineAsm::Kind_RegDefEarlyClobber) |
| continue; |
| |
| unsigned RC; |
| bool HasRC = InlineAsm::hasRegClassConstraint(Flag, RC); |
| if ((!IsTiedToChangedOp && (!HasRC || RC != ARM::GPRRegClassID)) |
| || NumRegs != 2) |
| continue; |
| |
| assert((i+2 < NumOps) && "Invalid number of operands in inline asm"); |
| SDValue V0 = N->getOperand(i+1); |
| SDValue V1 = N->getOperand(i+2); |
| unsigned Reg0 = cast<RegisterSDNode>(V0)->getReg(); |
| unsigned Reg1 = cast<RegisterSDNode>(V1)->getReg(); |
| SDValue PairedReg; |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| |
| if (Kind == InlineAsm::Kind_RegDef || |
| Kind == InlineAsm::Kind_RegDefEarlyClobber) { |
| // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to |
| // the original GPRs. |
| |
| unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass); |
| PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped); |
| SDValue Chain = SDValue(N,0); |
| |
| SDNode *GU = N->getGluedUser(); |
| SDValue RegCopy = CurDAG->getCopyFromReg(Chain, dl, GPVR, MVT::Untyped, |
| Chain.getValue(1)); |
| |
| // Extract values from a GPRPair reg and copy to the original GPR reg. |
| SDValue Sub0 = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32, |
| RegCopy); |
| SDValue Sub1 = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32, |
| RegCopy); |
| SDValue T0 = CurDAG->getCopyToReg(Sub0, dl, Reg0, Sub0, |
| RegCopy.getValue(1)); |
| SDValue T1 = CurDAG->getCopyToReg(Sub1, dl, Reg1, Sub1, T0.getValue(1)); |
| |
| // Update the original glue user. |
| std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1); |
| Ops.push_back(T1.getValue(1)); |
| CurDAG->UpdateNodeOperands(GU, Ops); |
| } |
| else { |
| // For Kind == InlineAsm::Kind_RegUse, we first copy two GPRs into a |
| // GPRPair and then pass the GPRPair to the inline asm. |
| SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain]; |
| |
| // As REG_SEQ doesn't take RegisterSDNode, we copy them first. |
| SDValue T0 = CurDAG->getCopyFromReg(Chain, dl, Reg0, MVT::i32, |
| Chain.getValue(1)); |
| SDValue T1 = CurDAG->getCopyFromReg(Chain, dl, Reg1, MVT::i32, |
| T0.getValue(1)); |
| SDValue Pair = SDValue(createGPRPairNode(MVT::Untyped, T0, T1), 0); |
| |
| // Copy REG_SEQ into a GPRPair-typed VR and replace the original two |
| // i32 VRs of inline asm with it. |
| unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass); |
| PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped); |
| Chain = CurDAG->getCopyToReg(T1, dl, GPVR, Pair, T1.getValue(1)); |
| |
| AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; |
| Glue = Chain.getValue(1); |
| } |
| |
| Changed = true; |
| |
| if(PairedReg.getNode()) { |
| OpChanged[OpChanged.size() -1 ] = true; |
| Flag = InlineAsm::getFlagWord(Kind, 1 /* RegNum*/); |
| if (IsTiedToChangedOp) |
| Flag = InlineAsm::getFlagWordForMatchingOp(Flag, DefIdx); |
| else |
| Flag = InlineAsm::getFlagWordForRegClass(Flag, ARM::GPRPairRegClassID); |
| // Replace the current flag. |
| AsmNodeOperands[AsmNodeOperands.size() -1] = CurDAG->getTargetConstant( |
| Flag, dl, MVT::i32); |
| // Add the new register node and skip the original two GPRs. |
| AsmNodeOperands.push_back(PairedReg); |
| // Skip the next two GPRs. |
| i += 2; |
| } |
| } |
| |
| if (Glue.getNode()) |
| AsmNodeOperands.push_back(Glue); |
| if (!Changed) |
| return false; |
| |
| SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N), |
| CurDAG->getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); |
| New->setNodeId(-1); |
| ReplaceNode(N, New.getNode()); |
| return true; |
| } |
| |
| |
| bool ARMDAGToDAGISel:: |
| SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, |
| std::vector<SDValue> &OutOps) { |
| switch(ConstraintID) { |
| default: |
| llvm_unreachable("Unexpected asm memory constraint"); |
| case InlineAsm::Constraint_i: |
| // FIXME: It seems strange that 'i' is needed here since it's supposed to |
| // be an immediate and not a memory constraint. |
| LLVM_FALLTHROUGH; |
| case InlineAsm::Constraint_m: |
| case InlineAsm::Constraint_o: |
| case InlineAsm::Constraint_Q: |
| case InlineAsm::Constraint_Um: |
| case InlineAsm::Constraint_Un: |
| case InlineAsm::Constraint_Uq: |
| case InlineAsm::Constraint_Us: |
| case InlineAsm::Constraint_Ut: |
| case InlineAsm::Constraint_Uv: |
| case InlineAsm::Constraint_Uy: |
| // Require the address to be in a register. That is safe for all ARM |
| // variants and it is hard to do anything much smarter without knowing |
| // how the operand is used. |
| OutOps.push_back(Op); |
| return false; |
| } |
| return true; |
| } |
| |
| /// createARMISelDag - This pass converts a legalized DAG into a |
| /// ARM-specific DAG, ready for instruction scheduling. |
| /// |
| FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM, |
| CodeGenOpt::Level OptLevel) { |
| return new ARMDAGToDAGISel(TM, OptLevel); |
| } |