| //===- AMDGPULibCalls.cpp -------------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This file does AMD library function optimizations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "amdgpu-simplifylib" |
| |
| #include "AMDGPU.h" |
| #include "AMDGPULibFunc.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/ADT/StringSet.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/ValueSymbolTable.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <vector> |
| #include <cmath> |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> EnablePreLink("amdgpu-prelink", |
| cl::desc("Enable pre-link mode optimizations"), |
| cl::init(false), |
| cl::Hidden); |
| |
| static cl::list<std::string> UseNative("amdgpu-use-native", |
| cl::desc("Comma separated list of functions to replace with native, or all"), |
| cl::CommaSeparated, cl::ValueOptional, |
| cl::Hidden); |
| |
| #define MATH_PI 3.14159265358979323846264338327950288419716939937511 |
| #define MATH_E 2.71828182845904523536028747135266249775724709369996 |
| #define MATH_SQRT2 1.41421356237309504880168872420969807856967187537695 |
| |
| #define MATH_LOG2E 1.4426950408889634073599246810018921374266459541529859 |
| #define MATH_LOG10E 0.4342944819032518276511289189166050822943970058036665 |
| // Value of log2(10) |
| #define MATH_LOG2_10 3.3219280948873623478703194294893901758648313930245806 |
| // Value of 1 / log2(10) |
| #define MATH_RLOG2_10 0.3010299956639811952137388947244930267681898814621085 |
| // Value of 1 / M_LOG2E_F = 1 / log2(e) |
| #define MATH_RLOG2_E 0.6931471805599453094172321214581765680755001343602552 |
| |
| namespace llvm { |
| |
| class AMDGPULibCalls { |
| private: |
| |
| typedef llvm::AMDGPULibFunc FuncInfo; |
| |
| // -fuse-native. |
| bool AllNative = false; |
| |
| bool useNativeFunc(const StringRef F) const; |
| |
| // Return a pointer (pointer expr) to the function if function defintion with |
| // "FuncName" exists. It may create a new function prototype in pre-link mode. |
| Constant *getFunction(Module *M, const FuncInfo& fInfo); |
| |
| // Replace a normal function with its native version. |
| bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo); |
| |
| bool parseFunctionName(const StringRef& FMangledName, |
| FuncInfo *FInfo=nullptr /*out*/); |
| |
| bool TDOFold(CallInst *CI, const FuncInfo &FInfo); |
| |
| /* Specialized optimizations */ |
| |
| // recip (half or native) |
| bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); |
| |
| // divide (half or native) |
| bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); |
| |
| // pow/powr/pown |
| bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); |
| |
| // rootn |
| bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); |
| |
| // fma/mad |
| bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); |
| |
| // -fuse-native for sincos |
| bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); |
| |
| // evaluate calls if calls' arguments are constants. |
| bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0, |
| double& Res1, Constant *copr0, Constant *copr1, Constant *copr2); |
| bool evaluateCall(CallInst *aCI, FuncInfo &FInfo); |
| |
| // exp |
| bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); |
| |
| // exp2 |
| bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); |
| |
| // exp10 |
| bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); |
| |
| // log |
| bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); |
| |
| // log2 |
| bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); |
| |
| // log10 |
| bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); |
| |
| // sqrt |
| bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); |
| |
| // sin/cos |
| bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA); |
| |
| // __read_pipe/__write_pipe |
| bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo); |
| |
| // Get insertion point at entry. |
| BasicBlock::iterator getEntryIns(CallInst * UI); |
| // Insert an Alloc instruction. |
| AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix); |
| // Get a scalar native builtin signle argument FP function |
| Constant* getNativeFunction(Module* M, const FuncInfo &FInfo); |
| |
| protected: |
| CallInst *CI; |
| |
| bool isUnsafeMath(const CallInst *CI) const; |
| |
| void replaceCall(Value *With) { |
| CI->replaceAllUsesWith(With); |
| CI->eraseFromParent(); |
| } |
| |
| public: |
| bool fold(CallInst *CI, AliasAnalysis *AA = nullptr); |
| |
| void initNativeFuncs(); |
| |
| // Replace a normal math function call with that native version |
| bool useNative(CallInst *CI); |
| }; |
| |
| } // end llvm namespace |
| |
| namespace { |
| |
| class AMDGPUSimplifyLibCalls : public FunctionPass { |
| |
| AMDGPULibCalls Simplifier; |
| |
| const TargetOptions Options; |
| |
| public: |
| static char ID; // Pass identification |
| |
| AMDGPUSimplifyLibCalls(const TargetOptions &Opt = TargetOptions()) |
| : FunctionPass(ID), Options(Opt) { |
| initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<AAResultsWrapperPass>(); |
| } |
| |
| bool runOnFunction(Function &M) override; |
| }; |
| |
| class AMDGPUUseNativeCalls : public FunctionPass { |
| |
| AMDGPULibCalls Simplifier; |
| |
| public: |
| static char ID; // Pass identification |
| |
| AMDGPUUseNativeCalls() : FunctionPass(ID) { |
| initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry()); |
| Simplifier.initNativeFuncs(); |
| } |
| |
| bool runOnFunction(Function &F) override; |
| }; |
| |
| } // end anonymous namespace. |
| |
| char AMDGPUSimplifyLibCalls::ID = 0; |
| char AMDGPUUseNativeCalls::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", |
| "Simplify well-known AMD library calls", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", |
| "Simplify well-known AMD library calls", false, false) |
| |
| INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative", |
| "Replace builtin math calls with that native versions.", |
| false, false) |
| |
| template <typename IRB> |
| static CallInst *CreateCallEx(IRB &B, Value *Callee, Value *Arg, |
| const Twine &Name = "") { |
| CallInst *R = B.CreateCall(Callee, Arg, Name); |
| if (Function* F = dyn_cast<Function>(Callee)) |
| R->setCallingConv(F->getCallingConv()); |
| return R; |
| } |
| |
| template <typename IRB> |
| static CallInst *CreateCallEx2(IRB &B, Value *Callee, Value *Arg1, Value *Arg2, |
| const Twine &Name = "") { |
| CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); |
| if (Function* F = dyn_cast<Function>(Callee)) |
| R->setCallingConv(F->getCallingConv()); |
| return R; |
| } |
| |
| // Data structures for table-driven optimizations. |
