blob: 24071277427a1815230e7d815195f491b0e79d1d [file] [log] [blame]
//===----- ARMCodeGenPrepare.cpp ------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass inserts intrinsics to handle small types that would otherwise be
/// promoted during legalization. Here we can manually promote types or insert
/// intrinsics which can handle narrow types that aren't supported by the
/// register classes.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#define DEBUG_TYPE "arm-codegenprepare"
using namespace llvm;
static cl::opt<bool>
DisableCGP("arm-disable-cgp", cl::Hidden, cl::init(true),
cl::desc("Disable ARM specific CodeGenPrepare pass"));
static cl::opt<bool>
EnableDSP("arm-enable-scalar-dsp", cl::Hidden, cl::init(false),
cl::desc("Use DSP instructions for scalar operations"));
static cl::opt<bool>
EnableDSPWithImms("arm-enable-scalar-dsp-imms", cl::Hidden, cl::init(false),
cl::desc("Use DSP instructions for scalar operations\
with immediate operands"));
namespace {
class IRPromoter {
SmallPtrSet<Value*, 8> NewInsts;
SmallVector<Instruction*, 4> InstsToRemove;
Module *M = nullptr;
LLVMContext &Ctx;
public:
IRPromoter(Module *M) : M(M), Ctx(M->getContext()) { }
void Cleanup() {
for (auto *I : InstsToRemove) {
LLVM_DEBUG(dbgs() << "ARM CGP: Removing " << *I << "\n");
I->dropAllReferences();
I->eraseFromParent();
}
InstsToRemove.clear();
NewInsts.clear();
}
void Mutate(Type *OrigTy,
SmallPtrSetImpl<Value*> &Visited,
SmallPtrSetImpl<Value*> &Leaves,
SmallPtrSetImpl<Instruction*> &Roots);
};
class ARMCodeGenPrepare : public FunctionPass {
const ARMSubtarget *ST = nullptr;
IRPromoter *Promoter = nullptr;
std::set<Value*> AllVisited;
Type *OrigTy = nullptr;
unsigned TypeSize = 0;
bool isNarrowInstSupported(Instruction *I);
bool isSupportedValue(Value *V);
bool isLegalToPromote(Value *V);
bool TryToPromote(Value *V);
public:
static char ID;
ARMCodeGenPrepare() : FunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetPassConfig>();
}
StringRef getPassName() const override { return "ARM IR optimizations"; }
bool doInitialization(Module &M) override;
bool runOnFunction(Function &F) override;
bool doFinalization(Module &M) override;
};
}
/// Can the given value generate sign bits.
static bool isSigned(Value *V) {
if (!isa<Instruction>(V))
return false;
unsigned Opc = cast<Instruction>(V)->getOpcode();
return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
Opc == Instruction::SRem;
}
/// Some instructions can use 8- and 16-bit operands, and we don't need to
/// promote anything larger. We disallow booleans to make life easier when
/// dealing with icmps but allow any other integer that is <= 16 bits. Void
/// types are accepted so we can handle switches.
static bool isSupportedType(Value *V) {
if (V->getType()->isVoidTy())
return true;
const IntegerType *IntTy = dyn_cast<IntegerType>(V->getType());
if (!IntTy)
return false;
// Don't try to promote boolean values.
if (IntTy->getBitWidth() == 1)
return false;
if (auto *ZExt = dyn_cast<ZExtInst>(V))
return isSupportedType(ZExt->getOperand(0));
return IntTy->getBitWidth() <= 16;
}
/// Return true if V will require any promoted values to be truncated for the
/// use to be valid.
static bool isSink(Value *V) {
auto UsesNarrowValue = [](Value *V) {
return V->getType()->getScalarSizeInBits() <= 32;
};
if (auto *Store = dyn_cast<StoreInst>(V))
return UsesNarrowValue(Store->getValueOperand());
if (auto *Return = dyn_cast<ReturnInst>(V))
return UsesNarrowValue(Return->getReturnValue());
return isa<CallInst>(V);
}
/// Return true if the given value is a leaf that will need to be zext'd.
