| //===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This pass adds instructions to enable whole quad mode for pixel |
| /// shaders, and whole wavefront mode for all programs. |
| /// |
| /// Whole quad mode is required for derivative computations, but it interferes |
| /// with shader side effects (stores and atomics). This pass is run on the |
| /// scheduled machine IR but before register coalescing, so that machine SSA is |
| /// available for analysis. It ensures that WQM is enabled when necessary, but |
| /// disabled around stores and atomics. |
| /// |
| /// When necessary, this pass creates a function prolog |
| /// |
| /// S_MOV_B64 LiveMask, EXEC |
| /// S_WQM_B64 EXEC, EXEC |
| /// |
| /// to enter WQM at the top of the function and surrounds blocks of Exact |
| /// instructions by |
| /// |
| /// S_AND_SAVEEXEC_B64 Tmp, LiveMask |
| /// ... |
| /// S_MOV_B64 EXEC, Tmp |
| /// |
| /// We also compute when a sequence of instructions requires Whole Wavefront |
| /// Mode (WWM) and insert instructions to save and restore it: |
| /// |
| /// S_OR_SAVEEXEC_B64 Tmp, -1 |
| /// ... |
| /// S_MOV_B64 EXEC, Tmp |
| /// |
| /// In order to avoid excessive switching during sequences of Exact |
| /// instructions, the pass first analyzes which instructions must be run in WQM |
| /// (aka which instructions produce values that lead to derivative |
| /// computations). |
| /// |
| /// Basic blocks are always exited in WQM as long as some successor needs WQM. |
| /// |
| /// There is room for improvement given better control flow analysis: |
| /// |
| /// (1) at the top level (outside of control flow statements, and as long as |
| /// kill hasn't been used), one SGPR can be saved by recovering WQM from |
| /// the LiveMask (this is implemented for the entry block). |
| /// |
| /// (2) when entire regions (e.g. if-else blocks or entire loops) only |
| /// consist of exact and don't-care instructions, the switch only has to |
| /// be done at the entry and exit points rather than potentially in each |
| /// block of the region. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "AMDGPU.h" |
| #include "AMDGPUSubtarget.h" |
| #include "SIInstrInfo.h" |
| #include "SIMachineFunctionInfo.h" |
| #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/CodeGen/LiveInterval.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "si-wqm" |
| |
| namespace { |
| |
| enum { |
| StateWQM = 0x1, |
| StateWWM = 0x2, |
| StateExact = 0x4, |
| }; |
| |
| struct PrintState { |
| public: |
| int State; |
| |
| explicit PrintState(int State) : State(State) {} |
| }; |
| |
| #ifndef NDEBUG |
| static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) { |
| if (PS.State & StateWQM) |
| OS << "WQM"; |
| if (PS.State & StateWWM) { |
| if (PS.State & StateWQM) |
| OS << '|'; |
| OS << "WWM"; |
| } |
| if (PS.State & StateExact) { |
| if (PS.State & (StateWQM | StateWWM)) |
| OS << '|'; |
| OS << "Exact"; |
| } |
| |
| return OS; |
| } |
| #endif |
| |
| struct InstrInfo { |
| char Needs = 0; |
| char Disabled = 0; |
| char OutNeeds = 0; |
| }; |
| |
| struct BlockInfo { |
| char Needs = 0; |
| char InNeeds = 0; |
| char OutNeeds = 0; |
| }; |
| |
| struct WorkItem { |
| MachineBasicBlock *MBB = nullptr; |
| MachineInstr *MI = nullptr; |
| |
| WorkItem() = default; |
| WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {} |
| WorkItem(MachineInstr *MI) : MI(MI) {} |
| }; |
| |
| class SIWholeQuadMode : public MachineFunctionPass { |
| private: |
| CallingConv::ID CallingConv; |
| const SIInstrInfo *TII; |
| const SIRegisterInfo *TRI; |
| MachineRegisterInfo *MRI; |
| LiveIntervals *LIS; |
| |
| DenseMap<const MachineInstr *, InstrInfo> Instructions; |
| DenseMap<MachineBasicBlock *, BlockInfo> Blocks; |
| SmallVector<MachineInstr *, 1> LiveMaskQueries; |
| SmallVector<MachineInstr *, 4> LowerToCopyInstrs; |