| // FuncTbl works for both f32 and f64 functions with 1 input argument |
| |
| struct TableEntry { |
| double result; |
| double input; |
| }; |
| |
| /* a list of {result, input} */ |
| static const TableEntry tbl_acos[] = { |
| {MATH_PI/2.0, 0.0}, |
| {MATH_PI/2.0, -0.0}, |
| {0.0, 1.0}, |
| {MATH_PI, -1.0} |
| }; |
| static const TableEntry tbl_acosh[] = { |
| {0.0, 1.0} |
| }; |
| static const TableEntry tbl_acospi[] = { |
| {0.5, 0.0}, |
| {0.5, -0.0}, |
| {0.0, 1.0}, |
| {1.0, -1.0} |
| }; |
| static const TableEntry tbl_asin[] = { |
| {0.0, 0.0}, |
| {-0.0, -0.0}, |
| {MATH_PI/2.0, 1.0}, |
| {-MATH_PI/2.0, -1.0} |
| }; |
| static const TableEntry tbl_asinh[] = { |
| {0.0, 0.0}, |
| {-0.0, -0.0} |
| }; |
| static const TableEntry tbl_asinpi[] = { |
| {0.0, 0.0}, |
| {-0.0, -0.0}, |
| {0.5, 1.0}, |
| {-0.5, -1.0} |
| }; |
| static const TableEntry tbl_atan[] = { |
| {0.0, 0.0}, |
| {-0.0, -0.0}, |
| {MATH_PI/4.0, 1.0}, |
| {-MATH_PI/4.0, -1.0} |
| }; |
| static const TableEntry tbl_atanh[] = { |
| {0.0, 0.0}, |
| {-0.0, -0.0} |
| }; |
| static const TableEntry tbl_atanpi[] = { |
| {0.0, 0.0}, |
| {-0.0, -0.0}, |
| {0.25, 1.0}, |
| {-0.25, -1.0} |
| }; |
| static const TableEntry tbl_cbrt[] = { |
| {0.0, 0.0}, |
| {-0.0, -0.0}, |
| {1.0, 1.0}, |
| {-1.0, -1.0}, |
| }; |
| static const TableEntry tbl_cos[] = { |
| {1.0, 0.0}, |
| {1.0, -0.0} |
| }; |
| static const TableEntry tbl_cosh[] = { |
| {1.0, 0.0}, |
| {1.0, -0.0} |
| }; |
| static const TableEntry tbl_cospi[] = { |
| {1.0, 0.0}, |
| {1.0, -0.0} |
| }; |
| static const TableEntry tbl_erfc[] = { |
| {1.0, 0.0}, |
| {1.0, -0.0} |
| }; |
| static const TableEntry tbl_erf[] = { |
| {0.0, 0.0}, |
| {-0.0, -0.0} |
| }; |
| static const TableEntry tbl_exp[] = { |
| {1.0, 0.0}, |
| {1.0, -0.0}, |
| {MATH_E, 1.0} |
| }; |
| static const TableEntry tbl_exp2[] = { |
| {1.0, 0.0}, |
| {1.0, -0.0}, |
| {2.0, 1.0} |
| }; |
| static const TableEntry tbl_exp10[] = { |
| {1.0, 0.0}, |
| {1.0, -0.0}, |
| {10.0, 1.0} |
| }; |
| static const TableEntry tbl_expm1[] = { |
| {0.0, 0.0}, |
| {-0.0, -0.0} |
| }; |
| static const TableEntry tbl_log[] = { |
| {0.0, 1.0}, |
| {1.0, MATH_E} |
| }; |
| static const TableEntry tbl_log2[] = { |
| {0.0, 1.0}, |
| {1.0, 2.0} |
| }; |
| static const TableEntry tbl_log10[] = { |
| {0.0, 1.0}, |
| {1.0, 10.0} |
| }; |
| static const TableEntry tbl_rsqrt[] = { |
| {1.0, 1.0}, |
| {1.0/MATH_SQRT2, 2.0} |
| }; |
| static const TableEntry tbl_sin[] = { |
| {0.0, 0.0}, |
| {-0.0, -0.0} |
| }; |
| static const TableEntry tbl_sinh[] = { |
| {0.0, 0.0}, |
| {-0.0, -0.0} |
| }; |
| static const TableEntry tbl_sinpi[] = { |
| {0.0, 0.0}, |
| {-0.0, -0.0} |
| }; |
| static const TableEntry tbl_sqrt[] = { |
| {0.0, 0.0}, |
| {1.0, 1.0}, |
| {MATH_SQRT2, 2.0} |
| }; |
| static const TableEntry tbl_tan[] = { |
| {0.0, 0.0}, |
| {-0.0, -0.0} |
| }; |
| static const TableEntry tbl_tanh[] = { |
| {0.0, 0.0}, |
| {-0.0, -0.0} |
| }; |
| static const TableEntry tbl_tanpi[] = { |
| {0.0, 0.0}, |
| {-0.0, -0.0} |
| }; |
| static const TableEntry tbl_tgamma[] = { |
| {1.0, 1.0}, |
| {1.0, 2.0}, |
| {2.0, 3.0}, |
| {6.0, 4.0} |
| }; |
| |
| static bool HasNative(AMDGPULibFunc::EFuncId id) { |
| switch(id) { |
| case AMDGPULibFunc::EI_DIVIDE: |
| case AMDGPULibFunc::EI_COS: |
| case AMDGPULibFunc::EI_EXP: |
| case AMDGPULibFunc::EI_EXP2: |
| case AMDGPULibFunc::EI_EXP10: |
| case AMDGPULibFunc::EI_LOG: |
| case AMDGPULibFunc::EI_LOG2: |
| case AMDGPULibFunc::EI_LOG10: |
| case AMDGPULibFunc::EI_POWR: |
| case AMDGPULibFunc::EI_RECIP: |
| case AMDGPULibFunc::EI_RSQRT: |
| case AMDGPULibFunc::EI_SIN: |
| case AMDGPULibFunc::EI_SINCOS: |
| case AMDGPULibFunc::EI_SQRT: |
| case AMDGPULibFunc::EI_TAN: |
| return true; |
| default:; |
| } |
| return false; |
| } |
| |
| struct TableRef { |
| size_t size; |
| const TableEntry *table; // variable size: from 0 to (size - 1) |
| |
| TableRef() : size(0), table(nullptr) {} |
| |
| template <size_t N> |
| TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {} |
| }; |
| |
| static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { |
| switch(id) { |
| case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); |
| case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); |
| case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); |
| case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); |
| case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); |
| case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); |
| case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); |
| case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); |
| case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); |
| case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); |
| case AMDGPULibFunc::EI_NCOS: |
| case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); |
| case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); |
| case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); |
| case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); |
| case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); |
| case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); |
| case AMDGPULibFunc::EI_NEXP2: |
| case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); |
| case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); |
| case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); |
| case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); |
| case AMDGPULibFunc::EI_NLOG2: |
| case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); |
| case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); |
| case AMDGPULibFunc::EI_NRSQRT: |
| case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); |
| case AMDGPULibFunc::EI_NSIN: |
| case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); |
| case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); |
| case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); |
| case AMDGPULibFunc::EI_NSQRT: |
| case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); |
| case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); |
| case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); |
| case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); |
| case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); |
| default:; |
| } |
| return TableRef(); |
| } |
| |
| static inline int getVecSize(const AMDGPULibFunc& FInfo) { |
| return FInfo.getLeads()[0].VectorSize; |
| } |
| |
| static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { |
| return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; |
| } |