static bool isSource(Value *V) {
if (isa<Argument>(V) && isSupportedType(V))
return true;
else if (isa<TruncInst>(V))
return true;
else if (auto *ZExt = dyn_cast<ZExtInst>(V))
// ZExt can be a leaf if its the only user of a load.
return isa<LoadInst>(ZExt->getOperand(0)) &&
ZExt->getOperand(0)->hasOneUse();
else if (auto *Call = dyn_cast<CallInst>(V))
return Call->hasRetAttr(Attribute::AttrKind::ZExt);
else if (auto *Load = dyn_cast<LoadInst>(V)) {
if (!isa<IntegerType>(Load->getType()))
return false;
// A load is a leaf, unless its already just being zext'd.
if (Load->hasOneUse() && isa<ZExtInst>(*Load->use_begin()))
return false;
return true;
}
return false;
}
/// Return whether the instruction can be promoted within any modifications to
/// it's operands or result.
static bool isSafeOverflow(Instruction *I) {
if (isa<OverflowingBinaryOperator>(I) && I->hasNoUnsignedWrap())
return true;
unsigned Opc = I->getOpcode();
if (Opc == Instruction::Add || Opc == Instruction::Sub) {
// We don't care if the add or sub could wrap if the value is decreasing
// and is only being used by an unsigned compare.
if (!I->hasOneUse() ||
!isa<ICmpInst>(*I->user_begin()) ||
!isa<ConstantInt>(I->getOperand(1)))
return false;
auto *CI = cast<ICmpInst>(*I->user_begin());
if (CI->isSigned())
return false;
bool NegImm = cast<ConstantInt>(I->getOperand(1))->isNegative();
bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
((Opc == Instruction::Add) && NegImm);
if (!IsDecreasing)
return false;
LLVM_DEBUG(dbgs() << "ARM CGP: Allowing safe overflow for " << *I << "\n");
return true;
}
// Otherwise, if an instruction is using a negative immediate we will need
// to fix it up during the promotion.
for (auto &Op : I->operands()) {
if (auto *Const = dyn_cast<ConstantInt>(Op))
if (Const->isNegative())
return false;
}
return false;
}
static bool shouldPromote(Value *V) {
auto *I = dyn_cast<Instruction>(V);
if (!I)
return false;
if (!isa<IntegerType>(V->getType()))
return false;
if (isa<StoreInst>(I) || isa<TerminatorInst>(I) || isa<TruncInst>(I) ||
isa<ICmpInst>(I))
return false;
if (auto *ZExt = dyn_cast<ZExtInst>(I))
return !ZExt->getDestTy()->isIntegerTy(32);
return true;
}
/// Return whether we can safely mutate V's type to ExtTy without having to be
/// concerned with zero extending or truncation.
static bool isPromotedResultSafe(Value *V) {
if (!isa<Instruction>(V))
return true;
if (isSigned(V))
return false;
// If I is only being used by something that will require its value to be
// truncated, then we don't care about the promoted result.
auto *I = cast<Instruction>(V);
if (I->hasOneUse() && isSink(*I->use_begin()))
return true;
if (isa<OverflowingBinaryOperator>(I))
return isSafeOverflow(I);
return true;
}
/// Return the intrinsic for the instruction that can perform the same
/// operation but on a narrow type. This is using the parallel dsp intrinsics
/// on scalar values.
static Intrinsic::ID getNarrowIntrinsic(Instruction *I, unsigned TypeSize) {
// Whether we use the signed or unsigned versions of these intrinsics
// doesn't matter because we're not using the GE bits that they set in
// the APSR.
