| //===----- ARMCodeGenPrepare.cpp ------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This pass inserts intrinsics to handle small types that would otherwise be |
| /// promoted during legalization. Here we can manually promote types or insert |
| /// intrinsics which can handle narrow types that aren't supported by the |
| /// register classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARM.h" |
| #include "ARMSubtarget.h" |
| #include "ARMTargetMachine.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| |
| #define DEBUG_TYPE "arm-codegenprepare" |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> |
| DisableCGP("arm-disable-cgp", cl::Hidden, cl::init(true), |
| cl::desc("Disable ARM specific CodeGenPrepare pass")); |
| |
| static cl::opt<bool> |
| EnableDSP("arm-enable-scalar-dsp", cl::Hidden, cl::init(false), |
| cl::desc("Use DSP instructions for scalar operations")); |
| |
| static cl::opt<bool> |
| EnableDSPWithImms("arm-enable-scalar-dsp-imms", cl::Hidden, cl::init(false), |
| cl::desc("Use DSP instructions for scalar operations\ |
| with immediate operands")); |
| |
| namespace { |
| |
| class IRPromoter { |
| SmallPtrSet<Value*, 8> NewInsts; |
| SmallVector<Instruction*, 4> InstsToRemove; |
| Module *M = nullptr; |
| LLVMContext &Ctx; |
| |
| public: |
| IRPromoter(Module *M) : M(M), Ctx(M->getContext()) { } |
| |
| void Cleanup() { |
| for (auto *I : InstsToRemove) { |
| LLVM_DEBUG(dbgs() << "ARM CGP: Removing " << *I << "\n"); |
| I->dropAllReferences(); |
| I->eraseFromParent(); |
| } |
| InstsToRemove.clear(); |
| NewInsts.clear(); |
| } |
| |
| void Mutate(Type *OrigTy, |
| SmallPtrSetImpl<Value*> &Visited, |
| SmallPtrSetImpl<Value*> &Leaves, |
| SmallPtrSetImpl<Instruction*> &Roots); |
| }; |
| |
| class ARMCodeGenPrepare : public FunctionPass { |
| const ARMSubtarget *ST = nullptr; |
| IRPromoter *Promoter = nullptr; |
| std::set<Value*> AllVisited; |
| Type *OrigTy = nullptr; |
| unsigned TypeSize = 0; |
| |
| bool isNarrowInstSupported(Instruction *I); |
| bool isSupportedValue(Value *V); |
| bool isLegalToPromote(Value *V); |
| bool TryToPromote(Value *V); |
| |
| public: |
| static char ID; |
| |
| ARMCodeGenPrepare() : FunctionPass(ID) {} |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<TargetPassConfig>(); |
| } |
| |
| StringRef getPassName() const override { return "ARM IR optimizations"; } |
| |
| bool doInitialization(Module &M) override; |
| bool runOnFunction(Function &F) override; |
| bool doFinalization(Module &M) override; |
| }; |
| |
| } |
| |
| /// Can the given value generate sign bits. |
| static bool isSigned(Value *V) { |
| if (!isa<Instruction>(V)) |
| return false; |
| |
| unsigned Opc = cast<Instruction>(V)->getOpcode(); |
| return Opc == Instruction::AShr || Opc == Instruction::SDiv || |
| Opc == Instruction::SRem; |
| } |
| |
| /// Some instructions can use 8- and 16-bit operands, and we don't need to |
| /// promote anything larger. We disallow booleans to make life easier when |
| /// dealing with icmps but allow any other integer that is <= 16 bits. Void |
| /// types are accepted so we can handle switches. |
| static bool isSupportedType(Value *V) { |
| if (V->getType()->isVoidTy()) |
| return true; |
