| //===- AMDGPURewriteOutArgumentsPass.cpp - Create struct returns ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file This pass attempts to replace out argument usage with a return of a |
| /// struct. |
| /// |
| /// We can support returning a lot of values directly in registers, but |
| /// idiomatic C code frequently uses a pointer argument to return a second value |
| /// rather than returning a struct by value. GPU stack access is also quite |
| /// painful, so we want to avoid that if possible. Passing a stack object |
| /// pointer to a function also requires an additional address expansion code |
| /// sequence to convert the pointer to be relative to the kernel's scratch wave |
| /// offset register since the callee doesn't know what stack frame the incoming |
| /// pointer is relative to. |
| /// |
| /// The goal is to try rewriting code that looks like this: |
| /// |
| /// int foo(int a, int b, int* out) { |
| /// *out = bar(); |
| /// return a + b; |
| /// } |
| /// |
| /// into something like this: |
| /// |
| /// std::pair<int, int> foo(int a, int b) { |
| /// return std::make_pair(a + b, bar()); |
| /// } |
| /// |
| /// Typically the incoming pointer is a simple alloca for a temporary variable |
| /// to use the API, which if replaced with a struct return will be easily SROA'd |
| /// out when the stub function we create is inlined |
| /// |
| /// This pass introduces the struct return, but leaves the unused pointer |
| /// arguments and introduces a new stub function calling the struct returning |
| /// body. DeadArgumentElimination should be run after this to clean these up. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AMDGPU.h" |
| #include "Utils/AMDGPUBaseInfo.h" |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <utility> |
| |
| #define DEBUG_TYPE "amdgpu-rewrite-out-arguments" |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> AnyAddressSpace( |
| "amdgpu-any-address-space-out-arguments", |
| cl::desc("Replace pointer out arguments with " |
| "struct returns for non-private address space"), |
| cl::Hidden, |
| cl::init(false)); |
| |
| static cl::opt<unsigned> MaxNumRetRegs( |
| "amdgpu-max-return-arg-num-regs", |
| cl::desc("Approximately limit number of return registers for replacing out arguments"), |
| cl::Hidden, |
| cl::init(16)); |
| |
| STATISTIC(NumOutArgumentsReplaced, |
| "Number out arguments moved to struct return values"); |
| STATISTIC(NumOutArgumentFunctionsReplaced, |
| "Number of functions with out arguments moved to struct return values"); |
| |
| namespace { |
| |
| class AMDGPURewriteOutArguments : public FunctionPass { |
| private: |
| const DataLayout *DL = nullptr; |
| MemoryDependenceResults *MDA = nullptr; |
| |
| bool checkArgumentUses(Value &Arg) const; |
| bool isOutArgumentCandidate(Argument &Arg) const; |
| |
| #ifndef NDEBUG |
| bool isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const; |
| #endif |
| |
| public: |
| static char ID; |
| |
| AMDGPURewriteOutArguments() : FunctionPass(ID) {} |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<MemoryDependenceWrapperPass>(); |
| FunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool doInitialization(Module &M) override; |
| bool runOnFunction(Function &F) override; |
| }; |
| |
| } // end anonymous namespace |
| |
| INITIALIZE_PASS_BEGIN(AMDGPURewriteOutArguments, DEBUG_TYPE, |
| "AMDGPU Rewrite Out Arguments", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) |
| INITIALIZE_PASS_END(AMDGPURewriteOutArguments, DEBUG_TYPE, |
| "AMDGPU Rewrite Out Arguments", false, false) |
| |
| char AMDGPURewriteOutArguments::ID = 0; |
| |
| bool AMDGPURewriteOutArguments::checkArgumentUses(Value &Arg) const { |
| const int MaxUses = 10; |
| int UseCount = 0; |
| |