switch(I->getOpcode()) {
default:
break;
case Instruction::Add:
return TypeSize == 16 ? Intrinsic::arm_uadd16 :
Intrinsic::arm_uadd8;
case Instruction::Sub:
return TypeSize == 16 ? Intrinsic::arm_usub16 :
Intrinsic::arm_usub8;
}
llvm_unreachable("unhandled opcode for narrow intrinsic");
}
void IRPromoter::Mutate(Type *OrigTy,
SmallPtrSetImpl<Value*> &Visited,
SmallPtrSetImpl<Value*> &Leaves,
SmallPtrSetImpl<Instruction*> &Roots) {
IRBuilder<> Builder{Ctx};
Type *ExtTy = Type::getInt32Ty(M->getContext());
unsigned TypeSize = OrigTy->getPrimitiveSizeInBits();
SmallPtrSet<Value*, 8> Promoted;
LLVM_DEBUG(dbgs() << "ARM CGP: Promoting use-def chains to from " << TypeSize
<< " to 32-bits\n");
auto ReplaceAllUsersOfWith = [&](Value *From, Value *To) {
SmallVector<Instruction*, 4> Users;
Instruction *InstTo = dyn_cast<Instruction>(To);
for (Use &U : From->uses()) {
auto *User = cast<Instruction>(U.getUser());
if (InstTo && User->isIdenticalTo(InstTo))
continue;
Users.push_back(User);
}
for (auto &U : Users)
U->replaceUsesOfWith(From, To);
};
auto FixConst = [&](ConstantInt *Const, Instruction *I) {
Constant *NewConst = nullptr;
if (isSafeOverflow(I)) {
NewConst = (Const->isNegative()) ?
ConstantExpr::getSExt(Const, ExtTy) :
ConstantExpr::getZExt(Const, ExtTy);
} else {
uint64_t NewVal = *Const->getValue().getRawData();
if (Const->getType() == Type::getInt16Ty(Ctx))
NewVal &= 0xFFFF;
else
NewVal &= 0xFF;
NewConst = ConstantInt::get(ExtTy, NewVal);
}
I->replaceUsesOfWith(Const, NewConst);
};
auto InsertDSPIntrinsic = [&](Instruction *I) {
LLVM_DEBUG(dbgs() << "ARM CGP: Inserting DSP intrinsic for "
<< *I << "\n");
Function *DSPInst =
Intrinsic::getDeclaration(M, getNarrowIntrinsic(I, TypeSize));
Builder.SetInsertPoint(I);
Builder.SetCurrentDebugLocation(I->getDebugLoc());
Value *Args[] = { I->getOperand(0), I->getOperand(1) };
CallInst *Call = Builder.CreateCall(DSPInst, Args);
ReplaceAllUsersOfWith(I, Call);
InstsToRemove.push_back(I);
NewInsts.insert(Call);
};
auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
LLVM_DEBUG(dbgs() << "ARM CGP: Inserting ZExt for " << *V << "\n");
Builder.SetInsertPoint(InsertPt);
if (auto *I = dyn_cast<Instruction>(V))
Builder.SetCurrentDebugLocation(I->getDebugLoc());
auto *ZExt = cast<Instruction>(Builder.CreateZExt(V, ExtTy));
if (isa<Argument>(V))
ZExt->moveBefore(InsertPt);
else
ZExt->moveAfter(InsertPt);
ReplaceAllUsersOfWith(V, ZExt);
NewInsts.insert(ZExt);
};
// First, insert extending instructions between the leaves and their users.
LLVM_DEBUG(dbgs() << "ARM CGP: Promoting leaves:\n");
for (auto V : Leaves) {
LLVM_DEBUG(dbgs() << " - " << *V << "\n");
if (auto *ZExt = dyn_cast<ZExtInst>(V))
ZExt->mutateType(ExtTy);
else if (auto *I = dyn_cast<Instruction>(V))
InsertZExt(I, I);
else if (auto *Arg = dyn_cast<Argument>(V)) {
BasicBlock &BB = Arg->getParent()->front();
InsertZExt(Arg, &*BB.getFirstInsertionPt());
} else {
llvm_unreachable("unhandled leaf that needs extending");
}
Promoted.insert(V);
}
LLVM_DEBUG(dbgs() << "ARM CGP: Mutating the tree..\n");
// Then mutate the types of the instructions within the tree. Here we handle
// constant operands.
