| //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the operating system Host concept. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Support/Host.h" |
| #include "llvm/Support/TargetParser.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <assert.h> |
| #include <string.h> |
| |
| // Include the platform-specific parts of this class. |
| #ifdef LLVM_ON_UNIX |
| #include "Unix/Host.inc" |
| #endif |
| #ifdef _WIN32 |
| #include "Windows/Host.inc" |
| #endif |
| #ifdef _MSC_VER |
| #include <intrin.h> |
| #endif |
| #if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) |
| #include <mach/host_info.h> |
| #include <mach/mach.h> |
| #include <mach/mach_host.h> |
| #include <mach/machine.h> |
| #endif |
| |
| #define DEBUG_TYPE "host-detection" |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementations of the CPU detection routines |
| // |
| //===----------------------------------------------------------------------===// |
| |
| using namespace llvm; |
| |
| static std::unique_ptr<llvm::MemoryBuffer> |
| LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() { |
| llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text = |
| llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); |
| if (std::error_code EC = Text.getError()) { |
| llvm::errs() << "Can't read " |
| << "/proc/cpuinfo: " << EC.message() << "\n"; |
| return nullptr; |
| } |
| return std::move(*Text); |
| } |
| |
| StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) { |
| // Access to the Processor Version Register (PVR) on PowerPC is privileged, |
| // and so we must use an operating-system interface to determine the current |
| // processor type. On Linux, this is exposed through the /proc/cpuinfo file. |
| const char *generic = "generic"; |
| |
| // The cpu line is second (after the 'processor: 0' line), so if this |
| // buffer is too small then something has changed (or is wrong). |
| StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin(); |
| StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end(); |
| |
| StringRef::const_iterator CIP = CPUInfoStart; |
| |
| StringRef::const_iterator CPUStart = 0; |
| size_t CPULen = 0; |
| |
| // We need to find the first line which starts with cpu, spaces, and a colon. |
| // After the colon, there may be some additional spaces and then the cpu type. |
| while (CIP < CPUInfoEnd && CPUStart == 0) { |
| if (CIP < CPUInfoEnd && *CIP == '\n') |
| ++CIP; |
| |
| if (CIP < CPUInfoEnd && *CIP == 'c') { |
| ++CIP; |
| if (CIP < CPUInfoEnd && *CIP == 'p') { |
| ++CIP; |
| if (CIP < CPUInfoEnd && *CIP == 'u') { |
| ++CIP; |
| while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) |
| ++CIP; |
| |
| if (CIP < CPUInfoEnd && *CIP == ':') { |
| ++CIP; |
| while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) |
| ++CIP; |
| |
| if (CIP < CPUInfoEnd) { |
| CPUStart = CIP; |
| while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' && |
| *CIP != ',' && *CIP != '\n')) |
| ++CIP; |
| CPULen = CIP - CPUStart; |
| } |
| } |
| } |
| } |
| } |
| |
| if (CPUStart == 0) |
| while (CIP < CPUInfoEnd && *CIP != '\n') |
| ++CIP; |
| } |
| |
| if (CPUStart == 0) |
| return generic; |
| |
| return StringSwitch<const char *>(StringRef(CPUStart, CPULen)) |
| .Case("604e", "604e") |
| .Case("604", "604") |
| .Case("7400", "7400") |
| .Case("7410", "7400") |
| .Case("7447", "7400") |
| .Case("7455", "7450") |
| .Case("G4", "g4") |
| .Case("POWER4", "970") |
| .Case("PPC970FX", "970") |
| .Case("PPC970MP", "970") |
| .Case("G5", "g5") |
| .Case("POWER5", "g5") |
| .Case("A2", "a2") |
| .Case("POWER6", "pwr6") |
| .Case("POWER7", "pwr7") |
| .Case("POWER8", "pwr8") |
| .Case("POWER8E", "pwr8") |