| |
| const IntegerType *IntTy = dyn_cast<IntegerType>(V->getType()); |
| if (!IntTy) |
| return false; |
| |
| // Don't try to promote boolean values. |
| if (IntTy->getBitWidth() == 1) |
| return false; |
| |
| if (auto *ZExt = dyn_cast<ZExtInst>(V)) |
| return isSupportedType(ZExt->getOperand(0)); |
| |
| return IntTy->getBitWidth() <= 16; |
| } |
| |
| /// Return true if V will require any promoted values to be truncated for the |
| /// use to be valid. |
| static bool isSink(Value *V) { |
| auto UsesNarrowValue = [](Value *V) { |
| return V->getType()->getScalarSizeInBits() <= 32; |
| }; |
| |
| if (auto *Store = dyn_cast<StoreInst>(V)) |
| return UsesNarrowValue(Store->getValueOperand()); |
| if (auto *Return = dyn_cast<ReturnInst>(V)) |
| return UsesNarrowValue(Return->getReturnValue()); |
| |
| return isa<CallInst>(V); |
| } |
| |
| /// Return true if the given value is a leaf that will need to be zext'd. |
| static bool isSource(Value *V) { |
| if (isa<Argument>(V) && isSupportedType(V)) |
| return true; |
| else if (isa<TruncInst>(V)) |
| return true; |
| else if (auto *ZExt = dyn_cast<ZExtInst>(V)) |
| // ZExt can be a leaf if its the only user of a load. |
| return isa<LoadInst>(ZExt->getOperand(0)) && |
| ZExt->getOperand(0)->hasOneUse(); |
| else if (auto *Call = dyn_cast<CallInst>(V)) |
| return Call->hasRetAttr(Attribute::AttrKind::ZExt); |
| else if (auto *Load = dyn_cast<LoadInst>(V)) { |
| if (!isa<IntegerType>(Load->getType())) |
| return false; |
| // A load is a leaf, unless its already just being zext'd. |
| if (Load->hasOneUse() && isa<ZExtInst>(*Load->use_begin())) |
| return false; |
| |
| return true; |
| } |
| return false; |
| } |
| |
| /// Return whether the instruction can be promoted within any modifications to |
| /// it's operands or result. |
| static bool isSafeOverflow(Instruction *I) { |
| if (isa<OverflowingBinaryOperator>(I) && I->hasNoUnsignedWrap()) |
| return true; |
| |
| unsigned Opc = I->getOpcode(); |
| if (Opc == Instruction::Add || Opc == Instruction::Sub) { |
| // We don't care if the add or sub could wrap if the value is decreasing |
| // and is only being used by an unsigned compare. |
| if (!I->hasOneUse() || |
| !isa<ICmpInst>(*I->user_begin()) || |
| !isa<ConstantInt>(I->getOperand(1))) |
| return false; |
| |
| auto *CI = cast<ICmpInst>(*I->user_begin()); |
| if (CI->isSigned()) |
| return false; |
| |
| bool NegImm = cast<ConstantInt>(I->getOperand(1))->isNegative(); |
| bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) || |
| ((Opc == Instruction::Add) && NegImm); |
| if (!IsDecreasing) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "ARM CGP: Allowing safe overflow for " << *I << "\n"); |
| return true; |
| } |
| |
| // Otherwise, if an instruction is using a negative immediate we will need |
| // to fix it up during the promotion. |
| for (auto &Op : I->operands()) { |
| if (auto *Const = dyn_cast<ConstantInt>(Op)) |
| if (Const->isNegative()) |
| return false; |
| } |
| return false; |
| } |
| |
| static bool shouldPromote(Value *V) { |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I) |
| return false; |
| |
| if (!isa<IntegerType>(V->getType())) |
| return false; |
| |
