blob: 566e0d3febc78e986f92c43185d8b670ba168b17 [file] [log] [blame]
//===- SIFixSGPRCopies.cpp - Remove potential VGPR => SGPR copies ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Copies from VGPR to SGPR registers are illegal and the register coalescer
/// will sometimes generate these illegal copies in situations like this:
///
/// Register Class <vsrc> is the union of <vgpr> and <sgpr>
///
/// BB0:
/// %0 <sgpr> = SCALAR_INST
/// %1 <vsrc> = COPY %0 <sgpr>
/// ...
/// BRANCH %cond BB1, BB2
/// BB1:
/// %2 <vgpr> = VECTOR_INST
/// %3 <vsrc> = COPY %2 <vgpr>
/// BB2:
/// %4 <vsrc> = PHI %1 <vsrc>, <%bb.0>, %3 <vrsc>, <%bb.1>
/// %5 <vgpr> = VECTOR_INST %4 <vsrc>
///
///
/// The coalescer will begin at BB0 and eliminate its copy, then the resulting
/// code will look like this:
///
/// BB0:
/// %0 <sgpr> = SCALAR_INST
/// ...
/// BRANCH %cond BB1, BB2
/// BB1:
/// %2 <vgpr> = VECTOR_INST
/// %3 <vsrc> = COPY %2 <vgpr>
/// BB2:
/// %4 <sgpr> = PHI %0 <sgpr>, <%bb.0>, %3 <vsrc>, <%bb.1>
/// %5 <vgpr> = VECTOR_INST %4 <sgpr>
///
/// Now that the result of the PHI instruction is an SGPR, the register
/// allocator is now forced to constrain the register class of %3 to
/// <sgpr> so we end up with final code like this:
///
/// BB0:
/// %0 <sgpr> = SCALAR_INST
/// ...
/// BRANCH %cond BB1, BB2
/// BB1:
/// %2 <vgpr> = VECTOR_INST
/// %3 <sgpr> = COPY %2 <vgpr>
/// BB2:
/// %4 <sgpr> = PHI %0 <sgpr>, <%bb.0>, %3 <sgpr>, <%bb.1>
/// %5 <vgpr> = VECTOR_INST %4 <sgpr>
///
/// Now this code contains an illegal copy from a VGPR to an SGPR.
///
/// In order to avoid this problem, this pass searches for PHI instructions
/// which define a <vsrc> register and constrains its definition class to
/// <vgpr> if the user of the PHI's definition register is a vector instruction.
/// If the PHI's definition class is constrained to <vgpr> then the coalescer
/// will be unable to perform the COPY removal from the above example which
/// ultimately led to the creation of an illegal COPY.
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <list>
#include <map>
#include <tuple>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "si-fix-sgpr-copies"
static cl::opt<bool> EnableM0Merge(
"amdgpu-enable-merge-m0",
cl::desc("Merge and hoist M0 initializations"),
cl::init(false));
namespace {
class SIFixSGPRCopies : public MachineFunctionPass {
MachineDominatorTree *MDT;
public:
static char ID;
SIFixSGPRCopies() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return "SI Fix SGPR copies"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(SIFixSGPRCopies, DEBUG_TYPE,
"SI Fix SGPR copies", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(SIFixSGPRCopies, DEBUG_TYPE,
"SI Fix SGPR copies", false, false)
char SIFixSGPRCopies::ID = 0;
char &llvm::SIFixSGPRCopiesID = SIFixSGPRCopies::ID;
FunctionPass *llvm::createSIFixSGPRCopiesPass() {
return new SIFixSGPRCopies();
}
static bool hasVGPROperands(const MachineInstr &MI, const SIRegisterInfo *TRI) {
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
if (!MI.getOperand(i).isReg() ||
!TargetRegisterInfo::isVirtualRegister(MI.getOperand(i).getReg()))
continue;
if (TRI->hasVGPRs(MRI.getRegClass(MI.getOperand(i).getReg())))
return true;
}
return false;
}
static std::pair<const TargetRegisterClass *, const TargetRegisterClass *>
getCopyRegClasses(const MachineInstr &Copy,
const SIRegisterInfo &TRI,
const MachineRegisterInfo &MRI) {
unsigned DstReg = Copy.getOperand(0).getReg();
unsigned SrcReg = Copy.getOperand(1).getReg();
const TargetRegisterClass *SrcRC =
TargetRegisterInfo::isVirtualRegister(SrcReg) ?