| |
| void printInfo(); |
| |
| void markInstruction(MachineInstr &MI, char Flag, |
| std::vector<WorkItem> &Worklist); |
| void markInstructionUses(const MachineInstr &MI, char Flag, |
| std::vector<WorkItem> &Worklist); |
| char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist); |
| void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist); |
| void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist); |
| char analyzeFunction(MachineFunction &MF); |
| |
| bool requiresCorrectState(const MachineInstr &MI) const; |
| |
| MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator Before); |
| MachineBasicBlock::iterator |
| prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First, |
| MachineBasicBlock::iterator Last, bool PreferLast, |
| bool SaveSCC); |
| void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, |
| unsigned SaveWQM, unsigned LiveMaskReg); |
| void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, |
| unsigned SavedWQM); |
| void toWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, |
| unsigned SaveOrig); |
| void fromWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, |
| unsigned SavedOrig); |
| void processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, bool isEntry); |
| |
| void lowerLiveMaskQueries(unsigned LiveMaskReg); |
| void lowerCopyInstrs(); |
| |
| public: |
| static char ID; |
| |
| SIWholeQuadMode() : |
| MachineFunctionPass(ID) { } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| StringRef getPassName() const override { return "SI Whole Quad Mode"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<LiveIntervals>(); |
| AU.setPreservesCFG(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char SIWholeQuadMode::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, |
| false) |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals) |
| INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, |
| false) |
| |
| char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID; |
| |
| FunctionPass *llvm::createSIWholeQuadModePass() { |
| return new SIWholeQuadMode; |
| } |
| |
| #ifndef NDEBUG |
| LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() { |
| for (const auto &BII : Blocks) { |
| dbgs() << "\n" |
| << printMBBReference(*BII.first) << ":\n" |
| << " InNeeds = " << PrintState(BII.second.InNeeds) |
| << ", Needs = " << PrintState(BII.second.Needs) |
| << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n"; |
| |
| for (const MachineInstr &MI : *BII.first) { |
| auto III = Instructions.find(&MI); |
| if (III == Instructions.end()) |
| continue; |
| |
| dbgs() << " " << MI << " Needs = " << PrintState(III->second.Needs) |
| << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n'; |
| } |
| } |
| } |
| #endif |
| |
| void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag, |
| std::vector<WorkItem> &Worklist) { |
| InstrInfo &II = Instructions[&MI]; |
| |
| assert(!(Flag & StateExact) && Flag != 0); |
| |
| // Remove any disabled states from the flag. The user that required it gets |
| // an undefined value in the helper lanes. For example, this can happen if |
| // the result of an atomic is used by instruction that requires WQM, where |
| // ignoring the request for WQM is correct as per the relevant specs. |
| Flag &= ~II.Disabled; |
| |
| // Ignore if the flag is already encompassed by the existing needs, or we |
| // just disabled everything. |
| if ((II.Needs & Flag) == Flag) |
| return; |
| |
| II.Needs |= Flag; |
| Worklist.push_back(&MI); |
| } |
| |
| /// Mark all instructions defining the uses in \p MI with \p Flag. |
| void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag, |
| std::vector<WorkItem> &Worklist) { |
| for (const MachineOperand &Use : MI.uses()) { |
| if (!Use.isReg() || !Use.isUse()) |
| continue; |
| |
| unsigned Reg = Use.getReg(); |
| |