| |
| Constant *AMDGPULibCalls::getFunction(Module *M, const FuncInfo& fInfo) { |
| // If we are doing PreLinkOpt, the function is external. So it is safe to |
| // use getOrInsertFunction() at this stage. |
| |
| return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) |
| : AMDGPULibFunc::getFunction(M, fInfo); |
| } |
| |
| bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName, |
| FuncInfo *FInfo) { |
| return AMDGPULibFunc::parse(FMangledName, *FInfo); |
| } |
| |
| bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const { |
| if (auto Op = dyn_cast<FPMathOperator>(CI)) |
| if (Op->isFast()) |
| return true; |
| const Function *F = CI->getParent()->getParent(); |
| Attribute Attr = F->getFnAttribute("unsafe-fp-math"); |
| return Attr.getValueAsString() == "true"; |
| } |
| |
| bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { |
| return AllNative || |
| std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end(); |
| } |
| |
| void AMDGPULibCalls::initNativeFuncs() { |
| AllNative = useNativeFunc("all") || |
| (UseNative.getNumOccurrences() && UseNative.size() == 1 && |
| UseNative.begin()->empty()); |
| } |
| |
| bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { |
| bool native_sin = useNativeFunc("sin"); |
| bool native_cos = useNativeFunc("cos"); |
| |
| if (native_sin && native_cos) { |
| Module *M = aCI->getModule(); |
| Value *opr0 = aCI->getArgOperand(0); |
| |
| AMDGPULibFunc nf; |
| nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; |
| nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; |
| |
| nf.setPrefix(AMDGPULibFunc::NATIVE); |
| nf.setId(AMDGPULibFunc::EI_SIN); |
| Constant *sinExpr = getFunction(M, nf); |
| |
| nf.setPrefix(AMDGPULibFunc::NATIVE); |
| nf.setId(AMDGPULibFunc::EI_COS); |
| Constant *cosExpr = getFunction(M, nf); |
| if (sinExpr && cosExpr) { |
| Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); |
| Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); |
| new StoreInst(cosval, aCI->getArgOperand(1), aCI); |
| |
| DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI |
| << " with native version of sin/cos"); |
| |
| replaceCall(sinval); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool AMDGPULibCalls::useNative(CallInst *aCI) { |
| CI = aCI; |
| Function *Callee = aCI->getCalledFunction(); |
| |
| FuncInfo FInfo; |
| if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() || |
| FInfo.getPrefix() != AMDGPULibFunc::NOPFX || |
| getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || |
| !(AllNative || useNativeFunc(FInfo.getName()))) { |
| return false; |
| } |
| |
| if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) |
| return sincosUseNative(aCI, FInfo); |
| |
| FInfo.setPrefix(AMDGPULibFunc::NATIVE); |
| Constant *F = getFunction(aCI->getModule(), FInfo); |
| if (!F) |
| return false; |
| |
| aCI->setCalledFunction(F); |
| DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI |
| << " with native version"); |
| return true; |
| } |
| |
| // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe |
| // builtin, with appended type size and alignment arguments, where 2 or 4 |
| // indicates the original number of arguments. The library has optimized version |
| // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same |
| // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N |
| // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., |
| // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. |
| bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, |
| FuncInfo &FInfo) { |
| auto *Callee = CI->getCalledFunction(); |
| if (!Callee->isDeclaration()) |
| return false; |
| |
| assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); |
| auto *M = Callee->getParent(); |
| auto &Ctx = M->getContext(); |
| std::string Name = Callee->getName(); |
| auto NumArg = CI->getNumArgOperands(); |
| if (NumArg != 4 && NumArg != 6) |
| return false; |
| auto *PacketSize = CI->getArgOperand(NumArg - 2); |
| auto *PacketAlign = CI->getArgOperand(NumArg - 1); |
| if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign)) |
| return false; |
| unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue(); |
| unsigned Align = cast<ConstantInt>(PacketAlign)->getZExtValue(); |
| if (Size != Align || !isPowerOf2_32(Size)) |
| return false; |
| |
| Type *PtrElemTy; |
| if (Size <= 8) |
| PtrElemTy = Type::getIntNTy(Ctx, Size * 8); |
| else |
| PtrElemTy = VectorType::get(Type::getInt64Ty(Ctx), Size / 8); |
| unsigned PtrArgLoc = CI->getNumArgOperands() - 3; |
| auto PtrArg = CI->getArgOperand(PtrArgLoc); |
| unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace(); |
| auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS); |
| |
| SmallVector<llvm::Type *, 6> ArgTys; |
| for (unsigned I = 0; I != PtrArgLoc; ++I) |
| ArgTys.push_back(CI->getArgOperand(I)->getType()); |
| ArgTys.push_back(PtrTy); |
| |
| Name = Name + "_" + std::to_string(Size); |
| auto *FTy = FunctionType::get(Callee->getReturnType(), |
| ArrayRef<Type *>(ArgTys), false); |
| AMDGPULibFunc NewLibFunc(Name, FTy); |
| auto *F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); |
| if (!F) |
| return false; |
| |
| auto *BCast = B.CreatePointerCast(PtrArg, PtrTy); |
| SmallVector<Value *, 6> Args; |
| for (unsigned I = 0; I != PtrArgLoc; ++I) |
| Args.push_back(CI->getArgOperand(I)); |
| Args.push_back(BCast); |
| |
| auto *NCI = B.CreateCall(F, Args); |
| NCI->setAttributes(CI->getAttributes()); |
| CI->replaceAllUsesWith(NCI); |
| CI->dropAllReferences(); |
| CI->eraseFromParent(); |
| |
| return true; |
| } |
| |
| // This function returns false if no change; return true otherwise. |
| bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) { |
| this->CI = CI; |
| Function *Callee = CI->getCalledFunction(); |
| |
| // Ignore indirect calls. |
| if (Callee == 0) return false; |
| |
| FuncInfo FInfo; |
| if (!parseFunctionName(Callee->getName(), &FInfo)) |
| return false; |
| |
| // Further check the number of arguments to see if they match. |
| if (CI->getNumArgOperands() != FInfo.getNumArgs()) |
| return false; |
| |
| BasicBlock *BB = CI->getParent(); |
| LLVMContext &Context = CI->getParent()->getContext(); |
| IRBuilder<> B(Context); |
| |
| // Set the builder to the instruction after the call. |
| B.SetInsertPoint(BB, CI->getIterator()); |
| |
| // Copy fast flags from the original call. |
| if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI)) |
| B.setFastMathFlags(FPOp->getFastMathFlags()); |
| |
| if (TDOFold(CI, FInfo)) |
| return true; |
| |
| // Under unsafe-math, evaluate calls if possible. |