for (auto *V : Visited) {
if (Leaves.count(V))
continue;
if (!isa<Instruction>(V))
continue;
auto *I = cast<Instruction>(V);
if (Roots.count(I))
continue;
for (auto &U : I->operands()) {
if ((U->getType() == ExtTy) || !isSupportedType(&*U))
continue;
if (auto *Const = dyn_cast<ConstantInt>(&*U))
FixConst(Const, I);
else if (isa<UndefValue>(&*U))
U->mutateType(ExtTy);
}
if (shouldPromote(I)) {
I->mutateType(ExtTy);
Promoted.insert(I);
}
}
// Now we need to remove any zexts that have become unnecessary, as well
// as insert any intrinsics.
for (auto *V : Visited) {
if (Leaves.count(V))
continue;
if (auto *ZExt = dyn_cast<ZExtInst>(V)) {
if (ZExt->getDestTy() != ExtTy) {
ZExt->mutateType(ExtTy);
Promoted.insert(ZExt);
}
else if (ZExt->getSrcTy() == ExtTy) {
ReplaceAllUsersOfWith(V, ZExt->getOperand(0));
InstsToRemove.push_back(ZExt);
}
continue;
}
if (!shouldPromote(V) || isPromotedResultSafe(V))
continue;
// Replace unsafe instructions with appropriate intrinsic calls.
InsertDSPIntrinsic(cast<Instruction>(V));
}
LLVM_DEBUG(dbgs() << "ARM CGP: Fixing up the roots:\n");
// Fix up any stores or returns that use the results of the promoted
// chain.
for (auto I : Roots) {
LLVM_DEBUG(dbgs() << " - " << *I << "\n");
Type *TruncTy = OrigTy;
if (auto *Store = dyn_cast<StoreInst>(I)) {
auto *PtrTy = cast<PointerType>(Store->getPointerOperandType());
TruncTy = PtrTy->getElementType();
} else if (isa<ReturnInst>(I)) {
Function *F = I->getParent()->getParent();
TruncTy = F->getFunctionType()->getReturnType();
}
for (unsigned i = 0; i < I->getNumOperands(); ++i) {
Value *V = I->getOperand(i);
if (Promoted.count(V) || NewInsts.count(V)) {
if (auto *Op = dyn_cast<Instruction>(V)) {
if (auto *Call = dyn_cast<CallInst>(I))
TruncTy = Call->getFunctionType()->getParamType(i);
if (TruncTy == ExtTy)
continue;
LLVM_DEBUG(dbgs() << "ARM CGP: Creating " << *TruncTy
<< " Trunc for " << *Op << "\n");
Builder.SetInsertPoint(Op);
auto *Trunc = cast<Instruction>(Builder.CreateTrunc(Op, TruncTy));
Trunc->moveBefore(I);
I->setOperand(i, Trunc);
NewInsts.insert(Trunc);
}
}
}
}
LLVM_DEBUG(dbgs() << "ARM CGP: Mutation complete.\n");
}
bool ARMCodeGenPrepare::isNarrowInstSupported(Instruction *I) {
if (!ST->hasDSP() || !EnableDSP || !isSupportedType(I))
return false;
if (ST->isThumb() && !ST->hasThumb2())
return false;
if (I->getOpcode() != Instruction::Add && I->getOpcode() != Instruction::Sub)
return false;
// TODO
// Would it be profitable? For Thumb code, these parallel DSP instructions
// are only Thumb-2, so we wouldn't be able to dual issue on Cortex-M33. For
// Cortex-A, specifically Cortex-A72, the latency is double and throughput is
// halved. They also do not take immediates as operands.
for (auto &Op : I->operands()) {
if (isa<Constant>(Op)) {
if (!EnableDSPWithImms)
return false;
}
}
return true;
}
/// We accept most instructions, as well as Arguments and ConstantInsts. We
/// Disallow casts other than zext and truncs and only allow calls if their
/// return value is zeroext. We don't allow opcodes that can introduce sign
/// bits.
bool ARMCodeGenPrepare::isSupportedValue(Value *V) {
LLVM_DEBUG(dbgs() << "ARM CGP: Is " << *V << " supported?\n");
// Non-instruction values that we can handle.
if (isa<ConstantInt>(V) || isa<Argument>(V))
return true;
// Memory instructions
if (isa<StoreInst>(V) || isa<LoadInst>(V) || isa<GetElementPtrInst>(V))
return true;
// Branches and targets.