| .Case("POWER8NVL", "pwr8") |
| .Case("POWER9", "pwr9") |
| .Default(generic); |
| } |
| |
| StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) { |
| // The cpuid register on arm is not accessible from user space. On Linux, |
| // it is exposed through the /proc/cpuinfo file. |
| |
| // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line |
| // in all cases. |
| SmallVector<StringRef, 32> Lines; |
| ProcCpuinfoContent.split(Lines, "\n"); |
| |
| // Look for the CPU implementer line. |
| StringRef Implementer; |
| StringRef Hardware; |
| for (unsigned I = 0, E = Lines.size(); I != E; ++I) { |
| if (Lines[I].startswith("CPU implementer")) |
| Implementer = Lines[I].substr(15).ltrim("\t :"); |
| if (Lines[I].startswith("Hardware")) |
| Hardware = Lines[I].substr(8).ltrim("\t :"); |
| } |
| |
| if (Implementer == "0x41") { // ARM Ltd. |
| // MSM8992/8994 may give cpu part for the core that the kernel is running on, |
| // which is undeterministic and wrong. Always return cortex-a53 for these SoC. |
| if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996")) |
| return "cortex-a53"; |
| |
| |
| // Look for the CPU part line. |
| for (unsigned I = 0, E = Lines.size(); I != E; ++I) |
| if (Lines[I].startswith("CPU part")) |
| // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The |
| // values correspond to the "Part number" in the CP15/c0 register. The |
| // contents are specified in the various processor manuals. |
| return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) |
| .Case("0x926", "arm926ej-s") |
| .Case("0xb02", "mpcore") |
| .Case("0xb36", "arm1136j-s") |
| .Case("0xb56", "arm1156t2-s") |
| .Case("0xb76", "arm1176jz-s") |
| .Case("0xc08", "cortex-a8") |
| .Case("0xc09", "cortex-a9") |
| .Case("0xc0f", "cortex-a15") |
| .Case("0xc20", "cortex-m0") |
| .Case("0xc23", "cortex-m3") |
| .Case("0xc24", "cortex-m4") |
| .Case("0xd04", "cortex-a35") |
| .Case("0xd03", "cortex-a53") |
| .Case("0xd07", "cortex-a57") |
| .Case("0xd08", "cortex-a72") |
| .Case("0xd09", "cortex-a73") |
| .Default("generic"); |
| } |
| |
| if (Implementer == "0x51") // Qualcomm Technologies, Inc. |
| // Look for the CPU part line. |
| for (unsigned I = 0, E = Lines.size(); I != E; ++I) |
| if (Lines[I].startswith("CPU part")) |
| // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The |
| // values correspond to the "Part number" in the CP15/c0 register. The |
| // contents are specified in the various processor manuals. |
| return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) |
| .Case("0x06f", "krait") // APQ8064 |
| .Case("0x201", "kryo") |
| .Case("0x205", "kryo") |
| .Case("0x211", "kryo") |
| .Case("0x800", "cortex-a73") |
| .Case("0x801", "cortex-a73") |
| .Case("0xc00", "falkor") |
| .Case("0xc01", "saphira") |
| .Default("generic"); |
| |
| if (Implementer == "0x53") { // Samsung Electronics Co., Ltd. |
| // The Exynos chips have a convoluted ID scheme that doesn't seem to follow |
| // any predictive pattern across variants and parts. |
| unsigned Variant = 0, Part = 0; |
| |
| // Look for the CPU variant line, whose value is a 1 digit hexadecimal |
| // number, corresponding to the Variant bits in the CP15/C0 register. |
| for (auto I : Lines) |
| if (I.consume_front("CPU variant")) |
| I.ltrim("\t :").getAsInteger(0, Variant); |
| |
| // Look for the CPU part line, whose value is a 3 digit hexadecimal |
| // number, corresponding to the PartNum bits in the CP15/C0 register. |
| for (auto I : Lines) |
| if (I.consume_front("CPU part")) |
| I.ltrim("\t :").getAsInteger(0, Part); |
| |
| unsigned Exynos = (Variant << 12) | Part; |
| switch (Exynos) { |
| default: |
| // Default by falling through to Exynos M1. |