| if (isa<StoreInst>(I) || isa<TerminatorInst>(I) || isa<TruncInst>(I) || |
| isa<ICmpInst>(I)) |
| return false; |
| |
| if (auto *ZExt = dyn_cast<ZExtInst>(I)) |
| return !ZExt->getDestTy()->isIntegerTy(32); |
| |
| return true; |
| } |
| |
| /// Return whether we can safely mutate V's type to ExtTy without having to be |
| /// concerned with zero extending or truncation. |
| static bool isPromotedResultSafe(Value *V) { |
| if (!isa<Instruction>(V)) |
| return true; |
| |
| if (isSigned(V)) |
| return false; |
| |
| // If I is only being used by something that will require its value to be |
| // truncated, then we don't care about the promoted result. |
| auto *I = cast<Instruction>(V); |
| if (I->hasOneUse() && isSink(*I->use_begin())) |
| return true; |
| |
| if (isa<OverflowingBinaryOperator>(I)) |
| return isSafeOverflow(I); |
| return true; |
| } |
| |
| /// Return the intrinsic for the instruction that can perform the same |
| /// operation but on a narrow type. This is using the parallel dsp intrinsics |
| /// on scalar values. |
| static Intrinsic::ID getNarrowIntrinsic(Instruction *I, unsigned TypeSize) { |
| // Whether we use the signed or unsigned versions of these intrinsics |
| // doesn't matter because we're not using the GE bits that they set in |
| // the APSR. |
| switch(I->getOpcode()) { |
| default: |
| break; |
| case Instruction::Add: |
| return TypeSize == 16 ? Intrinsic::arm_uadd16 : |
| Intrinsic::arm_uadd8; |
| case Instruction::Sub: |
| return TypeSize == 16 ? Intrinsic::arm_usub16 : |
| Intrinsic::arm_usub8; |
| } |
| llvm_unreachable("unhandled opcode for narrow intrinsic"); |
| } |
| |
| void IRPromoter::Mutate(Type *OrigTy, |
| SmallPtrSetImpl<Value*> &Visited, |
| SmallPtrSetImpl<Value*> &Leaves, |
| SmallPtrSetImpl<Instruction*> &Roots) { |
| IRBuilder<> Builder{Ctx}; |
| Type *ExtTy = Type::getInt32Ty(M->getContext()); |
| unsigned TypeSize = OrigTy->getPrimitiveSizeInBits(); |
| SmallPtrSet<Value*, 8> Promoted; |
| LLVM_DEBUG(dbgs() << "ARM CGP: Promoting use-def chains to from " << TypeSize |
| << " to 32-bits\n"); |
| |
| auto ReplaceAllUsersOfWith = [&](Value *From, Value *To) { |
| SmallVector<Instruction*, 4> Users; |
| Instruction *InstTo = dyn_cast<Instruction>(To); |
| for (Use &U : From->uses()) { |
| auto *User = cast<Instruction>(U.getUser()); |
| if (InstTo && User->isIdenticalTo(InstTo)) |
| continue; |
| Users.push_back(User); |
| } |
| |
| for (auto &U : Users) |
| U->replaceUsesOfWith(From, To); |
| }; |
| |
| auto FixConst = [&](ConstantInt *Const, Instruction *I) { |
| Constant *NewConst = nullptr; |
| if (isSafeOverflow(I)) { |
| NewConst = (Const->isNegative()) ? |
| ConstantExpr::getSExt(Const, ExtTy) : |
| ConstantExpr::getZExt(Const, ExtTy); |
| } else { |
| uint64_t NewVal = *Const->getValue().getRawData(); |
| if (Const->getType() == Type::getInt16Ty(Ctx)) |
| NewVal &= 0xFFFF; |
| else |
| NewVal &= 0xFF; |
| NewConst = ConstantInt::get(ExtTy, NewVal); |
| } |
| I->replaceUsesOfWith(Const, NewConst); |
| }; |
| |
| auto InsertDSPIntrinsic = [&](Instruction *I) { |
| LLVM_DEBUG(dbgs() << "ARM CGP: Inserting DSP intrinsic for " |
| << *I << "\n"); |
| Function *DSPInst = |
| Intrinsic::getDeclaration(M, getNarrowIntrinsic(I, TypeSize)); |