if (auto *ICmp = dyn_cast<ICmpInst>(V))
return ICmp->isEquality() || !ICmp->isSigned();
if( isa<BranchInst>(V) || isa<SwitchInst>(V) || isa<BasicBlock>(V))
return true;
if (isa<PHINode>(V) || isa<SelectInst>(V) || isa<ReturnInst>(V))
return true;
// Special cases for calls as we need to check for zeroext
// TODO We should accept calls even if they don't have zeroext, as they can
// still be roots.
if (auto *Call = dyn_cast<CallInst>(V))
return Call->hasRetAttr(Attribute::AttrKind::ZExt);
else if (auto *Cast = dyn_cast<CastInst>(V)) {
if (isa<ZExtInst>(Cast))
return Cast->getDestTy()->getScalarSizeInBits() <= 32;
else if (auto *Trunc = dyn_cast<TruncInst>(V))
return Trunc->getDestTy()->getScalarSizeInBits() <= TypeSize;
else {
LLVM_DEBUG(dbgs() << "ARM CGP: No, unsupported cast.\n");
return false;
}
} else if (!isa<BinaryOperator>(V)) {
LLVM_DEBUG(dbgs() << "ARM CGP: No, not a binary operator.\n");
return false;
}
bool res = !isSigned(V);
if (!res)
LLVM_DEBUG(dbgs() << "ARM CGP: No, it's a signed instruction.\n");
return res;
}
/// Check that the type of V would be promoted and that the original type is
/// smaller than the targeted promoted type. Check that we're not trying to
/// promote something larger than our base 'TypeSize' type.
bool ARMCodeGenPrepare::isLegalToPromote(Value *V) {
if (!isSupportedType(V))
return false;
unsigned VSize = 0;
if (auto *Ld = dyn_cast<LoadInst>(V)) {
auto *PtrTy = cast<PointerType>(Ld->getPointerOperandType());
VSize = PtrTy->getElementType()->getPrimitiveSizeInBits();
} else if (auto *ZExt = dyn_cast<ZExtInst>(V)) {
VSize = ZExt->getOperand(0)->getType()->getPrimitiveSizeInBits();
} else {
VSize = V->getType()->getPrimitiveSizeInBits();
}
if (VSize > TypeSize)
return false;
if (isPromotedResultSafe(V))
return true;
if (auto *I = dyn_cast<Instruction>(V))
return isNarrowInstSupported(I);
return false;
}
bool ARMCodeGenPrepare::TryToPromote(Value *V) {
OrigTy = V->getType();
TypeSize = OrigTy->getPrimitiveSizeInBits();
if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
return false;
LLVM_DEBUG(dbgs() << "ARM CGP: TryToPromote: " << *V << "\n");
SetVector<Value*> WorkList;
SmallPtrSet<Value*, 8> Leaves;
SmallPtrSet<Instruction*, 4> Roots;
WorkList.insert(V);
SmallPtrSet<Value*, 16> CurrentVisited;
CurrentVisited.clear();
// Return true if the given value can, or has been, visited. Add V to the
// worklist if needed.
auto AddLegalInst = [&](Value *V) {
if (CurrentVisited.count(V))
return true;
if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
LLVM_DEBUG(dbgs() << "ARM CGP: Can't handle: " << *V << "\n");
return false;
}
WorkList.insert(V);
return true;
};
// Iterate through, and add to, a tree of operands and users in the use-def.
while (!WorkList.empty()) {
Value *V = WorkList.back();
WorkList.pop_back();
if (CurrentVisited.count(V))
continue;
if (!isa<Instruction>(V) && !isSource(V))
continue;
// If we've already visited this value from somewhere, bail now because
// the tree has already been explored.
