| //==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementation of some scaled number algorithms. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Support/ScaledNumber.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| using namespace llvm::ScaledNumbers; |
| |
| std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS, |
| uint64_t RHS) { |
| // Separate into two 32-bit digits (U.L). |
| auto getU = [](uint64_t N) { return N >> 32; }; |
| auto getL = [](uint64_t N) { return N & UINT32_MAX; }; |
| uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS); |
| |
| // Compute cross products. |
| uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR; |
| |
| // Sum into two 64-bit digits. |
| uint64_t Upper = P1, Lower = P4; |
| auto addWithCarry = [&](uint64_t N) { |
| uint64_t NewLower = Lower + (getL(N) << 32); |
| Upper += getU(N) + (NewLower < Lower); |
| Lower = NewLower; |
| }; |
| addWithCarry(P2); |
| addWithCarry(P3); |
| |
| // Check whether the upper digit is empty. |
| if (!Upper) |
| return std::make_pair(Lower, 0); |
| |
| // Shift as little as possible to maximize precision. |
| unsigned LeadingZeros = countLeadingZeros(Upper); |
| int Shift = 64 - LeadingZeros; |
| if (LeadingZeros) |
| Upper = Upper << LeadingZeros | Lower >> Shift; |
| return getRounded(Upper, Shift, |
| Shift && (Lower & UINT64_C(1) << (Shift - 1))); |
| } |
| |
| static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); } |
| |
| std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend, |
| uint32_t Divisor) { |
| assert(Dividend && "expected non-zero dividend"); |
| assert(Divisor && "expected non-zero divisor"); |
| |
| // Use 64-bit math and canonicalize the dividend to gain precision. |
| uint64_t Dividend64 = Dividend; |
| int Shift = 0; |
| if (int Zeros = countLeadingZeros(Dividend64)) { |
| Shift -= Zeros; |
| Dividend64 <<= Zeros; |
| } |
| uint64_t Quotient = Dividend64 / Divisor; |
| uint64_t Remainder = Dividend64 % Divisor; |
| |
| // If Quotient needs to be shifted, leave the rounding to getAdjusted(). |
| if (Quotient > UINT32_MAX) |
| return getAdjusted<uint32_t>(Quotient, Shift); |
| |
| // Round based on the value of the next bit. |
| return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor)); |
| } |
| |
| std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend, |
| uint64_t Divisor) { |
| assert(Dividend && "expected non-zero dividend"); |
| assert(Divisor && "expected non-zero divisor"); |
| |
| // Minimize size of divisor. |
| int Shift = 0; |
| if (int Zeros = countTrailingZeros(Divisor)) { |
| Shift -= Zeros; |
| Divisor >>= Zeros; |
| } |
| |
| // Check for powers of two. |
| if (Divisor == 1) |
| return std::make_pair(Dividend, Shift); |
| |
| // Maximize size of dividend. |
| if (int Zeros = countLeadingZeros(Dividend)) { |
| Shift -= Zeros; |
| Dividend <<= Zeros; |
| } |
| |
| // Start with the result of a divide. |
| uint64_t Quotient = Dividend / Divisor; |
| Dividend %= Divisor; |
| |
| // Continue building the quotient with long division. |
| while (!(Quotient >> 63) && Dividend) { |
| // Shift Dividend and check for overflow. |
| bool IsOverflow = Dividend >> 63; |
| Dividend <<= 1; |
| --Shift; |
| |
| // Get the next bit of Quotient. |
| Quotient <<= 1; |
| if (IsOverflow || Divisor <= Dividend) { |
| Quotient |= 1; |
| Dividend -= Divisor; |
| } |
| } |
| |
| return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor)); |
| } |
| |
| int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) { |
| assert(ScaleDiff >= 0 && "wrong argument order"); |
| assert(ScaleDiff < 64 && "numbers too far apart"); |
| |
| uint64_t L_adjusted = L >> ScaleDiff; |
| if (L_adjusted < R) |
| return -1; |
| if (L_adjusted > R) |
| return 1; |
| |
| return L > L_adjusted << ScaleDiff ? 1 : 0; |
| } |
| |
| static void appendDigit(std::string &Str, unsigned D) { |
| assert(D < 10); |
| Str += '0' + D % 10; |
| } |
| |
| static void appendNumber(std::string &Str, uint64_t N) { |
| while (N) { |
| appendDigit(Str, N % 10); |
| N /= 10; |
| } |
| } |
| |
| static bool doesRoundUp(char Digit) { |
| switch (Digit) { |
| case '5': |
| case '6': |
| case '7': |
| case '8': |
| case '9': |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) { |
| assert(E >= ScaledNumbers::MinScale); |
| assert(E <= ScaledNumbers::MaxScale); |
| |
| // Find a new E, but don't let it increase past MaxScale. |