| Builder.SetInsertPoint(I); |
| Builder.SetCurrentDebugLocation(I->getDebugLoc()); |
| Value *Args[] = { I->getOperand(0), I->getOperand(1) }; |
| CallInst *Call = Builder.CreateCall(DSPInst, Args); |
| ReplaceAllUsersOfWith(I, Call); |
| InstsToRemove.push_back(I); |
| NewInsts.insert(Call); |
| }; |
| |
| auto InsertZExt = [&](Value *V, Instruction *InsertPt) { |
| LLVM_DEBUG(dbgs() << "ARM CGP: Inserting ZExt for " << *V << "\n"); |
| Builder.SetInsertPoint(InsertPt); |
| if (auto *I = dyn_cast<Instruction>(V)) |
| Builder.SetCurrentDebugLocation(I->getDebugLoc()); |
| auto *ZExt = cast<Instruction>(Builder.CreateZExt(V, ExtTy)); |
| if (isa<Argument>(V)) |
| ZExt->moveBefore(InsertPt); |
| else |
| ZExt->moveAfter(InsertPt); |
| ReplaceAllUsersOfWith(V, ZExt); |
| NewInsts.insert(ZExt); |
| }; |
| |
| // First, insert extending instructions between the leaves and their users. |
| LLVM_DEBUG(dbgs() << "ARM CGP: Promoting leaves:\n"); |
| for (auto V : Leaves) { |
| LLVM_DEBUG(dbgs() << " - " << *V << "\n"); |
| if (auto *ZExt = dyn_cast<ZExtInst>(V)) |
| ZExt->mutateType(ExtTy); |
| else if (auto *I = dyn_cast<Instruction>(V)) |
| InsertZExt(I, I); |
| else if (auto *Arg = dyn_cast<Argument>(V)) { |
| BasicBlock &BB = Arg->getParent()->front(); |
| InsertZExt(Arg, &*BB.getFirstInsertionPt()); |
| } else { |
| llvm_unreachable("unhandled leaf that needs extending"); |
| } |
| Promoted.insert(V); |
| } |
| |
| LLVM_DEBUG(dbgs() << "ARM CGP: Mutating the tree..\n"); |
| // Then mutate the types of the instructions within the tree. Here we handle |
| // constant operands. |
| for (auto *V : Visited) { |
| if (Leaves.count(V)) |
| continue; |
| |
| if (!isa<Instruction>(V)) |
| continue; |
| |
| auto *I = cast<Instruction>(V); |
| if (Roots.count(I)) |
| continue; |
| |
| for (auto &U : I->operands()) { |
| if ((U->getType() == ExtTy) || !isSupportedType(&*U)) |
| continue; |
| |
| if (auto *Const = dyn_cast<ConstantInt>(&*U)) |
| FixConst(Const, I); |
| else if (isa<UndefValue>(&*U)) |
| U->mutateType(ExtTy); |
| } |
| |
| if (shouldPromote(I)) { |
| I->mutateType(ExtTy); |
| Promoted.insert(I); |
| } |
| } |
| |
| // Now we need to remove any zexts that have become unnecessary, as well |
| // as insert any intrinsics. |
| for (auto *V : Visited) { |
| if (Leaves.count(V)) |
| continue; |
| if (auto *ZExt = dyn_cast<ZExtInst>(V)) { |
| if (ZExt->getDestTy() != ExtTy) { |
| ZExt->mutateType(ExtTy); |
| Promoted.insert(ZExt); |
| } |
| else if (ZExt->getSrcTy() == ExtTy) { |
| ReplaceAllUsersOfWith(V, ZExt->getOperand(0)); |
| InstsToRemove.push_back(ZExt); |
| } |
| continue; |
| } |
| |
| if (!shouldPromote(V) || isPromotedResultSafe(V)) |
| continue; |
| |
| // Replace unsafe instructions with appropriate intrinsic calls. |
| InsertDSPIntrinsic(cast<Instruction>(V)); |
| } |
| |
| LLVM_DEBUG(dbgs() << "ARM CGP: Fixing up the roots:\n"); |
| // Fix up any stores or returns that use the results of the promoted |
| // chain. |
| for (auto I : Roots) { |
| LLVM_DEBUG(dbgs() << " - " << *I << "\n"); |
| Type *TruncTy = OrigTy; |
| if (auto *Store = dyn_cast<StoreInst>(I)) { |
| auto *PtrTy = cast<PointerType>(Store->getPointerOperandType()); |
| TruncTy = PtrTy->getElementType(); |