| // According to Brian Sumner, we can do this for all f32 function calls |
| // using host's double function calls. |
| if (isUnsafeMath(CI) && evaluateCall(CI, FInfo)) |
| return true; |
| |
| // Specilized optimizations for each function call |
| switch (FInfo.getId()) { |
| case AMDGPULibFunc::EI_RECIP: |
| // skip vector function |
| assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || |
| FInfo.getPrefix() == AMDGPULibFunc::HALF) && |
| "recip must be an either native or half function"); |
| return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo); |
| |
| case AMDGPULibFunc::EI_DIVIDE: |
| // skip vector function |
| assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || |
| FInfo.getPrefix() == AMDGPULibFunc::HALF) && |
| "divide must be an either native or half function"); |
| return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo); |
| |
| case AMDGPULibFunc::EI_POW: |
| case AMDGPULibFunc::EI_POWR: |
| case AMDGPULibFunc::EI_POWN: |
| return fold_pow(CI, B, FInfo); |
| |
| case AMDGPULibFunc::EI_ROOTN: |
| // skip vector function |
| return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo); |
| |
| case AMDGPULibFunc::EI_FMA: |
| case AMDGPULibFunc::EI_MAD: |
| case AMDGPULibFunc::EI_NFMA: |
| // skip vector function |
| return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo); |
| |
| case AMDGPULibFunc::EI_SQRT: |
| return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo); |
| case AMDGPULibFunc::EI_COS: |
| case AMDGPULibFunc::EI_SIN: |
| if ((getArgType(FInfo) == AMDGPULibFunc::F32 || |
| getArgType(FInfo) == AMDGPULibFunc::F64) |
| && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX)) |
| return fold_sincos(CI, B, AA); |
| |
| break; |
| case AMDGPULibFunc::EI_READ_PIPE_2: |
| case AMDGPULibFunc::EI_READ_PIPE_4: |
| case AMDGPULibFunc::EI_WRITE_PIPE_2: |
| case AMDGPULibFunc::EI_WRITE_PIPE_4: |
| return fold_read_write_pipe(CI, B, FInfo); |
| |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { |
| // Table-Driven optimization |
| const TableRef tr = getOptTable(FInfo.getId()); |
| if (tr.size==0) |
| return false; |
| |
| int const sz = (int)tr.size; |
| const TableEntry * const ftbl = tr.table; |
| Value *opr0 = CI->getArgOperand(0); |
| |
| if (getVecSize(FInfo) > 1) { |
| if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { |
| SmallVector<double, 0> DVal; |
| for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { |
| ConstantFP *eltval = dyn_cast<ConstantFP>( |
| CV->getElementAsConstant((unsigned)eltNo)); |
| assert(eltval && "Non-FP arguments in math function!"); |
| bool found = false; |
| for (int i=0; i < sz; ++i) { |
| if (eltval->isExactlyValue(ftbl[i].input)) { |
| DVal.push_back(ftbl[i].result); |
| found = true; |
| break; |
| } |
| } |
| if (!found) { |
| // This vector constants not handled yet. |
| return false; |
| } |
| } |
| LLVMContext &context = CI->getParent()->getParent()->getContext(); |
| Constant *nval; |
| if (getArgType(FInfo) == AMDGPULibFunc::F32) { |
| SmallVector<float, 0> FVal; |
| for (unsigned i = 0; i < DVal.size(); ++i) { |
| FVal.push_back((float)DVal[i]); |
| } |
| ArrayRef<float> tmp(FVal); |
| nval = ConstantDataVector::get(context, tmp); |
| } else { // F64 |
| ArrayRef<double> tmp(DVal); |
| nval = ConstantDataVector::get(context, tmp); |
| } |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); |
| replaceCall(nval); |
| return true; |
| } |
| } else { |
| // Scalar version |
| if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { |
| for (int i = 0; i < sz; ++i) { |
| if (CF->isExactlyValue(ftbl[i].input)) { |
| Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result); |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); |
| replaceCall(nval); |
| return true; |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) { |
| Module *M = CI->getModule(); |
| if (getArgType(FInfo) != AMDGPULibFunc::F32 || |
| FInfo.getPrefix() != AMDGPULibFunc::NOPFX || |
| !HasNative(FInfo.getId())) |
| return false; |
| |
| AMDGPULibFunc nf = FInfo; |
| nf.setPrefix(AMDGPULibFunc::NATIVE); |
| if (Constant *FPExpr = getFunction(M, nf)) { |
| LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> "); |
| |
| CI->setCalledFunction(FPExpr); |
| |
| LLVM_DEBUG(dbgs() << *CI << '\n'); |
| |
| return true; |
| } |
| return false; |
| } |
| |
| // [native_]half_recip(c) ==> 1.0/c |
| bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B, |
| const FuncInfo &FInfo) { |
| Value *opr0 = CI->getArgOperand(0); |
| if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { |
| // Just create a normal div. Later, InstCombine will be able |
| // to compute the divide into a constant (avoid check float infinity |
| // or subnormal at this point). |
| Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0), |
| opr0, |
| "recip2div"); |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); |
| replaceCall(nval); |
| return true; |
| } |
| return false; |
| } |
| |
| // [native_]half_divide(x, c) ==> x/c |
| bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B, |
| const FuncInfo &FInfo) { |
| Value *opr0 = CI->getArgOperand(0); |
| Value *opr1 = CI->getArgOperand(1); |
| ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); |
| ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); |
| |
| if ((CF0 && CF1) || // both are constants |
| (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32))) |
| // CF1 is constant && f32 divide |
| { |
| Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0), |
| opr1, "__div2recip"); |
| Value *nval = B.CreateFMul(opr0, nval1, "__div2mul"); |
| replaceCall(nval); |
| return true; |
| } |
| return false; |
| } |
| |
| namespace llvm { |
| static double log2(double V) { |
| #if _XOPEN_SOURCE >= 600 || _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L |
| return ::log2(V); |
| #else |
| return log(V) / 0.693147180559945309417; |
| #endif |
| } |
| } |
| |
| bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B, |
| const FuncInfo &FInfo) { |
| assert((FInfo.getId() == AMDGPULibFunc::EI_POW || |
| FInfo.getId() == AMDGPULibFunc::EI_POWR || |
| FInfo.getId() == AMDGPULibFunc::EI_POWN) && |
| "fold_pow: encounter a wrong function call"); |
| |
| Value *opr0, *opr1; |
| ConstantFP *CF; |
| ConstantInt *CINT; |
| ConstantAggregateZero *CZero; |
| Type *eltType; |
| |
| opr0 = CI->getArgOperand(0); |
| opr1 = CI->getArgOperand(1); |
| CZero = dyn_cast<ConstantAggregateZero>(opr1); |
| if (getVecSize(FInfo) == 1) { |
| eltType = opr0->getType(); |
| CF = dyn_cast<ConstantFP>(opr1); |
| CINT = dyn_cast<ConstantInt>(opr1); |
| } else { |
| VectorType *VTy = dyn_cast<VectorType>(opr0->getType()); |