| for (Use &U : Arg.uses()) { |
| StoreInst *SI = dyn_cast<StoreInst>(U.getUser()); |
| if (UseCount > MaxUses) |
| return false; |
| |
| if (!SI) { |
| auto *BCI = dyn_cast<BitCastInst>(U.getUser()); |
| if (!BCI || !BCI->hasOneUse()) |
| return false; |
| |
| // We don't handle multiple stores currently, so stores to aggregate |
| // pointers aren't worth the trouble since they are canonically split up. |
| Type *DestEltTy = BCI->getType()->getPointerElementType(); |
| if (DestEltTy->isAggregateType()) |
| return false; |
| |
| // We could handle these if we had a convenient way to bitcast between |
| // them. |
| Type *SrcEltTy = Arg.getType()->getPointerElementType(); |
| if (SrcEltTy->isArrayTy()) |
| return false; |
| |
| // Special case handle structs with single members. It is useful to handle |
| // some casts between structs and non-structs, but we can't bitcast |
| // directly between them. directly bitcast between them. Blender uses |
| // some casts that look like { <3 x float> }* to <4 x float>* |
| if ((SrcEltTy->isStructTy() && (SrcEltTy->getNumContainedTypes() != 1))) |
| return false; |
| |
| // Clang emits OpenCL 3-vector type accesses with a bitcast to the |
| // equivalent 4-element vector and accesses that, and we're looking for |
| // this pointer cast. |
| if (DL->getTypeAllocSize(SrcEltTy) != DL->getTypeAllocSize(DestEltTy)) |
| return false; |
| |
| return checkArgumentUses(*BCI); |
| } |
| |
| if (!SI->isSimple() || |
| U.getOperandNo() != StoreInst::getPointerOperandIndex()) |
| return false; |
| |
| ++UseCount; |
| } |
| |
| // Skip unused arguments. |
| return UseCount > 0; |
| } |
| |
| bool AMDGPURewriteOutArguments::isOutArgumentCandidate(Argument &Arg) const { |
| const unsigned MaxOutArgSizeBytes = 4 * MaxNumRetRegs; |
| PointerType *ArgTy = dyn_cast<PointerType>(Arg.getType()); |
| |
| // TODO: It might be useful for any out arguments, not just privates. |
| if (!ArgTy || (ArgTy->getAddressSpace() != DL->getAllocaAddrSpace() && |
| !AnyAddressSpace) || |
| Arg.hasByValAttr() || Arg.hasStructRetAttr() || |
| DL->getTypeStoreSize(ArgTy->getPointerElementType()) > MaxOutArgSizeBytes) { |
| return false; |
| } |
| |
| return checkArgumentUses(Arg); |
| } |
| |
| bool AMDGPURewriteOutArguments::doInitialization(Module &M) { |
| DL = &M.getDataLayout(); |
| return false; |
| } |
| |
| #ifndef NDEBUG |
| bool AMDGPURewriteOutArguments::isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const { |
| VectorType *VT0 = dyn_cast<VectorType>(Ty0); |
| VectorType *VT1 = dyn_cast<VectorType>(Ty1); |
| if (!VT0 || !VT1) |
| return false; |
| |
| if (VT0->getNumElements() != 3 || |
| VT1->getNumElements() != 4) |
| return false; |
| |
| return DL->getTypeSizeInBits(VT0->getElementType()) == |
| DL->getTypeSizeInBits(VT1->getElementType()); |
| } |
| #endif |
| |
| bool AMDGPURewriteOutArguments::runOnFunction(Function &F) { |
| if (skipFunction(F)) |
| return false; |
| |
| // TODO: Could probably handle variadic functions. |
| if (F.isVarArg() || F.hasStructRetAttr() || |
| AMDGPU::isEntryFunctionCC(F.getCallingConv())) |
| return false; |
| |
| MDA = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); |
| |
| unsigned ReturnNumRegs = 0; |
| SmallSet<int, 4> OutArgIndexes; |
| SmallVector<Type *, 4> ReturnTypes; |
| Type *RetTy = F.getReturnType(); |
| if (!RetTy->isVoidTy()) { |
| ReturnNumRegs = DL->getTypeStoreSize(RetTy) / 4; |
| |
| if (ReturnNumRegs >= MaxNumRetRegs) |
| return false; |
| |
| ReturnTypes.push_back(RetTy); |
| } |
| |
| SmallVector<Argument *, 4> OutArgs; |
| for (Argument &Arg : F.args()) { |
| if (isOutArgumentCandidate(Arg)) { |
| LLVM_DEBUG(dbgs() << "Found possible out argument " << Arg |
| << " in function " << F.getName() << '\n'); |