| } else if (isa<ReturnInst>(I)) { |
| Function *F = I->getParent()->getParent(); |
| TruncTy = F->getFunctionType()->getReturnType(); |
| } |
| |
| for (unsigned i = 0; i < I->getNumOperands(); ++i) { |
| Value *V = I->getOperand(i); |
| if (Promoted.count(V) || NewInsts.count(V)) { |
| if (auto *Op = dyn_cast<Instruction>(V)) { |
| |
| if (auto *Call = dyn_cast<CallInst>(I)) |
| TruncTy = Call->getFunctionType()->getParamType(i); |
| |
| if (TruncTy == ExtTy) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "ARM CGP: Creating " << *TruncTy |
| << " Trunc for " << *Op << "\n"); |
| Builder.SetInsertPoint(Op); |
| auto *Trunc = cast<Instruction>(Builder.CreateTrunc(Op, TruncTy)); |
| Trunc->moveBefore(I); |
| I->setOperand(i, Trunc); |
| NewInsts.insert(Trunc); |
| } |
| } |
| } |
| } |
| LLVM_DEBUG(dbgs() << "ARM CGP: Mutation complete.\n"); |
| } |
| |
| bool ARMCodeGenPrepare::isNarrowInstSupported(Instruction *I) { |
| if (!ST->hasDSP() || !EnableDSP || !isSupportedType(I)) |
| return false; |
| |
| if (ST->isThumb() && !ST->hasThumb2()) |
| return false; |
| |
| if (I->getOpcode() != Instruction::Add && I->getOpcode() != Instruction::Sub) |
| return false; |
| |
| // TODO |
| // Would it be profitable? For Thumb code, these parallel DSP instructions |
| // are only Thumb-2, so we wouldn't be able to dual issue on Cortex-M33. For |
| // Cortex-A, specifically Cortex-A72, the latency is double and throughput is |
| // halved. They also do not take immediates as operands. |
| for (auto &Op : I->operands()) { |
| if (isa<Constant>(Op)) { |
| if (!EnableDSPWithImms) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// We accept most instructions, as well as Arguments and ConstantInsts. We |
| /// Disallow casts other than zext and truncs and only allow calls if their |
| /// return value is zeroext. We don't allow opcodes that can introduce sign |
| /// bits. |
| bool ARMCodeGenPrepare::isSupportedValue(Value *V) { |
| LLVM_DEBUG(dbgs() << "ARM CGP: Is " << *V << " supported?\n"); |
| |
| // Non-instruction values that we can handle. |
| if (isa<ConstantInt>(V) || isa<Argument>(V)) |
| return true; |
| |
| // Memory instructions |
| if (isa<StoreInst>(V) || isa<LoadInst>(V) || isa<GetElementPtrInst>(V)) |
| return true; |
| |
| // Branches and targets. |
| if (auto *ICmp = dyn_cast<ICmpInst>(V)) |
| return ICmp->isEquality() || !ICmp->isSigned(); |
| |
| if( isa<BranchInst>(V) || isa<SwitchInst>(V) || isa<BasicBlock>(V)) |
| return true; |
| |
| if (isa<PHINode>(V) || isa<SelectInst>(V) || isa<ReturnInst>(V)) |
| return true; |
| |
| // Special cases for calls as we need to check for zeroext |
| // TODO We should accept calls even if they don't have zeroext, as they can |
| // still be roots. |
| if (auto *Call = dyn_cast<CallInst>(V)) |
| return Call->hasRetAttr(Attribute::AttrKind::ZExt); |
| else if (auto *Cast = dyn_cast<CastInst>(V)) { |
| if (isa<ZExtInst>(Cast)) |
| return Cast->getDestTy()->getScalarSizeInBits() <= 32; |
| else if (auto *Trunc = dyn_cast<TruncInst>(V)) |
| return Trunc->getDestTy()->getScalarSizeInBits() <= TypeSize; |
| else { |
| LLVM_DEBUG(dbgs() << "ARM CGP: No, unsupported cast.\n"); |
| return false; |
| } |