MRI.getRegClass(SrcReg) :
TRI.getPhysRegClass(SrcReg);
// We don't really care about the subregister here.
// SrcRC = TRI.getSubRegClass(SrcRC, Copy.getOperand(1).getSubReg());
const TargetRegisterClass *DstRC =
TargetRegisterInfo::isVirtualRegister(DstReg) ?
MRI.getRegClass(DstReg) :
TRI.getPhysRegClass(DstReg);
return std::make_pair(SrcRC, DstRC);
}
static bool isVGPRToSGPRCopy(const TargetRegisterClass *SrcRC,
const TargetRegisterClass *DstRC,
const SIRegisterInfo &TRI) {
return TRI.isSGPRClass(DstRC) && TRI.hasVGPRs(SrcRC);
}
static bool isSGPRToVGPRCopy(const TargetRegisterClass *SrcRC,
const TargetRegisterClass *DstRC,
const SIRegisterInfo &TRI) {
return TRI.isSGPRClass(SrcRC) && TRI.hasVGPRs(DstRC);
}
static bool tryChangeVGPRtoSGPRinCopy(MachineInstr &MI,
const SIRegisterInfo *TRI,
const SIInstrInfo *TII) {
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
auto &Src = MI.getOperand(1);
unsigned DstReg = MI.getOperand(0).getReg();
unsigned SrcReg = Src.getReg();
if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
!TargetRegisterInfo::isVirtualRegister(DstReg))
return false;
for (const auto &MO : MRI.reg_nodbg_operands(DstReg)) {
const auto *UseMI = MO.getParent();
if (UseMI == &MI)
continue;
if (MO.isDef() || UseMI->getParent() != MI.getParent() ||
UseMI->getOpcode() <= TargetOpcode::GENERIC_OP_END ||
!TII->isOperandLegal(*UseMI, UseMI->getOperandNo(&MO), &Src))
return false;
}
// Change VGPR to SGPR destination.
MRI.setRegClass(DstReg, TRI->getEquivalentSGPRClass(MRI.getRegClass(DstReg)));
return true;
}
// Distribute an SGPR->VGPR copy of a REG_SEQUENCE into a VGPR REG_SEQUENCE.
//
// SGPRx = ...
// SGPRy = REG_SEQUENCE SGPRx, sub0 ...
// VGPRz = COPY SGPRy
//
// ==>
//
// VGPRx = COPY SGPRx
// VGPRz = REG_SEQUENCE VGPRx, sub0
//
// This exposes immediate folding opportunities when materializing 64-bit
// immediates.
static bool foldVGPRCopyIntoRegSequence(MachineInstr &MI,
const SIRegisterInfo *TRI,
const SIInstrInfo *TII,
MachineRegisterInfo &MRI) {
assert(MI.isRegSequence());
unsigned DstReg = MI.getOperand(0).getReg();
if (!TRI->isSGPRClass(MRI.getRegClass(DstReg)))
return false;
if (!MRI.hasOneUse(DstReg))
return false;
MachineInstr &CopyUse = *MRI.use_instr_begin(DstReg);
if (!CopyUse.isCopy())
return false;
// It is illegal to have vreg inputs to a physreg defining reg_sequence.
if (TargetRegisterInfo::isPhysicalRegister(CopyUse.getOperand(0).getReg()))
return false;
const TargetRegisterClass *SrcRC, *DstRC;
std::tie(SrcRC, DstRC) = getCopyRegClasses(CopyUse, *TRI, MRI);
if (!isSGPRToVGPRCopy(SrcRC, DstRC, *TRI))
return false;
if (tryChangeVGPRtoSGPRinCopy(CopyUse, TRI, TII))
return true;
// TODO: Could have multiple extracts?
unsigned SubReg = CopyUse.getOperand(1).getSubReg();
if (SubReg != AMDGPU::NoSubRegister)
return false;
MRI.setRegClass(DstReg, DstRC);
// SGPRx = ...