| // Handle physical registers that we need to track; this is mostly relevant |
| // for VCC, which can appear as the (implicit) input of a uniform branch, |
| // e.g. when a loop counter is stored in a VGPR. |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) { |
| if (Reg == AMDGPU::EXEC) |
| continue; |
| |
| for (MCRegUnitIterator RegUnit(Reg, TRI); RegUnit.isValid(); ++RegUnit) { |
| LiveRange &LR = LIS->getRegUnit(*RegUnit); |
| const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn(); |
| if (!Value) |
| continue; |
| |
| // Since we're in machine SSA, we do not need to track physical |
| // registers across basic blocks. |
| if (Value->isPHIDef()) |
| continue; |
| |
| markInstruction(*LIS->getInstructionFromIndex(Value->def), Flag, |
| Worklist); |
| } |
| |
| continue; |
| } |
| |
| for (MachineInstr &DefMI : MRI->def_instructions(Use.getReg())) |
| markInstruction(DefMI, Flag, Worklist); |
| } |
| } |
| |
| // Scan instructions to determine which ones require an Exact execmask and |
| // which ones seed WQM requirements. |
| char SIWholeQuadMode::scanInstructions(MachineFunction &MF, |
| std::vector<WorkItem> &Worklist) { |
| char GlobalFlags = 0; |
| bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs"); |
| SmallVector<MachineInstr *, 4> SetInactiveInstrs; |
| |
| // We need to visit the basic blocks in reverse post-order so that we visit |
| // defs before uses, in particular so that we don't accidentally mark an |
| // instruction as needing e.g. WQM before visiting it and realizing it needs |
| // WQM disabled. |
| ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); |
| for (auto BI = RPOT.begin(), BE = RPOT.end(); BI != BE; ++BI) { |
| MachineBasicBlock &MBB = **BI; |
| BlockInfo &BBI = Blocks[&MBB]; |
| |
| for (auto II = MBB.begin(), IE = MBB.end(); II != IE; ++II) { |
| MachineInstr &MI = *II; |
| InstrInfo &III = Instructions[&MI]; |
| unsigned Opcode = MI.getOpcode(); |
| char Flags = 0; |
| |
| if (TII->isWQM(Opcode)) { |
| // Sampling instructions don't need to produce results for all pixels |
| // in a quad, they just require all inputs of a quad to have been |
| // computed for derivatives. |
| markInstructionUses(MI, StateWQM, Worklist); |
| GlobalFlags |= StateWQM; |
| continue; |
| } else if (Opcode == AMDGPU::WQM) { |
| // The WQM intrinsic requires its output to have all the helper lanes |
| // correct, so we need it to be in WQM. |
| Flags = StateWQM; |
| LowerToCopyInstrs.push_back(&MI); |
| } else if (Opcode == AMDGPU::WWM) { |
| // The WWM intrinsic doesn't make the same guarantee, and plus it needs |
| // to be executed in WQM or Exact so that its copy doesn't clobber |
| // inactive lanes. |
| markInstructionUses(MI, StateWWM, Worklist); |
| GlobalFlags |= StateWWM; |
| LowerToCopyInstrs.push_back(&MI); |
| continue; |
| } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 || |
| Opcode == AMDGPU::V_SET_INACTIVE_B64) { |
| III.Disabled = StateWWM; |
| MachineOperand &Inactive = MI.getOperand(2); |
| if (Inactive.isReg()) { |
| if (Inactive.isUndef()) { |
| LowerToCopyInstrs.push_back(&MI); |
| } else { |
| unsigned Reg = Inactive.getReg(); |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) { |
| for (MachineInstr &DefMI : MRI->def_instructions(Reg)) |
| markInstruction(DefMI, StateWWM, Worklist); |
| } |
| } |
| } |
| SetInactiveInstrs.push_back(&MI); |
| continue; |
| } else if (TII->isDisableWQM(MI)) { |
| BBI.Needs |= StateExact; |
| if (!(BBI.InNeeds & StateExact)) { |
| BBI.InNeeds |= StateExact; |
| Worklist.push_back(&MBB); |
| } |
| GlobalFlags |= StateExact; |
| III.Disabled = StateWQM | StateWWM; |
| continue; |
| } else { |
| if (Opcode == AMDGPU::SI_PS_LIVE) { |
| LiveMaskQueries.push_back(&MI); |
| } else if (WQMOutputs) { |
| // The function is in machine SSA form, which means that physical |
| // VGPRs correspond to shader inputs and outputs. Inputs are |