| OutArgs.push_back(&Arg); |
| } |
| } |
| |
| if (OutArgs.empty()) |
| return false; |
| |
| using ReplacementVec = SmallVector<std::pair<Argument *, Value *>, 4>; |
| |
| DenseMap<ReturnInst *, ReplacementVec> Replacements; |
| |
| SmallVector<ReturnInst *, 4> Returns; |
| for (BasicBlock &BB : F) { |
| if (ReturnInst *RI = dyn_cast<ReturnInst>(&BB.back())) |
| Returns.push_back(RI); |
| } |
| |
| if (Returns.empty()) |
| return false; |
| |
| bool Changing; |
| |
| do { |
| Changing = false; |
| |
| // Keep retrying if we are able to successfully eliminate an argument. This |
| // helps with cases with multiple arguments which may alias, such as in a |
| // sincos implemntation. If we have 2 stores to arguments, on the first |
| // attempt the MDA query will succeed for the second store but not the |
| // first. On the second iteration we've removed that out clobbering argument |
| // (by effectively moving it into another function) and will find the second |
| // argument is OK to move. |
| for (Argument *OutArg : OutArgs) { |
| bool ThisReplaceable = true; |
| SmallVector<std::pair<ReturnInst *, StoreInst *>, 4> ReplaceableStores; |
| |
| Type *ArgTy = OutArg->getType()->getPointerElementType(); |
| |
| // Skip this argument if converting it will push us over the register |
| // count to return limit. |
| |
| // TODO: This is an approximation. When legalized this could be more. We |
| // can ask TLI for exactly how many. |
| unsigned ArgNumRegs = DL->getTypeStoreSize(ArgTy) / 4; |
| if (ArgNumRegs + ReturnNumRegs > MaxNumRetRegs) |
| continue; |
| |
| // An argument is convertible only if all exit blocks are able to replace |
| // it. |
| for (ReturnInst *RI : Returns) { |
| BasicBlock *BB = RI->getParent(); |
| |
| MemDepResult Q = MDA->getPointerDependencyFrom(MemoryLocation(OutArg), |
| true, BB->end(), BB, RI); |
| StoreInst *SI = nullptr; |
| if (Q.isDef()) |
| SI = dyn_cast<StoreInst>(Q.getInst()); |
| |
| if (SI) { |
| LLVM_DEBUG(dbgs() << "Found out argument store: " << *SI << '\n'); |
| ReplaceableStores.emplace_back(RI, SI); |
| } else { |
| ThisReplaceable = false; |
| break; |
| } |
| } |
| |
| if (!ThisReplaceable) |
| continue; // Try the next argument candidate. |
| |
| for (std::pair<ReturnInst *, StoreInst *> Store : ReplaceableStores) { |
| Value *ReplVal = Store.second->getValueOperand(); |
| |
| auto &ValVec = Replacements[Store.first]; |
| if (llvm::find_if(ValVec, |
| [OutArg](const std::pair<Argument *, Value *> &Entry) { |
| return Entry.first == OutArg;}) != ValVec.end()) { |
| LLVM_DEBUG(dbgs() |
| << "Saw multiple out arg stores" << *OutArg << '\n'); |
| // It is possible to see stores to the same argument multiple times, |
| // but we expect these would have been optimized out already. |
| ThisReplaceable = false; |
| break; |
| } |
| |
| ValVec.emplace_back(OutArg, ReplVal); |
| Store.second->eraseFromParent(); |
| } |
| |
| if (ThisReplaceable) { |
| ReturnTypes.push_back(ArgTy); |
| OutArgIndexes.insert(OutArg->getArgNo()); |
| ++NumOutArgumentsReplaced; |
| Changing = true; |
| } |
| } |
| } while (Changing); |
| |
| if (Replacements.empty()) |
| return false; |
| |
| LLVMContext &Ctx = F.getParent()->getContext(); |
| StructType *NewRetTy = StructType::create(Ctx, ReturnTypes, F.getName()); |
| |
| FunctionType *NewFuncTy = FunctionType::get(NewRetTy, |
| F.getFunctionType()->params(), |
| F.isVarArg()); |
| |
| LLVM_DEBUG(dbgs() << "Computed new return type: " << *NewRetTy << '\n'); |
| |
| Function *NewFunc = Function::Create(NewFuncTy, Function::PrivateLinkage, |
| F.getName() + ".body"); |
| F.getParent()->getFunctionList().insert(F.getIterator(), NewFunc); |
| NewFunc->copyAttributesFrom(&F); |
| NewFunc->setComdat(F.getComdat()); |
| |