| assert(VTy && "Oprand of vector function should be of vectortype"); |
| eltType = VTy->getElementType(); |
| ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1); |
| |
| // Now, only Handle vector const whose elements have the same value. |
| CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr; |
| CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr; |
| } |
| |
| // No unsafe math , no constant argument, do nothing |
| if (!isUnsafeMath(CI) && !CF && !CINT && !CZero) |
| return false; |
| |
| // 0x1111111 means that we don't do anything for this call. |
| int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); |
| |
| if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) { |
| // pow/powr/pown(x, 0) == 1 |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n"); |
| Constant *cnval = ConstantFP::get(eltType, 1.0); |
| if (getVecSize(FInfo) > 1) { |
| cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); |
| } |
| replaceCall(cnval); |
| return true; |
| } |
| if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { |
| // pow/powr/pown(x, 1.0) = x |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); |
| replaceCall(opr0); |
| return true; |
| } |
| if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { |
| // pow/powr/pown(x, 2.0) = x*x |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0 |
| << "\n"); |
| Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); |
| replaceCall(nval); |
| return true; |
| } |
| if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { |
| // pow/powr/pown(x, -1.0) = 1.0/x |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n"); |
| Constant *cnval = ConstantFP::get(eltType, 1.0); |
| if (getVecSize(FInfo) > 1) { |
| cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); |
| } |
| Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); |
| replaceCall(nval); |
| return true; |
| } |
| |
| Module *M = CI->getModule(); |
| if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { |
| // pow[r](x, [-]0.5) = sqrt(x) |
| bool issqrt = CF->isExactlyValue(0.5); |
| if (Constant *FPExpr = getFunction(M, |
| AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT |
| : AMDGPULibFunc::EI_RSQRT, FInfo))) { |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " |
| << FInfo.getName().c_str() << "(" << *opr0 << ")\n"); |
| Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" |
| : "__pow2rsqrt"); |
| replaceCall(nval); |
| return true; |
| } |
| } |
| |
| if (!isUnsafeMath(CI)) |
| return false; |
| |
| // Unsafe Math optimization |
| |
| // Remember that ci_opr1 is set if opr1 is integral |
| if (CF) { |
| double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) |
| ? (double)CF->getValueAPF().convertToFloat() |
| : CF->getValueAPF().convertToDouble(); |
| int ival = (int)dval; |
| if ((double)ival == dval) { |
| ci_opr1 = ival; |
| } else |
| ci_opr1 = 0x11111111; |
| } |
| |
| // pow/powr/pown(x, c) = [1/](x*x*..x); where |
| // trunc(c) == c && the number of x == c && |c| <= 12 |
| unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; |
| if (abs_opr1 <= 12) { |
| Constant *cnval; |
| Value *nval; |
| if (abs_opr1 == 0) { |
| cnval = ConstantFP::get(eltType, 1.0); |
| if (getVecSize(FInfo) > 1) { |
| cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); |
| } |
| nval = cnval; |
| } else { |
| Value *valx2 = nullptr; |
| nval = nullptr; |
| while (abs_opr1 > 0) { |
| valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; |
| if (abs_opr1 & 1) { |
| nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; |
| } |
| abs_opr1 >>= 1; |
| } |
| } |
| |
| if (ci_opr1 < 0) { |
| cnval = ConstantFP::get(eltType, 1.0); |
| if (getVecSize(FInfo) > 1) { |
| cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); |
| } |
| nval = B.CreateFDiv(cnval, nval, "__1powprod"); |
| } |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " |
| << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 |
| << ")\n"); |
| replaceCall(nval); |
| return true; |
| } |
| |
| // powr ---> exp2(y * log2(x)) |
| // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) |
| Constant *ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, |
| FInfo)); |
| if (!ExpExpr) |
| return false; |
| |
| bool needlog = false; |
| bool needabs = false; |
| bool needcopysign = false; |
| Constant *cnval = nullptr; |
| if (getVecSize(FInfo) == 1) { |
| CF = dyn_cast<ConstantFP>(opr0); |
| |
| if (CF) { |
| double V = (getArgType(FInfo) == AMDGPULibFunc::F32) |
| ? (double)CF->getValueAPF().convertToFloat() |
| : CF->getValueAPF().convertToDouble(); |
| |
| V = log2(std::abs(V)); |
| cnval = ConstantFP::get(eltType, V); |
| needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && |
| CF->isNegative(); |
| } else { |
| needlog = true; |
| needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR && |
| (!CF || CF->isNegative()); |
| } |
| } else { |
| ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); |
| |
| if (!CDV) { |
| needlog = true; |
| needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; |
| } else { |
| assert ((int)CDV->getNumElements() == getVecSize(FInfo) && |
| "Wrong vector size detected"); |
| |
| SmallVector<double, 0> DVal; |
| for (int i=0; i < getVecSize(FInfo); ++i) { |
| double V = (getArgType(FInfo) == AMDGPULibFunc::F32) |
| ? (double)CDV->getElementAsFloat(i) |
| : CDV->getElementAsDouble(i); |
| if (V < 0.0) needcopysign = true; |
| V = log2(std::abs(V)); |
| DVal.push_back(V); |
| } |
| if (getArgType(FInfo) == AMDGPULibFunc::F32) { |
| SmallVector<float, 0> FVal; |
| for (unsigned i=0; i < DVal.size(); ++i) { |
| FVal.push_back((float)DVal[i]); |
| } |
| ArrayRef<float> tmp(FVal); |
| cnval = ConstantDataVector::get(M->getContext(), tmp); |
| } else { |
| ArrayRef<double> tmp(DVal); |
| cnval = ConstantDataVector::get(M->getContext(), tmp); |
| } |
| } |
| } |
| |
| if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { |
| // We cannot handle corner cases for a general pow() function, give up |
| // unless y is a constant integral value. Then proceed as if it were pown. |
| if (getVecSize(FInfo) == 1) { |
| if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) { |
| double y = (getArgType(FInfo) == AMDGPULibFunc::F32) |
| ? (double)CF->getValueAPF().convertToFloat() |
| : CF->getValueAPF().convertToDouble(); |
| if (y != (double)(int64_t)y) |
| return false; |
| } else |
| return false; |
| } else { |
| if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) { |
| for (int i=0; i < getVecSize(FInfo); ++i) { |
| double y = (getArgType(FInfo) == AMDGPULibFunc::F32) |
| ? (double)CDV->getElementAsFloat(i) |
| : CDV->getElementAsDouble(i); |
| if (y != (double)(int64_t)y) |