| // only used, outputs are only defined. |
| for (const MachineOperand &MO : MI.defs()) { |
| if (!MO.isReg()) |
| continue; |
| |
| unsigned Reg = MO.getReg(); |
| |
| if (!TRI->isVirtualRegister(Reg) && |
| TRI->hasVGPRs(TRI->getPhysRegClass(Reg))) { |
| Flags = StateWQM; |
| break; |
| } |
| } |
| } |
| |
| if (!Flags) |
| continue; |
| } |
| |
| markInstruction(MI, Flags, Worklist); |
| GlobalFlags |= Flags; |
| } |
| } |
| |
| // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is |
| // ever used anywhere in the function. This implements the corresponding |
| // semantics of @llvm.amdgcn.set.inactive. |
| if (GlobalFlags & StateWQM) { |
| for (MachineInstr *MI : SetInactiveInstrs) |
| markInstruction(*MI, StateWQM, Worklist); |
| } |
| |
| return GlobalFlags; |
| } |
| |
| void SIWholeQuadMode::propagateInstruction(MachineInstr &MI, |
| std::vector<WorkItem>& Worklist) { |
| MachineBasicBlock *MBB = MI.getParent(); |
| InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references |
| BlockInfo &BI = Blocks[MBB]; |
| |
| // Control flow-type instructions and stores to temporary memory that are |
| // followed by WQM computations must themselves be in WQM. |
| if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) && |
| (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) { |
| Instructions[&MI].Needs = StateWQM; |
| II.Needs = StateWQM; |
| } |
| |
| // Propagate to block level |
| if (II.Needs & StateWQM) { |
| BI.Needs |= StateWQM; |
| if (!(BI.InNeeds & StateWQM)) { |
| BI.InNeeds |= StateWQM; |
| Worklist.push_back(MBB); |
| } |
| } |
| |
| // Propagate backwards within block |
| if (MachineInstr *PrevMI = MI.getPrevNode()) { |
| char InNeeds = (II.Needs & ~StateWWM) | II.OutNeeds; |
| if (!PrevMI->isPHI()) { |
| InstrInfo &PrevII = Instructions[PrevMI]; |
| if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) { |
| PrevII.OutNeeds |= InNeeds; |
| Worklist.push_back(PrevMI); |
| } |
| } |
| } |
| |
| // Propagate WQM flag to instruction inputs |
| assert(!(II.Needs & StateExact)); |
| |
| if (II.Needs != 0) |
| markInstructionUses(MI, II.Needs, Worklist); |
| |
| // Ensure we process a block containing WWM, even if it does not require any |
| // WQM transitions. |
| if (II.Needs & StateWWM) |
| BI.Needs |= StateWWM; |
| } |
| |
| void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB, |
| std::vector<WorkItem>& Worklist) { |
| BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references. |
| |
| // Propagate through instructions |
| if (!MBB.empty()) { |
| MachineInstr *LastMI = &*MBB.rbegin(); |
| InstrInfo &LastII = Instructions[LastMI]; |
| if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) { |
| LastII.OutNeeds |= BI.OutNeeds; |
| Worklist.push_back(LastMI); |
| } |
| } |
| |
| // Predecessor blocks must provide for our WQM/Exact needs. |
| for (MachineBasicBlock *Pred : MBB.predecessors()) { |
| BlockInfo &PredBI = Blocks[Pred]; |
| if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds) |
| continue; |
| |
| PredBI.OutNeeds |= BI.InNeeds; |
| PredBI.InNeeds |= BI.InNeeds; |
| Worklist.push_back(Pred); |
| } |
| |
| // All successors must be prepared to accept the same set of WQM/Exact data. |
| for (MachineBasicBlock *Succ : MBB.successors()) { |
| BlockInfo &SuccBI = Blocks[Succ]; |
| if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds) |
| continue; |
| |
| SuccBI.InNeeds |= BI.OutNeeds; |
| Worklist.push_back(Succ); |
| } |
| } |
| |
| char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) { |
| std::vector<WorkItem> Worklist; |
| char GlobalFlags = scanInstructions(MF, Worklist); |
| |
| while (!Worklist.empty()) { |
| WorkItem WI = Worklist.back(); |
| Worklist.pop_back(); |
| |
| if (WI.MI) |
| propagateInstruction(*WI.MI, Worklist); |
| else |
| propagateBlock(*WI.MBB, Worklist); |
| } |
| |
| return GlobalFlags; |