| int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D); |
| int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros); |
| int Shift = 63 - (NewE - E); |
| assert(Shift <= LeadingZeros); |
| assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale); |
| assert(Shift >= 0 && Shift < 64 && "undefined behavior"); |
| D <<= Shift; |
| E = NewE; |
| |
| // Check for a denormal. |
| unsigned AdjustedE = E + 16383; |
| if (!(D >> 63)) { |
| assert(E == ScaledNumbers::MaxScale); |
| AdjustedE = 0; |
| } |
| |
| // Build the float and print it. |
| uint64_t RawBits[2] = {D, AdjustedE}; |
| APFloat Float(APFloat::x87DoubleExtended(), APInt(80, RawBits)); |
| SmallVector<char, 24> Chars; |
| Float.toString(Chars, Precision, 0); |
| return std::string(Chars.begin(), Chars.end()); |
| } |
| |
| static std::string stripTrailingZeros(const std::string &Float) { |
| size_t NonZero = Float.find_last_not_of('0'); |
| assert(NonZero != std::string::npos && "no . in floating point string"); |
| |
| if (Float[NonZero] == '.') |
| ++NonZero; |
| |
| return Float.substr(0, NonZero + 1); |
| } |
| |
| std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width, |
| unsigned Precision) { |
| if (!D) |
| return "0.0"; |
| |
| // Canonicalize exponent and digits. |
| uint64_t Above0 = 0; |
| uint64_t Below0 = 0; |
| uint64_t Extra = 0; |
| int ExtraShift = 0; |
| if (E == 0) { |
| Above0 = D; |
| } else if (E > 0) { |
| if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) { |
| D <<= Shift; |
| E -= Shift; |
| |
| if (!E) |
| Above0 = D; |
| } |
| } else if (E > -64) { |
| Above0 = D >> -E; |
| Below0 = D << (64 + E); |
| } else if (E == -64) { |
| // Special case: shift by 64 bits is undefined behavior. |
| Below0 = D; |
| } else if (E > -120) { |
| Below0 = D >> (-E - 64); |
| Extra = D << (128 + E); |
| ExtraShift = -64 - E; |
| } |
| |
| // Fall back on APFloat for very small and very large numbers. |
| if (!Above0 && !Below0) |
| return toStringAPFloat(D, E, Precision); |
| |
| // Append the digits before the decimal. |
| std::string Str; |
| size_t DigitsOut = 0; |
| if (Above0) { |
| appendNumber(Str, Above0); |
| DigitsOut = Str.size(); |
| } else |
| appendDigit(Str, 0); |
| std::reverse(Str.begin(), Str.end()); |
| |
| // Return early if there's nothing after the decimal. |
| if (!Below0) |
| return Str + ".0"; |
| |
| // Append the decimal and beyond. |
| Str += '.'; |
| uint64_t Error = UINT64_C(1) << (64 - Width); |
| |
| // We need to shift Below0 to the right to make space for calculating |
| // digits. Save the precision we're losing in Extra. |
| Extra = (Below0 & 0xf) << 56 | (Extra >> 8); |
| Below0 >>= 4; |
| size_t SinceDot = 0; |
| size_t AfterDot = Str.size(); |
| do { |
| if (ExtraShift) { |
| --ExtraShift; |
| Error *= 5; |
| } else |
| Error *= 10; |
| |
| Below0 *= 10; |
| Extra *= 10; |
| Below0 += (Extra >> 60); |
| Extra = Extra & (UINT64_MAX >> 4); |
| appendDigit(Str, Below0 >> 60); |
| Below0 = Below0 & (UINT64_MAX >> 4); |
| if (DigitsOut || Str.back() != '0') |
| ++DigitsOut; |
| ++SinceDot; |
| } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 && |
| (!Precision || DigitsOut <= Precision || SinceDot < 2)); |
| |
| // Return early for maximum precision. |
| if (!Precision || DigitsOut <= Precision) |
| return stripTrailingZeros(Str); |
| |
| // Find where to truncate. |
| size_t Truncate = |
| std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1); |
| |
| // Check if there's anything to truncate. |
| if (Truncate >= Str.size()) |
| return stripTrailingZeros(Str); |
| |
| bool Carry = doesRoundUp(Str[Truncate]); |
| if (!Carry) |
| return stripTrailingZeros(Str.substr(0, Truncate)); |
| |
| // Round with the first truncated digit. |
| for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend(); |
| I != E; ++I) { |
| if (*I == '.') |
| continue; |
| if (*I == '9') { |
| *I = '0'; |
| continue; |
| } |
| |
| ++*I; |
| Carry = false; |
| break; |
| } |
| |
| // Add "1" in front if we still need to carry. |
| return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate)); |
| } |
| |
| raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E, |
| int Width, unsigned Precision) { |
| return OS << toString(D, E, Width, Precision); |
| } |
| |
| void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) { |
| print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E |
| << "]"; |
| } |