// SGPRy = REG_SEQUENCE SGPRx, sub0 ...
// VGPRz = COPY SGPRy
// =>
// VGPRx = COPY SGPRx
// VGPRz = REG_SEQUENCE VGPRx, sub0
MI.getOperand(0).setReg(CopyUse.getOperand(0).getReg());
for (unsigned I = 1, N = MI.getNumOperands(); I != N; I += 2) {
unsigned SrcReg = MI.getOperand(I).getReg();
unsigned SrcSubReg = MI.getOperand(I).getSubReg();
const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
assert(TRI->isSGPRClass(SrcRC) &&
"Expected SGPR REG_SEQUENCE to only have SGPR inputs");
SrcRC = TRI->getSubRegClass(SrcRC, SrcSubReg);
const TargetRegisterClass *NewSrcRC = TRI->getEquivalentVGPRClass(SrcRC);
unsigned TmpReg = MRI.createVirtualRegister(NewSrcRC);
BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(), TII->get(AMDGPU::COPY),
TmpReg)
.add(MI.getOperand(I));
MI.getOperand(I).setReg(TmpReg);
}
CopyUse.eraseFromParent();
return true;
}
static bool phiHasVGPROperands(const MachineInstr &PHI,
const MachineRegisterInfo &MRI,
const SIRegisterInfo *TRI,
const SIInstrInfo *TII) {
for (unsigned i = 1; i < PHI.getNumOperands(); i += 2) {
unsigned Reg = PHI.getOperand(i).getReg();
if (TRI->hasVGPRs(MRI.getRegClass(Reg)))
return true;
}
return false;
}
static bool phiHasBreakDef(const MachineInstr &PHI,
const MachineRegisterInfo &MRI,
SmallSet<unsigned, 8> &Visited) {
for (unsigned i = 1; i < PHI.getNumOperands(); i += 2) {
unsigned Reg = PHI.getOperand(i).getReg();
if (Visited.count(Reg))
continue;
Visited.insert(Reg);
MachineInstr *DefInstr = MRI.getVRegDef(Reg);
switch (DefInstr->getOpcode()) {
default:
break;
case AMDGPU::SI_BREAK:
case AMDGPU::SI_IF_BREAK:
case AMDGPU::SI_ELSE_BREAK:
return true;
case AMDGPU::PHI:
if (phiHasBreakDef(*DefInstr, MRI, Visited))
return true;
}
}
return false;
}
static bool hasTerminatorThatModifiesExec(const MachineBasicBlock &MBB,
const TargetRegisterInfo &TRI) {
for (MachineBasicBlock::const_iterator I = MBB.getFirstTerminator(),
E = MBB.end(); I != E; ++I) {
if (I->modifiesRegister(AMDGPU::EXEC, &TRI))
return true;
}
return false;
}
static bool isSafeToFoldImmIntoCopy(const MachineInstr *Copy,
const MachineInstr *MoveImm,
const SIInstrInfo *TII,
unsigned &SMovOp,
int64_t &Imm) {
if (Copy->getOpcode() != AMDGPU::COPY)
return false;
if (!MoveImm->isMoveImmediate())
return false;
const MachineOperand *ImmOp =
TII->getNamedOperand(*MoveImm, AMDGPU::OpName::src0);
if (!ImmOp->isImm())
return false;
// FIXME: Handle copies with sub-regs.