| } |
| |
| /// Whether \p MI really requires the exec state computed during analysis. |
| /// |
| /// Scalar instructions must occasionally be marked WQM for correct propagation |
| /// (e.g. thread masks leading up to branches), but when it comes to actual |
| /// execution, they don't care about EXEC. |
| bool SIWholeQuadMode::requiresCorrectState(const MachineInstr &MI) const { |
| if (MI.isTerminator()) |
| return true; |
| |
| // Skip instructions that are not affected by EXEC |
| if (TII->isScalarUnit(MI)) |
| return false; |
| |
| // Generic instructions such as COPY will either disappear by register |
| // coalescing or be lowered to SALU or VALU instructions. |
| if (MI.isTransient()) { |
| if (MI.getNumExplicitOperands() >= 1) { |
| const MachineOperand &Op = MI.getOperand(0); |
| if (Op.isReg()) { |
| if (TRI->isSGPRReg(*MRI, Op.getReg())) { |
| // SGPR instructions are not affected by EXEC |
| return false; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| MachineBasicBlock::iterator |
| SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator Before) { |
| unsigned SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); |
| |
| MachineInstr *Save = |
| BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg) |
| .addReg(AMDGPU::SCC); |
| MachineInstr *Restore = |
| BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC) |
| .addReg(SaveReg); |
| |
| LIS->InsertMachineInstrInMaps(*Save); |
| LIS->InsertMachineInstrInMaps(*Restore); |
| LIS->createAndComputeVirtRegInterval(SaveReg); |
| |
| return Restore; |
| } |
| |
| // Return an iterator in the (inclusive) range [First, Last] at which |
| // instructions can be safely inserted, keeping in mind that some of the |
| // instructions we want to add necessarily clobber SCC. |
| MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator First, |
| MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) { |
| if (!SaveSCC) |
| return PreferLast ? Last : First; |
| |
| LiveRange &LR = LIS->getRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI)); |
| auto MBBE = MBB.end(); |
| SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First) |
| : LIS->getMBBEndIdx(&MBB); |
| SlotIndex LastIdx = |
| Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB); |
| SlotIndex Idx = PreferLast ? LastIdx : FirstIdx; |
| const LiveRange::Segment *S; |
| |
| for (;;) { |
| S = LR.getSegmentContaining(Idx); |
| if (!S) |
| break; |
| |
| if (PreferLast) { |
| SlotIndex Next = S->start.getBaseIndex(); |
| if (Next < FirstIdx) |
| break; |
| Idx = Next; |
| } else { |
| SlotIndex Next = S->end.getNextIndex().getBaseIndex(); |
| if (Next > LastIdx) |
| break; |
| Idx = Next; |
| } |
| } |
| |
| MachineBasicBlock::iterator MBBI; |
| |
| if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx)) |
| MBBI = MI; |
| else { |
| assert(Idx == LIS->getMBBEndIdx(&MBB)); |
| MBBI = MBB.end(); |
| } |
| |
| if (S) |
| MBBI = saveSCC(MBB, MBBI); |
| |
| return MBBI; |
| } |
| |
| void SIWholeQuadMode::toExact(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator Before, |
| unsigned SaveWQM, unsigned LiveMaskReg) { |
| MachineInstr *MI; |
| |
| if (SaveWQM) { |
| MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_SAVEEXEC_B64), |
| SaveWQM) |
| .addReg(LiveMaskReg); |
| } else { |
| MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_B64), |
| AMDGPU::EXEC) |
| .addReg(AMDGPU::EXEC) |
| .addReg(LiveMaskReg); |
| } |
| |
| LIS->InsertMachineInstrInMaps(*MI); |
| } |
| |
| void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator Before, |
| unsigned SavedWQM) { |
| MachineInstr *MI; |
| |
| if (SavedWQM) { |
| MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::EXEC) |
| .addReg(SavedWQM); |
| } else { |
| MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_WQM_B64), |
| AMDGPU::EXEC) |
| .addReg(AMDGPU::EXEC); |
| } |