// TODO: This could limit the transform, ie if we try to promote something
// from an i8 and fail first, before trying an i16.
if (AllVisited.count(V)) {
LLVM_DEBUG(dbgs() << "ARM CGP: Already visited this: " << *V << "\n");
return false;
}
CurrentVisited.insert(V);
AllVisited.insert(V);
// Calls can be both sources and sinks.
if (isSink(V))
Roots.insert(cast<Instruction>(V));
if (isSource(V))
Leaves.insert(V);
else if (auto *I = dyn_cast<Instruction>(V)) {
// Visit operands of any instruction visited.
for (auto &U : I->operands()) {
if (!AddLegalInst(U))
return false;
}
}
// Don't visit users of a node which isn't going to be mutated unless its a
// source.
if (isSource(V) || shouldPromote(V)) {
for (Use &U : V->uses()) {
if (!AddLegalInst(U.getUser()))
return false;
}
}
}
unsigned NumToPromote = 0;
unsigned Cost = 0;
for (auto *V : CurrentVisited) {
// Truncs will cause a uxt and no zeroext arguments will often require
// a uxt somewhere.
if (isa<TruncInst>(V))
++Cost;
else if (auto *Arg = dyn_cast<Argument>(V)) {
if (!Arg->hasZExtAttr())
++Cost;
}
// Mem ops can automatically be extended/truncated and non-instructions
// don't need anything done.
if (Leaves.count(V) || isa<StoreInst>(V) || !isa<Instruction>(V))
continue;
// Will need to truncate calls args and returns.
if (Roots.count(cast<Instruction>(V))) {
++Cost;
continue;
}
if (shouldPromote(V))
++NumToPromote;
}
LLVM_DEBUG(dbgs() << "ARM CGP: Visited nodes:\n";
for (auto *I : CurrentVisited)
I->dump();
);
LLVM_DEBUG(dbgs() << "ARM CGP: Cost of promoting " << NumToPromote
<< " instructions = " << Cost << "\n");
if (Cost > NumToPromote || (NumToPromote == 0))
return false;
Promoter->Mutate(OrigTy, CurrentVisited, Leaves, Roots);
return true;
}
bool ARMCodeGenPrepare::doInitialization(Module &M) {
Promoter = new IRPromoter(&M);
return false;
}
bool ARMCodeGenPrepare::runOnFunction(Function &F) {
if (skipFunction(F) || DisableCGP)
return false;
auto *TPC = &getAnalysis<TargetPassConfig>();
if (!TPC)
return false;
const TargetMachine &TM = TPC->getTM<TargetMachine>();
ST = &TM.getSubtarget<ARMSubtarget>(F);
bool MadeChange = false;
LLVM_DEBUG(dbgs() << "ARM CGP: Running on " << F.getName() << "\n");
// Search up from icmps to try to promote their operands.
for (BasicBlock &BB : F) {
auto &Insts = BB.getInstList();
for (auto &I : Insts) {
if (AllVisited.count(&I))
continue;
if (isa<ICmpInst>(I)) {
auto &CI = cast<ICmpInst>(I);
// Skip signed or pointer compares
if (CI.isSigned() || !isa<IntegerType>(CI.getOperand(0)->getType()))
continue;
LLVM_DEBUG(dbgs() << "ARM CGP: Searching from: " << CI << "\n");
for (auto &Op : CI.operands()) {
if (auto *I = dyn_cast<Instruction>(Op)) {
if (isa<ZExtInst>(I))
MadeChange |= TryToPromote(I->getOperand(0));
else
MadeChange |= TryToPromote(I);
}
}
}
}
Promoter->Cleanup();
LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
dbgs();
report_fatal_error("Broken function after type promotion");
});
}
if (MadeChange)
LLVM_DEBUG(dbgs() << "After ARMCodeGenPrepare: " << F << "\n");
return MadeChange;
}
bool ARMCodeGenPrepare::doFinalization(Module &M) {
delete Promoter;
return false;
}
INITIALIZE_PASS_BEGIN(ARMCodeGenPrepare, DEBUG_TYPE,
"ARM IR optimizations", false, false)
INITIALIZE_PASS_END(ARMCodeGenPrepare, DEBUG_TYPE, "ARM IR optimizations",
false, false)
char ARMCodeGenPrepare::ID = 0;
FunctionPass *llvm::createARMCodeGenPreparePass() {
return new ARMCodeGenPrepare();
}