| return false; |
| } |
| } else |
| return false; |
| } |
| } |
| |
| Value *nval; |
| if (needabs) { |
| Constant *AbsExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, |
| FInfo)); |
| if (!AbsExpr) |
| return false; |
| nval = CreateCallEx(B, AbsExpr, opr0, "__fabs"); |
| } else { |
| nval = cnval ? cnval : opr0; |
| } |
| if (needlog) { |
| Constant *LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, |
| FInfo)); |
| if (!LogExpr) |
| return false; |
| nval = CreateCallEx(B,LogExpr, nval, "__log2"); |
| } |
| |
| if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { |
| // convert int(32) to fp(f32 or f64) |
| opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); |
| } |
| nval = B.CreateFMul(opr1, nval, "__ylogx"); |
| nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); |
| |
| if (needcopysign) { |
| Value *opr_n; |
| Type* rTy = opr0->getType(); |
| Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty(); |
| Type *nTy = nTyS; |
| if (const VectorType *vTy = dyn_cast<VectorType>(rTy)) |
| nTy = VectorType::get(nTyS, vTy->getNumElements()); |
| unsigned size = nTy->getScalarSizeInBits(); |
| opr_n = CI->getArgOperand(1); |
| if (opr_n->getType()->isIntegerTy()) |
| opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou"); |
| else |
| opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); |
| |
| Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); |
| sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); |
| nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); |
| nval = B.CreateBitCast(nval, opr0->getType()); |
| } |
| |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " |
| << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); |
| replaceCall(nval); |
| |
| return true; |
| } |
| |
| bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B, |
| const FuncInfo &FInfo) { |
| Value *opr0 = CI->getArgOperand(0); |
| Value *opr1 = CI->getArgOperand(1); |
| |
| ConstantInt *CINT = dyn_cast<ConstantInt>(opr1); |
| if (!CINT) { |
| return false; |
| } |
| int ci_opr1 = (int)CINT->getSExtValue(); |
| if (ci_opr1 == 1) { // rootn(x, 1) = x |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); |
| replaceCall(opr0); |
| return true; |
| } |
| if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x) |
| std::vector<const Type*> ParamsTys; |
| ParamsTys.push_back(opr0->getType()); |
| Module *M = CI->getModule(); |
| if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, |
| FInfo))) { |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n"); |
| Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); |
| replaceCall(nval); |
| return true; |
| } |
| } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) |
| Module *M = CI->getModule(); |
| if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, |
| FInfo))) { |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n"); |
| Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); |
| replaceCall(nval); |
| return true; |
| } |
| } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n"); |
| Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), |
| opr0, |
| "__rootn2div"); |
| replaceCall(nval); |
| return true; |
| } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x) |
| std::vector<const Type*> ParamsTys; |
| ParamsTys.push_back(opr0->getType()); |
| Module *M = CI->getModule(); |
| if (Constant *FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, |
| FInfo))) { |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0 |
| << ")\n"); |
| Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); |
| replaceCall(nval); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B, |
| const FuncInfo &FInfo) { |
| Value *opr0 = CI->getArgOperand(0); |
| Value *opr1 = CI->getArgOperand(1); |
| Value *opr2 = CI->getArgOperand(2); |
| |
| ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); |
| ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); |
| if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) { |
| // fma/mad(a, b, c) = c if a=0 || b=0 |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n"); |
| replaceCall(opr2); |
| return true; |
| } |
| if (CF0 && CF0->isExactlyValue(1.0f)) { |
| // fma/mad(a, b, c) = b+c if a=1 |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2 |
| << "\n"); |
| Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd"); |
| replaceCall(nval); |
| return true; |
| } |
| if (CF1 && CF1->isExactlyValue(1.0f)) { |
| // fma/mad(a, b, c) = a+c if b=1 |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2 |
| << "\n"); |
| Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd"); |
| replaceCall(nval); |
| return true; |
| } |
| if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) { |
| if (CF->isZero()) { |
| // fma/mad(a, b, c) = a*b if c=0 |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " |
| << *opr1 << "\n"); |
| Value *nval = B.CreateFMul(opr0, opr1, "fmamul"); |
| replaceCall(nval); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Get a scalar native builtin signle argument FP function |
| Constant* AMDGPULibCalls::getNativeFunction(Module* M, const FuncInfo& FInfo) { |
| if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) |
| return nullptr; |
| FuncInfo nf = FInfo; |
| nf.setPrefix(AMDGPULibFunc::NATIVE); |
| return getFunction(M, nf); |
| } |
| |
| // fold sqrt -> native_sqrt (x) |
| bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B, |
| const FuncInfo &FInfo) { |
| if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) && |
| (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) { |
| if (Constant *FPExpr = getNativeFunction( |
| CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { |
| Value *opr0 = CI->getArgOperand(0); |
| LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " |
| << "sqrt(" << *opr0 << ")\n"); |
| Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt"); |
| replaceCall(nval); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // fold sin, cos -> sincos. |
| bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B, |
| AliasAnalysis *AA) { |
| AMDGPULibFunc fInfo; |
| if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo)) |
| return false; |
| |
| assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || |
| fInfo.getId() == AMDGPULibFunc::EI_COS); |
| bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; |
| |
| Value *CArgVal = CI->getArgOperand(0); |
| BasicBlock * const CBB = CI->getParent(); |
| |
| int const MaxScan = 30; |
| |
| { // fold in load value. |
| LoadInst *LI = dyn_cast<LoadInst>(CArgVal); |
| if (LI && LI->getParent() == CBB) { |
| BasicBlock::iterator BBI = LI->getIterator(); |
| Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA); |
| if (AvailableVal) { |
| CArgVal->replaceAllUsesWith(AvailableVal); |
| if (CArgVal->getNumUses() == 0) |
| LI->eraseFromParent(); |
| CArgVal = CI->getArgOperand(0); |
| } |
| } |
| } |
| |
| Module *M = CI->getModule(); |
| fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN); |
| std::string const PairName = fInfo.mangle(); |
| |
| CallInst *UI = nullptr; |
| for (User* U : CArgVal->users()) { |
| CallInst *XI = dyn_cast_or_null<CallInst>(U); |
| if (!XI || XI == CI || XI->getParent() != CBB) |
| continue; |
| |
| Function *UCallee = XI->getCalledFunction(); |
| if (!UCallee || !UCallee->getName().equals(PairName)) |
| continue; |
| |
| BasicBlock::iterator BBI = CI->getIterator(); |
| if (BBI == CI->getParent()->begin()) |
| break; |
| --BBI; |
| for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) { |
| if (cast<Instruction>(BBI) == XI) { |
| UI = XI; |
| break; |
| } |
| } |
| if (UI) break; |
| } |
| |
| if (!UI) return false; |
| |
| // Merge the sin and cos. |
| |
| // for OpenCL 2.0 we have only generic implementation of sincos |
| // function. |
| AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo); |
| const AMDGPUAS AS = AMDGPU::getAMDGPUAS(*M); |
| nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AS.FLAT_ADDRESS); |
| Function *Fsincos = dyn_cast_or_null<Function>(getFunction(M, nf)); |
| if (!Fsincos) return false; |
| |
| BasicBlock::iterator ItOld = B.GetInsertPoint(); |
| AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_"); |
| B.SetInsertPoint(UI); |
| |
| Value *P = Alloc; |
| Type *PTy = Fsincos->getFunctionType()->getParamType(1); |
| // The allocaInst allocates the memory in private address space. This need |
| // to be bitcasted to point to the address space of cos pointer type. |
| // In OpenCL 2.0 this is generic, while in 1.2 that is private. |
| if (PTy->getPointerAddressSpace() != AS.PRIVATE_ADDRESS) |
| P = B.CreateAddrSpaceCast(Alloc, PTy); |
| CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P); |
| |
| LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with " |
| << *Call << "\n"); |
| |
| if (!isSin) { // CI->cos, UI->sin |
| B.SetInsertPoint(&*ItOld); |
| UI->replaceAllUsesWith(&*Call); |
| Instruction *Reload = B.CreateLoad(Alloc); |
| CI->replaceAllUsesWith(Reload); |
| UI->eraseFromParent(); |
| CI->eraseFromParent(); |
| } else { // CI->sin, UI->cos |
| Instruction *Reload = B.CreateLoad(Alloc); |
| UI->replaceAllUsesWith(Reload); |
| CI->replaceAllUsesWith(Call); |
| UI->eraseFromParent(); |
| CI->eraseFromParent(); |
| } |
| return true; |
| } |
| |
| // Get insertion point at entry. |
| BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) { |
| Function * Func = UI->getParent()->getParent(); |
| BasicBlock * BB = &Func->getEntryBlock(); |
| assert(BB && "Entry block not found!"); |
| BasicBlock::iterator ItNew = BB->begin(); |
| return ItNew; |
| } |
| |
| // Insert a AllocsInst at the beginning of function entry block. |
| AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B, |
| const char *prefix) { |
| BasicBlock::iterator ItNew = getEntryIns(UI); |
| Function *UCallee = UI->getCalledFunction(); |
| Type *RetType = UCallee->getReturnType(); |
| B.SetInsertPoint(&*ItNew); |
| AllocaInst *Alloc = B.CreateAlloca(RetType, 0, |
| std::string(prefix) + UI->getName()); |
| Alloc->setAlignment(UCallee->getParent()->getDataLayout() |
| .getTypeAllocSize(RetType)); |
| return Alloc; |
| } |
| |
| bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo, |
| double& Res0, double& Res1, |
| Constant *copr0, Constant *copr1, |
| Constant *copr2) { |
| // By default, opr0/opr1/opr3 holds values of float/double type. |
| // If they are not float/double, each function has to its |
| // operand separately. |
| double opr0=0.0, opr1=0.0, opr2=0.0; |
| ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); |
| ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); |
| ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2); |
| if (fpopr0) { |
| opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) |
| ? fpopr0->getValueAPF().convertToDouble() |
| : (double)fpopr0->getValueAPF().convertToFloat(); |
| } |
| |
| if (fpopr1) { |
| opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) |
| ? fpopr1->getValueAPF().convertToDouble() |
| : (double)fpopr1->getValueAPF().convertToFloat(); |
| } |
| |
| if (fpopr2) { |
| opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64) |
| ? fpopr2->getValueAPF().convertToDouble() |
| : (double)fpopr2->getValueAPF().convertToFloat(); |
| } |
| |
| switch (FInfo.getId()) { |
| default : return false; |
| |
| case AMDGPULibFunc::EI_ACOS: |
| Res0 = acos(opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_ACOSH: |
| // acosh(x) == log(x + sqrt(x*x - 1)) |
| Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); |
| return true; |
| |
| case AMDGPULibFunc::EI_ACOSPI: |
| Res0 = acos(opr0) / MATH_PI; |
| return true; |
| |
| case AMDGPULibFunc::EI_ASIN: |
| Res0 = asin(opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_ASINH: |
| // asinh(x) == log(x + sqrt(x*x + 1)) |
| Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); |
| return true; |
| |
| case AMDGPULibFunc::EI_ASINPI: |
| Res0 = asin(opr0) / MATH_PI; |
| return true; |
| |
| case AMDGPULibFunc::EI_ATAN: |
| Res0 = atan(opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_ATANH: |
| // atanh(x) == (log(x+1) - log(x-1))/2; |
| Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; |
| return true; |
| |
| case AMDGPULibFunc::EI_ATANPI: |
| Res0 = atan(opr0) / MATH_PI; |
| return true; |
| |
| case AMDGPULibFunc::EI_CBRT: |
| Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); |
| return true; |
| |
| case AMDGPULibFunc::EI_COS: |
| Res0 = cos(opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_COSH: |
| Res0 = cosh(opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_COSPI: |
| Res0 = cos(MATH_PI * opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_EXP: |
| Res0 = exp(opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_EXP2: |
| Res0 = pow(2.0, opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_EXP10: |
| Res0 = pow(10.0, opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_EXPM1: |
| Res0 = exp(opr0) - 1.0; |
| return true; |
| |
| case AMDGPULibFunc::EI_LOG: |
| Res0 = log(opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_LOG2: |
| Res0 = log(opr0) / log(2.0); |
| return true; |
| |
| case AMDGPULibFunc::EI_LOG10: |
| Res0 = log(opr0) / log(10.0); |
| return true; |
| |
| case AMDGPULibFunc::EI_RSQRT: |
| Res0 = 1.0 / sqrt(opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_SIN: |
