blob: 87b072c9ea20ac3f7a099e2a2a1fb3c4b2f7c5c1 [file] [log] [blame]
//===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for
/// AMDGPU.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPUTargetMachine.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
using namespace LegalizeActions;
AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST,
const GCNTargetMachine &TM) {
using namespace TargetOpcode;
auto GetAddrSpacePtr = [&TM](unsigned AS) {
return LLT::pointer(AS, TM.getPointerSizeInBits(AS));
};
auto AMDGPUAS = ST.getAMDGPUAS();
const LLT S1 = LLT::scalar(1);
const LLT V2S16 = LLT::vector(2, 16);
const LLT S32 = LLT::scalar(32);
const LLT S64 = LLT::scalar(64);
const LLT S512 = LLT::scalar(512);
const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS);
const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS);
const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS);
const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS.FLAT_ADDRESS);
const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS.PRIVATE_ADDRESS);
const LLT AddrSpaces[] = {
GlobalPtr,
ConstantPtr,
LocalPtr,
FlatPtr,
PrivatePtr
};
setAction({G_ADD, S32}, Legal);
setAction({G_ASHR, S32}, Legal);
setAction({G_SUB, S32}, Legal);
setAction({G_MUL, S32}, Legal);
setAction({G_AND, S32}, Legal);
setAction({G_OR, S32}, Legal);
setAction({G_XOR, S32}, Legal);
setAction({G_BITCAST, V2S16}, Legal);
setAction({G_BITCAST, 1, S32}, Legal);
setAction({G_BITCAST, S32}, Legal);
setAction({G_BITCAST, 1, V2S16}, Legal);
getActionDefinitionsBuilder(G_FCONSTANT)
.legalFor({S32, S64});
// G_IMPLICIT_DEF is a no-op so we can make it legal for any value type that
// can fit in a register.
// FIXME: We need to legalize several more operations before we can add
// a test case for size > 512.
getActionDefinitionsBuilder(G_IMPLICIT_DEF)
.legalIf([=](const LegalityQuery &Query) {
return Query.Types[0].getSizeInBits() <= 512;
})
.clampScalar(0, S1, S512);
getActionDefinitionsBuilder(G_CONSTANT)
.legalFor({S1, S32, S64});
// FIXME: i1 operands to intrinsics should always be legal, but other i1
// values may not be legal. We need to figure out how to distinguish
// between these two scenarios.
setAction({G_CONSTANT, S1}, Legal);
setAction({G_FADD, S32}, Legal);
setAction({G_FCMP, S1}, Legal);
setAction({G_FCMP, 1, S32}, Legal);
setAction({G_FCMP, 1, S64}, Legal);
setAction({G_FMUL, S32}, Legal);
setAction({G_ZEXT, S64}, Legal);
setAction({G_ZEXT, 1, S32}, Legal);
setAction({G_FPTOSI, S32}, Legal);
setAction({G_FPTOSI, 1, S32}, Legal);
setAction({G_SITOFP, S32}, Legal);
setAction({G_SITOFP, 1, S32}, Legal);
setAction({G_FPTOUI, S32}, Legal);
setAction({G_FPTOUI, 1, S32}, Legal);
for (LLT PtrTy : AddrSpaces) {
LLT IdxTy = LLT::scalar(PtrTy.getSizeInBits());
setAction({G_GEP, PtrTy}, Legal);
setAction({G_GEP, 1, IdxTy}, Legal);
}
setAction({G_ICMP, S1}, Legal);
setAction({G_ICMP, 1, S32}, Legal);
getActionDefinitionsBuilder({G_LOAD, G_STORE})
.legalIf([=, &ST](const LegalityQuery &Query) {
const LLT &Ty0 = Query.Types[0];
// TODO: Decompose private loads into 4-byte components.
// TODO: Illegal flat loads on SI
switch (Ty0.getSizeInBits()) {
case 32:
case 64:
case 128:
return true;
case 96:
// XXX hasLoadX3
return (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS);
case 256:
case 512:
// TODO: constant loads
default:
return false;
}
});
setAction({G_SELECT, S32}, Legal);
setAction({G_SELECT, 1, S1}, Legal);
setAction({G_SHL, S32}, Legal);
// FIXME: When RegBankSelect inserts copies, it will only create new
// registers with scalar types. This means we can end up with
// G_LOAD/G_STORE/G_GEP instruction with scalar types for their pointer
// operands. In assert builds, the instruction selector will assert
// if it sees a generic instruction which isn't legal, so we need to
// tell it that scalar types are legal for pointer operands
setAction({G_GEP, S64}, Legal);
for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
getActionDefinitionsBuilder(Op)
.legalIf([=](const LegalityQuery &Query) {
const LLT &VecTy = Query.Types[1];
const LLT &IdxTy = Query.Types[2];
return VecTy.getSizeInBits() % 32 == 0 &&
VecTy.getSizeInBits() <= 512 &&
IdxTy.getSizeInBits() == 32;
});
}
// FIXME: Doesn't handle extract of illegal sizes.
getActionDefinitionsBuilder({G_EXTRACT, G_INSERT})
.legalIf([=](const LegalityQuery &Query) {
const LLT &Ty0 = Query.Types[0];
const LLT &Ty1 = Query.Types[1];
return (Ty0.getSizeInBits() % 32 == 0) &&
(Ty1.getSizeInBits() % 32 == 0);
});
// Merge/Unmerge
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
getActionDefinitionsBuilder(Op)
.legalIf([=](const LegalityQuery &Query) {
const LLT &BigTy = Query.Types[BigTyIdx];
const LLT &LitTy = Query.Types[LitTyIdx];
return BigTy.getSizeInBits() % 32 == 0 &&
LitTy.getSizeInBits() % 32 == 0 &&
BigTy.getSizeInBits() <= 512;
})
// Any vectors left are the wrong size. Scalarize them.
.fewerElementsIf([](const LegalityQuery &Query) { return true; },
[](const LegalityQuery &Query) {
return std::make_pair(
0, Query.Types[0].getElementType());
})
.fewerElementsIf([](const LegalityQuery &Query) { return true; },
[](const LegalityQuery &Query) {
return std::make_pair(
1, Query.Types[1].getElementType());
});
}
computeTables();
verify(*ST.getInstrInfo());
}