| // We want to preserve the function and param attributes, but need to strip |
| // off any return attributes, e.g. zeroext doesn't make sense with a struct. |
| NewFunc->stealArgumentListFrom(F); |
| |
| AttrBuilder RetAttrs; |
| RetAttrs.addAttribute(Attribute::SExt); |
| RetAttrs.addAttribute(Attribute::ZExt); |
| RetAttrs.addAttribute(Attribute::NoAlias); |
| NewFunc->removeAttributes(AttributeList::ReturnIndex, RetAttrs); |
| // TODO: How to preserve metadata? |
| |
| // Move the body of the function into the new rewritten function, and replace |
| // this function with a stub. |
| NewFunc->getBasicBlockList().splice(NewFunc->begin(), F.getBasicBlockList()); |
| |
| for (std::pair<ReturnInst *, ReplacementVec> &Replacement : Replacements) { |
| ReturnInst *RI = Replacement.first; |
| IRBuilder<> B(RI); |
| B.SetCurrentDebugLocation(RI->getDebugLoc()); |
| |
| int RetIdx = 0; |
| Value *NewRetVal = UndefValue::get(NewRetTy); |
| |
| Value *RetVal = RI->getReturnValue(); |
| if (RetVal) |
| NewRetVal = B.CreateInsertValue(NewRetVal, RetVal, RetIdx++); |
| |
| for (std::pair<Argument *, Value *> ReturnPoint : Replacement.second) { |
| Argument *Arg = ReturnPoint.first; |
| Value *Val = ReturnPoint.second; |
| Type *EltTy = Arg->getType()->getPointerElementType(); |
| if (Val->getType() != EltTy) { |
| Type *EffectiveEltTy = EltTy; |
| if (StructType *CT = dyn_cast<StructType>(EltTy)) { |
| assert(CT->getNumContainedTypes() == 1); |
| EffectiveEltTy = CT->getContainedType(0); |
| } |
| |
| if (DL->getTypeSizeInBits(EffectiveEltTy) != |
| DL->getTypeSizeInBits(Val->getType())) { |
| assert(isVec3ToVec4Shuffle(EffectiveEltTy, Val->getType())); |
| Val = B.CreateShuffleVector(Val, UndefValue::get(Val->getType()), |
| { 0, 1, 2 }); |
| } |
| |
| Val = B.CreateBitCast(Val, EffectiveEltTy); |
| |
| // Re-create single element composite. |
| if (EltTy != EffectiveEltTy) |
| Val = B.CreateInsertValue(UndefValue::get(EltTy), Val, 0); |
| } |
| |
| NewRetVal = B.CreateInsertValue(NewRetVal, Val, RetIdx++); |
| } |
| |
| if (RetVal) |
| RI->setOperand(0, NewRetVal); |
| else { |
| B.CreateRet(NewRetVal); |
| RI->eraseFromParent(); |
| } |
| } |
| |
| SmallVector<Value *, 16> StubCallArgs; |
| for (Argument &Arg : F.args()) { |
| if (OutArgIndexes.count(Arg.getArgNo())) { |
| // It's easier to preserve the type of the argument list. We rely on |
| // DeadArgumentElimination to take care of these. |
| StubCallArgs.push_back(UndefValue::get(Arg.getType())); |
| } else { |
| StubCallArgs.push_back(&Arg); |
| } |
| } |
| |
| BasicBlock *StubBB = BasicBlock::Create(Ctx, "", &F); |
| IRBuilder<> B(StubBB); |
| CallInst *StubCall = B.CreateCall(NewFunc, StubCallArgs); |
| |
| int RetIdx = RetTy->isVoidTy() ? 0 : 1; |
| for (Argument &Arg : F.args()) { |
| if (!OutArgIndexes.count(Arg.getArgNo())) |
| continue; |
| |
| PointerType *ArgType = cast<PointerType>(Arg.getType()); |
| |
| auto *EltTy = ArgType->getElementType(); |
| unsigned Align = Arg.getParamAlignment(); |
| if (Align == 0) |
| Align = DL->getABITypeAlignment(EltTy); |
| |
| Value *Val = B.CreateExtractValue(StubCall, RetIdx++); |
| Type *PtrTy = Val->getType()->getPointerTo(ArgType->getAddressSpace()); |
| |
| // We can peek through bitcasts, so the type may not match. |
| Value *PtrVal = B.CreateBitCast(&Arg, PtrTy); |
| |
| B.CreateAlignedStore(Val, PtrVal, Align); |
| } |
| |
| if (!RetTy->isVoidTy()) { |
| B.CreateRet(B.CreateExtractValue(StubCall, 0)); |
| } else { |
| B.CreateRetVoid(); |
| } |
| |
| // The function is now a stub we want to inline. |
| F.addFnAttr(Attribute::AlwaysInline); |
| |
| ++NumOutArgumentFunctionsReplaced; |
| return true; |
| } |
| |
| FunctionPass *llvm::createAMDGPURewriteOutArgumentsPass() { |
| return new AMDGPURewriteOutArguments(); |
| } |