| Res0 = sin(opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_SINH: |
| Res0 = sinh(opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_SINPI: |
| Res0 = sin(MATH_PI * opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_SQRT: |
| Res0 = sqrt(opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_TAN: |
| Res0 = tan(opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_TANH: |
| Res0 = tanh(opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_TANPI: |
| Res0 = tan(MATH_PI * opr0); |
| return true; |
| |
| case AMDGPULibFunc::EI_RECIP: |
| Res0 = 1.0 / opr0; |
| return true; |
| |
| // two-arg functions |
| case AMDGPULibFunc::EI_DIVIDE: |
| Res0 = opr0 / opr1; |
| return true; |
| |
| case AMDGPULibFunc::EI_POW: |
| case AMDGPULibFunc::EI_POWR: |
| Res0 = pow(opr0, opr1); |
| return true; |
| |
| case AMDGPULibFunc::EI_POWN: { |
| if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { |
| double val = (double)iopr1->getSExtValue(); |
| Res0 = pow(opr0, val); |
| return true; |
| } |
| return false; |
| } |
| |
| case AMDGPULibFunc::EI_ROOTN: { |
| if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { |
| double val = (double)iopr1->getSExtValue(); |
| Res0 = pow(opr0, 1.0 / val); |
| return true; |
| } |
| return false; |
| } |
| |
| // with ptr arg |
| case AMDGPULibFunc::EI_SINCOS: |
| Res0 = sin(opr0); |
| Res1 = cos(opr0); |
| return true; |
| |
| // three-arg functions |
| case AMDGPULibFunc::EI_FMA: |
| case AMDGPULibFunc::EI_MAD: |
| Res0 = opr0 * opr1 + opr2; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) { |
| int numArgs = (int)aCI->getNumArgOperands(); |
| if (numArgs > 3) |
| return false; |
| |
| Constant *copr0 = nullptr; |
| Constant *copr1 = nullptr; |
| Constant *copr2 = nullptr; |
| if (numArgs > 0) { |
| if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) |
| return false; |
| } |
| |
| if (numArgs > 1) { |
| if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { |
| if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) |
| return false; |
| } |
| } |
| |
| if (numArgs > 2) { |
| if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr) |
| return false; |
| } |
| |
| // At this point, all arguments to aCI are constants. |
| |
| // max vector size is 16, and sincos will generate two results. |
| double DVal0[16], DVal1[16]; |
| bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); |
| if (getVecSize(FInfo) == 1) { |
| if (!evaluateScalarMathFunc(FInfo, DVal0[0], |
| DVal1[0], copr0, copr1, copr2)) { |
| return false; |
| } |
| } else { |
| ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); |
| ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); |
| ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2); |
| for (int i=0; i < getVecSize(FInfo); ++i) { |
| Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; |
| Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; |
| Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr; |
| if (!evaluateScalarMathFunc(FInfo, DVal0[i], |
| DVal1[i], celt0, celt1, celt2)) { |
| return false; |
| } |
| } |
| } |
| |
| LLVMContext &context = CI->getParent()->getParent()->getContext(); |
| Constant *nval0, *nval1; |
| if (getVecSize(FInfo) == 1) { |
| nval0 = ConstantFP::get(CI->getType(), DVal0[0]); |
| if (hasTwoResults) |
| nval1 = ConstantFP::get(CI->getType(), DVal1[0]); |
| } else { |
| if (getArgType(FInfo) == AMDGPULibFunc::F32) { |
| SmallVector <float, 0> FVal0, FVal1; |
| for (int i=0; i < getVecSize(FInfo); ++i) |
| FVal0.push_back((float)DVal0[i]); |
| ArrayRef<float> tmp0(FVal0); |
| nval0 = ConstantDataVector::get(context, tmp0); |
| if (hasTwoResults) { |
| for (int i=0; i < getVecSize(FInfo); ++i) |
| FVal1.push_back((float)DVal1[i]); |
| ArrayRef<float> tmp1(FVal1); |
| nval1 = ConstantDataVector::get(context, tmp1); |
| } |
| } else { |
| ArrayRef<double> tmp0(DVal0); |
| nval0 = ConstantDataVector::get(context, tmp0); |
| if (hasTwoResults) { |
| ArrayRef<double> tmp1(DVal1); |
| nval1 = ConstantDataVector::get(context, tmp1); |
| } |
| } |
| } |
| |
| if (hasTwoResults) { |
| // sincos |
| assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && |
| "math function with ptr arg not supported yet"); |
| new StoreInst(nval1, aCI->getArgOperand(1), aCI); |
| } |
| |
| replaceCall(nval0); |
| return true; |
| } |
| |
| // Public interface to the Simplify LibCalls pass. |
| FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetOptions &Opt) { |
| return new AMDGPUSimplifyLibCalls(Opt); |
| } |
| |
| FunctionPass *llvm::createAMDGPUUseNativeCallsPass() { |
| return new AMDGPUUseNativeCalls(); |
| } |
| |
| static bool setFastFlags(Function &F, const TargetOptions &Options) { |
| AttrBuilder B; |
| |
| if (Options.UnsafeFPMath || Options.NoInfsFPMath) |
| B.addAttribute("no-infs-fp-math", "true"); |
| if (Options.UnsafeFPMath || Options.NoNaNsFPMath) |
| B.addAttribute("no-nans-fp-math", "true"); |
| if (Options.UnsafeFPMath) { |
| B.addAttribute("less-precise-fpmad", "true"); |
| B.addAttribute("unsafe-fp-math", "true"); |
| } |
| |
| if (!B.hasAttributes()) |
| return false; |
| |
| F.addAttributes(AttributeList::FunctionIndex, B); |
| |
| return true; |
| } |
| |
| bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) { |
| if (skipFunction(F)) |
| return false; |
| |
| bool Changed = false; |
| auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| |
| LLVM_DEBUG(dbgs() << "AMDIC: process function "; |
| F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); |
| |
| if (!EnablePreLink) |
| Changed |= setFastFlags(F, Options); |
| |
| for (auto &BB : F) { |
| for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { |
| // Ignore non-calls. |
| CallInst *CI = dyn_cast<CallInst>(I); |
| ++I; |
| if (!CI) continue; |
| |
| // Ignore indirect calls. |
| Function *Callee = CI->getCalledFunction(); |
| if (Callee == 0) continue; |
| |
| LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; |
| dbgs().flush()); |
| if(Simplifier.fold(CI, AA)) |
| Changed = true; |
| } |
| } |
| return Changed; |
| } |
| |
| bool AMDGPUUseNativeCalls::runOnFunction(Function &F) { |
| if (skipFunction(F) || UseNative.empty()) |
| return false; |
| |
| bool Changed = false; |
| for (auto &BB : F) { |
| for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { |
| // Ignore non-calls. |
| CallInst *CI = dyn_cast<CallInst>(I); |
| ++I; |
| if (!CI) continue; |
| |
| // Ignore indirect calls. |
| Function *Callee = CI->getCalledFunction(); |
| if (Callee == 0) continue; |
| |
| if(Simplifier.useNative(CI)) |
| Changed = true; |
| } |
| } |
| return Changed; |
| } |