| } else if (!isa<BinaryOperator>(V)) { |
| LLVM_DEBUG(dbgs() << "ARM CGP: No, not a binary operator.\n"); |
| return false; |
| } |
| |
| bool res = !isSigned(V); |
| if (!res) |
| LLVM_DEBUG(dbgs() << "ARM CGP: No, it's a signed instruction.\n"); |
| return res; |
| } |
| |
| /// Check that the type of V would be promoted and that the original type is |
| /// smaller than the targeted promoted type. Check that we're not trying to |
| /// promote something larger than our base 'TypeSize' type. |
| bool ARMCodeGenPrepare::isLegalToPromote(Value *V) { |
| if (!isSupportedType(V)) |
| return false; |
| |
| unsigned VSize = 0; |
| if (auto *Ld = dyn_cast<LoadInst>(V)) { |
| auto *PtrTy = cast<PointerType>(Ld->getPointerOperandType()); |
| VSize = PtrTy->getElementType()->getPrimitiveSizeInBits(); |
| } else if (auto *ZExt = dyn_cast<ZExtInst>(V)) { |
| VSize = ZExt->getOperand(0)->getType()->getPrimitiveSizeInBits(); |
| } else { |
| VSize = V->getType()->getPrimitiveSizeInBits(); |
| } |
| |
| if (VSize > TypeSize) |
| return false; |
| |
| if (isPromotedResultSafe(V)) |
| return true; |
| |
| if (auto *I = dyn_cast<Instruction>(V)) |
| return isNarrowInstSupported(I); |
| |
| return false; |
| } |
| |
| bool ARMCodeGenPrepare::TryToPromote(Value *V) { |
| OrigTy = V->getType(); |
| TypeSize = OrigTy->getPrimitiveSizeInBits(); |
| |
| if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "ARM CGP: TryToPromote: " << *V << "\n"); |
| |
| SetVector<Value*> WorkList; |
| SmallPtrSet<Value*, 8> Leaves; |
| SmallPtrSet<Instruction*, 4> Roots; |
| WorkList.insert(V); |
| SmallPtrSet<Value*, 16> CurrentVisited; |
| CurrentVisited.clear(); |
| |
| // Return true if the given value can, or has been, visited. Add V to the |
| // worklist if needed. |
| auto AddLegalInst = [&](Value *V) { |
| if (CurrentVisited.count(V)) |
| return true; |
| |
| if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) { |
| LLVM_DEBUG(dbgs() << "ARM CGP: Can't handle: " << *V << "\n"); |
| return false; |
| } |
| |
| WorkList.insert(V); |
| return true; |
| }; |
| |
| // Iterate through, and add to, a tree of operands and users in the use-def. |
| while (!WorkList.empty()) { |
| Value *V = WorkList.back(); |
| WorkList.pop_back(); |
| if (CurrentVisited.count(V)) |
| continue; |
| |
| if (!isa<Instruction>(V) && !isSource(V)) |
| continue; |
| |
| // If we've already visited this value from somewhere, bail now because |
| // the tree has already been explored. |
| // TODO: This could limit the transform, ie if we try to promote something |
| // from an i8 and fail first, before trying an i16. |
| if (AllVisited.count(V)) { |
| LLVM_DEBUG(dbgs() << "ARM CGP: Already visited this: " << *V << "\n"); |
| return false; |
| } |
| |
| CurrentVisited.insert(V); |
| AllVisited.insert(V); |
| |
| // Calls can be both sources and sinks. |
| if (isSink(V)) |
| Roots.insert(cast<Instruction>(V)); |
| if (isSource(V)) |
| Leaves.insert(V); |
| else if (auto *I = dyn_cast<Instruction>(V)) { |
| // Visit operands of any instruction visited. |
| for (auto &U : I->operands()) { |
| if (!AddLegalInst(U)) |
| return false; |
| } |
| } |
| |
| // Don't visit users of a node which isn't going to be mutated unless its a |
| // source. |