| |
| LIS->InsertMachineInstrInMaps(*MI); |
| } |
| |
| void SIWholeQuadMode::toWWM(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator Before, |
| unsigned SaveOrig) { |
| MachineInstr *MI; |
| |
| assert(SaveOrig); |
| MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_OR_SAVEEXEC_B64), |
| SaveOrig) |
| .addImm(-1); |
| LIS->InsertMachineInstrInMaps(*MI); |
| } |
| |
| void SIWholeQuadMode::fromWWM(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator Before, |
| unsigned SavedOrig) { |
| MachineInstr *MI; |
| |
| assert(SavedOrig); |
| MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_WWM), AMDGPU::EXEC) |
| .addReg(SavedOrig); |
| LIS->InsertMachineInstrInMaps(*MI); |
| } |
| |
| void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, |
| bool isEntry) { |
| auto BII = Blocks.find(&MBB); |
| if (BII == Blocks.end()) |
| return; |
| |
| const BlockInfo &BI = BII->second; |
| |
| // This is a non-entry block that is WQM throughout, so no need to do |
| // anything. |
| if (!isEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact) |
| return; |
| |
| LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB) |
| << ":\n"); |
| |
| unsigned SavedWQMReg = 0; |
| unsigned SavedNonWWMReg = 0; |
| bool WQMFromExec = isEntry; |
| char State = (isEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM; |
| char NonWWMState = 0; |
| |
| auto II = MBB.getFirstNonPHI(), IE = MBB.end(); |
| if (isEntry) |
| ++II; // Skip the instruction that saves LiveMask |
| |
| // This stores the first instruction where it's safe to switch from WQM to |
| // Exact or vice versa. |
| MachineBasicBlock::iterator FirstWQM = IE; |
| |
| // This stores the first instruction where it's safe to switch from WWM to |
| // Exact/WQM or to switch to WWM. It must always be the same as, or after, |
| // FirstWQM since if it's safe to switch to/from WWM, it must be safe to |
| // switch to/from WQM as well. |
| MachineBasicBlock::iterator FirstWWM = IE; |
| for (;;) { |
| MachineBasicBlock::iterator Next = II; |
| char Needs = StateExact | StateWQM; // WWM is disabled by default |
| char OutNeeds = 0; |
| |
| if (FirstWQM == IE) |
| FirstWQM = II; |
| |
| if (FirstWWM == IE) |
| FirstWWM = II; |
| |
| // First, figure out the allowed states (Needs) based on the propagated |
| // flags. |
| if (II != IE) { |
| MachineInstr &MI = *II; |
| |
| if (requiresCorrectState(MI)) { |
| auto III = Instructions.find(&MI); |
| if (III != Instructions.end()) { |
| if (III->second.Needs & StateWWM) |
| Needs = StateWWM; |
| else if (III->second.Needs & StateWQM) |
| Needs = StateWQM; |
| else |
| Needs &= ~III->second.Disabled; |
| OutNeeds = III->second.OutNeeds; |
| } |
| } else { |
| // If the instruction doesn't actually need a correct EXEC, then we can |
| // safely leave WWM enabled. |
| Needs = StateExact | StateWQM | StateWWM; |
| } |
| |
| if (MI.isTerminator() && OutNeeds == StateExact) |
| Needs = StateExact; |
| |
| if (MI.getOpcode() == AMDGPU::SI_ELSE && BI.OutNeeds == StateExact) |
| MI.getOperand(3).setImm(1); |
| |
| ++Next; |
| } else { |
| // End of basic block |
| if (BI.OutNeeds & StateWQM) |
| Needs = StateWQM; |
| else if (BI.OutNeeds == StateExact) |
| Needs = StateExact; |
| else |
| Needs = StateWQM | StateExact; |
| } |
| |
| // Now, transition if necessary. |
| if (!(Needs & State)) { |
| MachineBasicBlock::iterator First; |
| if (State == StateWWM || Needs == StateWWM) { |
| // We must switch to or from WWM |
| First = FirstWWM; |
| } else { |
| // We only need to switch to/from WQM, so we can use FirstWQM |
| First = FirstWQM; |
| } |
| |
| MachineBasicBlock::iterator Before = |
| prepareInsertion(MBB, First, II, Needs == StateWQM, |
| Needs == StateExact || WQMFromExec); |
| |
| if (State == StateWWM) { |
| assert(SavedNonWWMReg); |
| fromWWM(MBB, Before, SavedNonWWMReg); |
| State = NonWWMState; |