if (Copy->getOperand(0).getSubReg())
return false;
switch (MoveImm->getOpcode()) {
default:
return false;
case AMDGPU::V_MOV_B32_e32:
SMovOp = AMDGPU::S_MOV_B32;
break;
case AMDGPU::V_MOV_B64_PSEUDO:
SMovOp = AMDGPU::S_MOV_B64;
break;
}
Imm = ImmOp->getImm();
return true;
}
template <class UnaryPredicate>
bool searchPredecessors(const MachineBasicBlock *MBB,
const MachineBasicBlock *CutOff,
UnaryPredicate Predicate) {
if (MBB == CutOff)
return false;
DenseSet<const MachineBasicBlock *> Visited;
SmallVector<MachineBasicBlock *, 4> Worklist(MBB->pred_begin(),
MBB->pred_end());
while (!Worklist.empty()) {
MachineBasicBlock *MBB = Worklist.pop_back_val();
if (!Visited.insert(MBB).second)
continue;
if (MBB == CutOff)
continue;
if (Predicate(MBB))
return true;
Worklist.append(MBB->pred_begin(), MBB->pred_end());
}
return false;
}
static bool predsHasDivergentTerminator(MachineBasicBlock *MBB,
const TargetRegisterInfo *TRI) {
return searchPredecessors(MBB, nullptr, [TRI](MachineBasicBlock *MBB) {
return hasTerminatorThatModifiesExec(*MBB, *TRI); });
}
// Checks if there is potential path From instruction To instruction.
// If CutOff is specified and it sits in between of that path we ignore
// a higher portion of the path and report it is not reachable.
static bool isReachable(const MachineInstr *From,
const MachineInstr *To,
const MachineBasicBlock *CutOff,
MachineDominatorTree &MDT) {
// If either From block dominates To block or instructions are in the same
// block and From is higher.
if (MDT.dominates(From, To))
return true;
const MachineBasicBlock *MBBFrom = From->getParent();
const MachineBasicBlock *MBBTo = To->getParent();
if (MBBFrom == MBBTo)
return false;
// Instructions are in different blocks, do predecessor search.
// We should almost never get here since we do not usually produce M0 stores
// other than -1.
return searchPredecessors(MBBTo, CutOff, [MBBFrom]
(const MachineBasicBlock *MBB) { return MBB == MBBFrom; });
}
// Hoist and merge identical SGPR initializations into a common predecessor.
// This is intended to combine M0 initializations, but can work with any
// SGPR. A VGPR cannot be processed since we cannot guarantee vector
// executioon.
static bool hoistAndMergeSGPRInits(unsigned Reg,
const MachineRegisterInfo &MRI,
MachineDominatorTree &MDT) {
// List of inits by immediate value.
using InitListMap = std::map<unsigned, std::list<MachineInstr *>>;
InitListMap Inits;
// List of clobbering instructions.
SmallVector<MachineInstr*, 8> Clobbers;
bool Changed = false;
for (auto &MI : MRI.def_instructions(Reg)) {
MachineOperand *Imm = nullptr;
for (auto &MO: MI.operands()) {
if ((MO.isReg() && ((MO.isDef() && MO.getReg() != Reg) || !MO.isDef())) ||
(!MO.isImm() && !MO.isReg()) || (MO.isImm() && Imm)) {
Imm = nullptr;
break;
} else if (MO.isImm())
Imm = &MO;
}
if (Imm)
Inits[Imm->getImm()].push_front(&MI);
else
Clobbers.push_back(&MI);
}
for (auto &Init : Inits) {
auto &Defs = Init.second;
for (auto I1 = Defs.begin(), E = Defs.end(); I1 != E; ) {
MachineInstr *MI1 = *I1;
for (auto I2 = std::next(I1); I2 != E; ) {
MachineInstr *MI2 = *I2;
// Check any possible interference
auto intereferes = [&](MachineBasicBlock::iterator From,
MachineBasicBlock::iterator To) -> bool {
assert(MDT.dominates(&*To, &*From));
auto interferes = [&MDT, From, To](MachineInstr* &Clobber) -> bool {
const MachineBasicBlock *MBBFrom = From->getParent();
const MachineBasicBlock *MBBTo = To->getParent();
bool MayClobberFrom = isReachable(Clobber, &*From, MBBTo, MDT);
bool MayClobberTo = isReachable(Clobber, &*To, MBBTo, MDT);
if (!MayClobberFrom && !MayClobberTo)
return false;
if ((MayClobberFrom && !MayClobberTo) ||
(!MayClobberFrom && MayClobberTo))
return true;
// Both can clobber, this is not an interference only if both are
// dominated by Clobber and belong to the same block or if Clobber
// properly dominates To, given that To >> From, so it dominates
// both and located in a common dominator.