| if (isSource(V) || shouldPromote(V)) { |
| for (Use &U : V->uses()) { |
| if (!AddLegalInst(U.getUser())) |
| return false; |
| } |
| } |
| } |
| |
| unsigned NumToPromote = 0; |
| unsigned Cost = 0; |
| for (auto *V : CurrentVisited) { |
| // Truncs will cause a uxt and no zeroext arguments will often require |
| // a uxt somewhere. |
| if (isa<TruncInst>(V)) |
| ++Cost; |
| else if (auto *Arg = dyn_cast<Argument>(V)) { |
| if (!Arg->hasZExtAttr()) |
| ++Cost; |
| } |
| |
| // Mem ops can automatically be extended/truncated and non-instructions |
| // don't need anything done. |
| if (Leaves.count(V) || isa<StoreInst>(V) || !isa<Instruction>(V)) |
| continue; |
| |
| // Will need to truncate calls args and returns. |
| if (Roots.count(cast<Instruction>(V))) { |
| ++Cost; |
| continue; |
| } |
| |
| if (shouldPromote(V)) |
| ++NumToPromote; |
| } |
| |
| LLVM_DEBUG(dbgs() << "ARM CGP: Visited nodes:\n"; |
| for (auto *I : CurrentVisited) |
| I->dump(); |
| ); |
| LLVM_DEBUG(dbgs() << "ARM CGP: Cost of promoting " << NumToPromote |
| << " instructions = " << Cost << "\n"); |
| if (Cost > NumToPromote || (NumToPromote == 0)) |
| return false; |
| |
| Promoter->Mutate(OrigTy, CurrentVisited, Leaves, Roots); |
| return true; |
| } |
| |
| bool ARMCodeGenPrepare::doInitialization(Module &M) { |
| Promoter = new IRPromoter(&M); |
| return false; |
| } |
| |
| bool ARMCodeGenPrepare::runOnFunction(Function &F) { |
| if (skipFunction(F) || DisableCGP) |
| return false; |
| |
| auto *TPC = &getAnalysis<TargetPassConfig>(); |
| if (!TPC) |
| return false; |
| |
| const TargetMachine &TM = TPC->getTM<TargetMachine>(); |
| ST = &TM.getSubtarget<ARMSubtarget>(F); |
| bool MadeChange = false; |
| LLVM_DEBUG(dbgs() << "ARM CGP: Running on " << F.getName() << "\n"); |
| |
| // Search up from icmps to try to promote their operands. |
| for (BasicBlock &BB : F) { |
| auto &Insts = BB.getInstList(); |
| for (auto &I : Insts) { |
| if (AllVisited.count(&I)) |
| continue; |
| |
| if (isa<ICmpInst>(I)) { |
| auto &CI = cast<ICmpInst>(I); |
| |
| // Skip signed or pointer compares |
| if (CI.isSigned() || !isa<IntegerType>(CI.getOperand(0)->getType())) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "ARM CGP: Searching from: " << CI << "\n"); |
| for (auto &Op : CI.operands()) { |
| if (auto *I = dyn_cast<Instruction>(Op)) { |
| if (isa<ZExtInst>(I)) |
| MadeChange |= TryToPromote(I->getOperand(0)); |
| else |
| MadeChange |= TryToPromote(I); |
| } |
| } |
| } |
| } |
| Promoter->Cleanup(); |
| LLVM_DEBUG(if (verifyFunction(F, &dbgs())) { |
| dbgs(); |
| report_fatal_error("Broken function after type promotion"); |
| }); |
| } |
| if (MadeChange) |
| LLVM_DEBUG(dbgs() << "After ARMCodeGenPrepare: " << F << "\n"); |
| |
| return MadeChange; |
| } |
| |
| bool ARMCodeGenPrepare::doFinalization(Module &M) { |
| delete Promoter; |
| return false; |
| } |
| |
| INITIALIZE_PASS_BEGIN(ARMCodeGenPrepare, DEBUG_TYPE, |
| "ARM IR optimizations", false, false) |
| INITIALIZE_PASS_END(ARMCodeGenPrepare, DEBUG_TYPE, "ARM IR optimizations", |
| false, false) |
| |
| char ARMCodeGenPrepare::ID = 0; |
| |
| FunctionPass *llvm::createARMCodeGenPreparePass() { |
| return new ARMCodeGenPrepare(); |
| } |