| } |
| |
| if (Needs == StateWWM) { |
| NonWWMState = State; |
| SavedNonWWMReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass); |
| toWWM(MBB, Before, SavedNonWWMReg); |
| State = StateWWM; |
| } else { |
| if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) { |
| if (!WQMFromExec && (OutNeeds & StateWQM)) |
| SavedWQMReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass); |
| |
| toExact(MBB, Before, SavedWQMReg, LiveMaskReg); |
| State = StateExact; |
| } else if (State == StateExact && (Needs & StateWQM) && |
| !(Needs & StateExact)) { |
| assert(WQMFromExec == (SavedWQMReg == 0)); |
| |
| toWQM(MBB, Before, SavedWQMReg); |
| |
| if (SavedWQMReg) { |
| LIS->createAndComputeVirtRegInterval(SavedWQMReg); |
| SavedWQMReg = 0; |
| } |
| State = StateWQM; |
| } else { |
| // We can get here if we transitioned from WWM to a non-WWM state that |
| // already matches our needs, but we shouldn't need to do anything. |
| assert(Needs & State); |
| } |
| } |
| } |
| |
| if (Needs != (StateExact | StateWQM | StateWWM)) { |
| if (Needs != (StateExact | StateWQM)) |
| FirstWQM = IE; |
| FirstWWM = IE; |
| } |
| |
| if (II == IE) |
| break; |
| II = Next; |
| } |
| } |
| |
| void SIWholeQuadMode::lowerLiveMaskQueries(unsigned LiveMaskReg) { |
| for (MachineInstr *MI : LiveMaskQueries) { |
| const DebugLoc &DL = MI->getDebugLoc(); |
| unsigned Dest = MI->getOperand(0).getReg(); |
| MachineInstr *Copy = |
| BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest) |
| .addReg(LiveMaskReg); |
| |
| LIS->ReplaceMachineInstrInMaps(*MI, *Copy); |
| MI->eraseFromParent(); |
| } |
| } |
| |
| void SIWholeQuadMode::lowerCopyInstrs() { |
| for (MachineInstr *MI : LowerToCopyInstrs) { |
| for (unsigned i = MI->getNumExplicitOperands() - 1; i > 1; i--) |
| MI->RemoveOperand(i); |
| MI->setDesc(TII->get(AMDGPU::COPY)); |
| } |
| } |
| |
| bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) { |
| Instructions.clear(); |
| Blocks.clear(); |
| LiveMaskQueries.clear(); |
| LowerToCopyInstrs.clear(); |
| CallingConv = MF.getFunction().getCallingConv(); |
| |
| const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| |
| TII = ST.getInstrInfo(); |
| TRI = &TII->getRegisterInfo(); |
| MRI = &MF.getRegInfo(); |
| LIS = &getAnalysis<LiveIntervals>(); |
| |
| char GlobalFlags = analyzeFunction(MF); |
| unsigned LiveMaskReg = 0; |
| if (!(GlobalFlags & StateWQM)) { |
| lowerLiveMaskQueries(AMDGPU::EXEC); |
| if (!(GlobalFlags & StateWWM)) |
| return !LiveMaskQueries.empty(); |
| } else { |
| // Store a copy of the original live mask when required |
| MachineBasicBlock &Entry = MF.front(); |
| MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI(); |
| |
| if (GlobalFlags & StateExact || !LiveMaskQueries.empty()) { |
| LiveMaskReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass); |
| MachineInstr *MI = BuildMI(Entry, EntryMI, DebugLoc(), |
| TII->get(AMDGPU::COPY), LiveMaskReg) |
| .addReg(AMDGPU::EXEC); |
| LIS->InsertMachineInstrInMaps(*MI); |
| } |
| |
| lowerLiveMaskQueries(LiveMaskReg); |
| |
| if (GlobalFlags == StateWQM) { |
| // For a shader that needs only WQM, we can just set it once. |
| BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::S_WQM_B64), |
| AMDGPU::EXEC) |
| .addReg(AMDGPU::EXEC); |
| |
| lowerCopyInstrs(); |
| // EntryMI may become invalid here |
| return true; |
| } |
| } |
| |
| LLVM_DEBUG(printInfo()); |
| |
| lowerCopyInstrs(); |
| |
| // Handle the general case |
| for (auto BII : Blocks) |
| processBlock(*BII.first, LiveMaskReg, BII.first == &*MF.begin()); |
| |
| // Physical registers like SCC aren't tracked by default anyway, so just |
| // removing the ranges we computed is the simplest option for maintaining |
| // the analysis results. |
| LIS->removeRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI)); |
| |
| return true; |
| } |