return !((MBBFrom == MBBTo &&
MDT.dominates(Clobber, &*From) &&
MDT.dominates(Clobber, &*To)) ||
MDT.properlyDominates(Clobber->getParent(), MBBTo));
};
return (llvm::any_of(Clobbers, interferes)) ||
(llvm::any_of(Inits, [&](InitListMap::value_type &C) {
return C.first != Init.first &&
llvm::any_of(C.second, interferes);
}));
};
if (MDT.dominates(MI1, MI2)) {
if (!intereferes(MI2, MI1)) {
LLVM_DEBUG(dbgs()
<< "Erasing from "
<< printMBBReference(*MI2->getParent()) << " " << *MI2);
MI2->eraseFromParent();
Defs.erase(I2++);
Changed = true;
continue;
}
} else if (MDT.dominates(MI2, MI1)) {
if (!intereferes(MI1, MI2)) {
LLVM_DEBUG(dbgs()
<< "Erasing from "
<< printMBBReference(*MI1->getParent()) << " " << *MI1);
MI1->eraseFromParent();
Defs.erase(I1++);
Changed = true;
break;
}
} else {
auto *MBB = MDT.findNearestCommonDominator(MI1->getParent(),
MI2->getParent());
if (!MBB) {
++I2;
continue;
}
MachineBasicBlock::iterator I = MBB->getFirstNonPHI();
if (!intereferes(MI1, I) && !intereferes(MI2, I)) {
LLVM_DEBUG(dbgs()
<< "Erasing from "
<< printMBBReference(*MI1->getParent()) << " " << *MI1
<< "and moving from "
<< printMBBReference(*MI2->getParent()) << " to "
<< printMBBReference(*I->getParent()) << " " << *MI2);
I->getParent()->splice(I, MI2->getParent(), MI2);
MI1->eraseFromParent();
Defs.erase(I1++);
Changed = true;
break;
}
}
++I2;
}
++I1;
}
}
if (Changed)
MRI.clearKillFlags(Reg);
return Changed;
}
bool SIFixSGPRCopies::runOnMachineFunction(MachineFunction &MF) {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
MachineRegisterInfo &MRI = MF.getRegInfo();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
const SIInstrInfo *TII = ST.getInstrInfo();
MDT = &getAnalysis<MachineDominatorTree>();
SmallVector<MachineInstr *, 16> Worklist;
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; ++BI) {
MachineBasicBlock &MBB = *BI;
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
I != E; ++I) {
MachineInstr &MI = *I;
switch (MI.getOpcode()) {
default:
continue;
case AMDGPU::COPY:
case AMDGPU::WQM:
case AMDGPU::WWM: {
// If the destination register is a physical register there isn't really
// much we can do to fix this.
if (!TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg()))
continue;
const TargetRegisterClass *SrcRC, *DstRC;
std::tie(SrcRC, DstRC) = getCopyRegClasses(MI, *TRI, MRI);
if (isVGPRToSGPRCopy(SrcRC, DstRC, *TRI)) {
unsigned SrcReg = MI.getOperand(1).getReg();
if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
TII->moveToVALU(MI);
break;
}
MachineInstr *DefMI = MRI.getVRegDef(SrcReg);
unsigned SMovOp;
int64_t Imm;
// If we are just copying an immediate, we can replace the copy with
// s_mov_b32.
if (isSafeToFoldImmIntoCopy(&MI, DefMI, TII, SMovOp, Imm)) {
MI.getOperand(1).ChangeToImmediate(Imm);
MI.addImplicitDefUseOperands(MF);
MI.setDesc(TII->get(SMovOp));
break;
}
TII->moveToVALU(MI);
} else if (isSGPRToVGPRCopy(SrcRC, DstRC, *TRI)) {
tryChangeVGPRtoSGPRinCopy(MI, TRI, TII);
}
break;
}
case AMDGPU::PHI: {
unsigned Reg = MI.getOperand(0).getReg();
if (!TRI->isSGPRClass(MRI.getRegClass(Reg)))
break;
// We don't need to fix the PHI if the common dominator of the
// two incoming blocks terminates with a uniform branch.
bool HasVGPROperand = phiHasVGPROperands(MI, MRI, TRI, TII);
if (MI.getNumExplicitOperands() == 5 && !HasVGPROperand) {
MachineBasicBlock *MBB0 = MI.getOperand(2).getMBB();
MachineBasicBlock *MBB1 = MI.getOperand(4).getMBB();
if (!predsHasDivergentTerminator(MBB0, TRI) &&
!predsHasDivergentTerminator(MBB1, TRI)) {
LLVM_DEBUG(dbgs()
<< "Not fixing PHI for uniform branch: " << MI << '\n');
break;
}
}
// If a PHI node defines an SGPR and any of its operands are VGPRs,
// then we need to move it to the VALU.
//
// Also, if a PHI node defines an SGPR and has all SGPR operands
// we must move it to the VALU, because the SGPR operands will
// all end up being assigned the same register, which means
// there is a potential for a conflict if different threads take
// different control flow paths.
//
// For Example:
//
// sgpr0 = def;
// ...
// sgpr1 = def;
// ...
// sgpr2 = PHI sgpr0, sgpr1
// use sgpr2;
//
// Will Become:
//
// sgpr2 = def;
// ...
// sgpr2 = def;
// ...
// use sgpr2
//
// The one exception to this rule is when one of the operands
// is defined by a SI_BREAK, SI_IF_BREAK, or SI_ELSE_BREAK
// instruction. In this case, there we know the program will
// never enter the second block (the loop) without entering
// the first block (where the condition is computed), so there
// is no chance for values to be over-written.
SmallSet<unsigned, 8> Visited;
if (HasVGPROperand || !phiHasBreakDef(MI, MRI, Visited)) {
LLVM_DEBUG(dbgs() << "Fixing PHI: " << MI);
TII->moveToVALU(MI);
}
break;
}
case AMDGPU::REG_SEQUENCE:
if (TRI->hasVGPRs(TII->getOpRegClass(MI, 0)) ||
!hasVGPROperands(MI, TRI)) {
foldVGPRCopyIntoRegSequence(MI, TRI, TII, MRI);
continue;
}
LLVM_DEBUG(dbgs() << "Fixing REG_SEQUENCE: " << MI);
TII->moveToVALU(MI);
break;
case AMDGPU::INSERT_SUBREG: {
const TargetRegisterClass *DstRC, *Src0RC, *Src1RC;
DstRC = MRI.getRegClass(MI.getOperand(0).getReg());
Src0RC = MRI.getRegClass(MI.getOperand(1).getReg());
Src1RC = MRI.getRegClass(MI.getOperand(2).getReg());
if (TRI->isSGPRClass(DstRC) &&
(TRI->hasVGPRs(Src0RC) || TRI->hasVGPRs(Src1RC))) {
LLVM_DEBUG(dbgs() << " Fixing INSERT_SUBREG: " << MI);
TII->moveToVALU(MI);
}
break;
}
}
}
}
if (MF.getTarget().getOptLevel() > CodeGenOpt::None && EnableM0Merge)
hoistAndMergeSGPRInits(AMDGPU::M0, MRI, *MDT);
return true;
}