| LLVM_FALLTHROUGH; |
| |
| case 0x1001: |
| return "exynos-m1"; |
| |
| case 0x4001: |
| return "exynos-m2"; |
| } |
| } |
| |
| return "generic"; |
| } |
| |
| StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) { |
| // STIDP is a privileged operation, so use /proc/cpuinfo instead. |
| |
| // The "processor 0:" line comes after a fair amount of other information, |
| // including a cache breakdown, but this should be plenty. |
| SmallVector<StringRef, 32> Lines; |
| ProcCpuinfoContent.split(Lines, "\n"); |
| |
| // Look for the CPU features. |
| SmallVector<StringRef, 32> CPUFeatures; |
| for (unsigned I = 0, E = Lines.size(); I != E; ++I) |
| if (Lines[I].startswith("features")) { |
| size_t Pos = Lines[I].find(":"); |
| if (Pos != StringRef::npos) { |
| Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' '); |
| break; |
| } |
| } |
| |
| // We need to check for the presence of vector support independently of |
| // the machine type, since we may only use the vector register set when |
| // supported by the kernel (and hypervisor). |
| bool HaveVectorSupport = false; |
| for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { |
| if (CPUFeatures[I] == "vx") |
| HaveVectorSupport = true; |
| } |
| |
| // Now check the processor machine type. |
| for (unsigned I = 0, E = Lines.size(); I != E; ++I) { |
| if (Lines[I].startswith("processor ")) { |
| size_t Pos = Lines[I].find("machine = "); |
| if (Pos != StringRef::npos) { |
| Pos += sizeof("machine = ") - 1; |
| unsigned int Id; |
| if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) { |
| if (Id >= 3906 && HaveVectorSupport) |
| return "z14"; |
| if (Id >= 2964 && HaveVectorSupport) |
| return "z13"; |
| if (Id >= 2827) |
| return "zEC12"; |
| if (Id >= 2817) |
| return "z196"; |
| } |
| } |
| break; |
| } |
| } |
| |
| return "generic"; |
| } |
| |
| StringRef sys::detail::getHostCPUNameForBPF() { |
| #if !defined(__linux__) || !defined(__x86_64__) |
| return "generic"; |
| #else |
| uint8_t insns[40] __attribute__ ((aligned (8))) = |
| /* BPF_MOV64_IMM(BPF_REG_0, 0) */ |
| { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, |
| /* BPF_MOV64_IMM(BPF_REG_2, 1) */ |
| 0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, |
| /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */ |
| 0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, |
| /* BPF_MOV64_IMM(BPF_REG_0, 1) */ |
| 0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, |
| /* BPF_EXIT_INSN() */ |
| 0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }; |
| |
| struct bpf_prog_load_attr { |
| uint32_t prog_type; |
| uint32_t insn_cnt; |
| uint64_t insns; |
| uint64_t license; |
| uint32_t log_level; |
| uint32_t log_size; |
| uint64_t log_buf; |
| uint32_t kern_version; |
| uint32_t prog_flags; |
| } attr = {}; |
| attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */ |
| attr.insn_cnt = 5; |
| attr.insns = (uint64_t)insns; |
| attr.license = (uint64_t)"DUMMY"; |
| |
| int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr)); |
| if (fd >= 0) { |
| close(fd); |
| return "v2"; |
| } |
| return "v1"; |
| #endif |
| } |
| |
| #if defined(__i386__) || defined(_M_IX86) || \ |
| defined(__x86_64__) || defined(_M_X64) |
| |
| enum VendorSignatures { |
| SIG_INTEL = 0x756e6547 /* Genu */, |
| SIG_AMD = 0x68747541 /* Auth */ |
| }; |
| |
| // The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max). |
| // Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID |
| // support. Consequently, for i386, the presence of CPUID is checked first |
| // via the corresponding eflags bit. |
| // Removal of cpuid.h header motivated by PR30384 |
| // Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp |
| // or test-suite, but are used in external projects e.g. libstdcxx |
| static bool isCpuIdSupported() { |
| #if defined(__GNUC__) || defined(__clang__) |
| #if defined(__i386__) |
| int __cpuid_supported; |
| __asm__(" pushfl\n" |
| " popl %%eax\n" |
| " movl %%eax,%%ecx\n" |
| " xorl $0x00200000,%%eax\n" |
| " pushl %%eax\n" |
| " popfl\n" |
| " pushfl\n" |
| " popl %%eax\n" |
| " movl $0,%0\n" |
| " cmpl %%eax,%%ecx\n" |
| " je 1f\n" |
| " movl $1,%0\n" |
| "1:" |
| : "=r"(__cpuid_supported) |
| : |
| : "eax", "ecx"); |
| if (!__cpuid_supported) |
| return false; |
| #endif |
| return true; |
| #endif |
| return true; |
| } |
| |
| /// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in |
| /// the specified arguments. If we can't run cpuid on the host, return true. |
| static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, |
| unsigned *rECX, unsigned *rEDX) { |
| #if defined(__GNUC__) || defined(__clang__) |
| #if defined(__x86_64__) |
| // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually. |
| // FIXME: should we save this for Clang? |
| __asm__("movq\t%%rbx, %%rsi\n\t" |
| "cpuid\n\t" |
| "xchgq\t%%rbx, %%rsi\n\t" |
| : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) |
| : "a"(value)); |
| return false; |
| #elif defined(__i386__) |
| __asm__("movl\t%%ebx, %%esi\n\t" |
| "cpuid\n\t" |
| "xchgl\t%%ebx, %%esi\n\t" |
| : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) |
| : "a"(value)); |
| return false; |
| #else |
| return true; |
| #endif |
| #elif defined(_MSC_VER) |
| // The MSVC intrinsic is portable across x86 and x64. |
| int registers[4]; |
| __cpuid(registers, value); |
| *rEAX = registers[0]; |
| *rEBX = registers[1]; |
| *rECX = registers[2]; |
| *rEDX = registers[3]; |
| return false; |
| #else |
| return true; |
| #endif |
| } |
| |
| /// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return |
| /// the 4 values in the specified arguments. If we can't run cpuid on the host, |
| /// return true. |
| static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf, |
| unsigned *rEAX, unsigned *rEBX, unsigned *rECX, |
| unsigned *rEDX) { |
| #if defined(__GNUC__) || defined(__clang__) |
| #if defined(__x86_64__) |
| // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually. |
| // FIXME: should we save this for Clang? |
| __asm__("movq\t%%rbx, %%rsi\n\t" |
| "cpuid\n\t" |
| "xchgq\t%%rbx, %%rsi\n\t" |
| : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) |
| : "a"(value), "c"(subleaf)); |
| return false; |
| #elif defined(__i386__) |
| __asm__("movl\t%%ebx, %%esi\n\t" |
| "cpuid\n\t" |
| "xchgl\t%%ebx, %%esi\n\t" |
| : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) |
| : "a"(value), "c"(subleaf)); |
| return false; |
| #else |
| return true; |
| #endif |
| #elif defined(_MSC_VER) |
| int registers[4]; |
| __cpuidex(registers, value, subleaf); |
| *rEAX = registers[0]; |
| *rEBX = registers[1]; |
| *rECX = registers[2]; |
| *rEDX = registers[3]; |
| return false; |
| #else |
| return true; |
| #endif |
| } |
| |
| // Read control register 0 (XCR0). Used to detect features such as AVX. |
| static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) { |
| #if defined(__GNUC__) || defined(__clang__) |
| // Check xgetbv; this uses a .byte sequence instead of the instruction |
| // directly because older assemblers do not include support for xgetbv and |
| // there is no easy way to conditionally compile based on the assembler used. |
| __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0)); |
| return false; |
| #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK) |
| unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK); |
| *rEAX = Result; |
| *rEDX = Result >> 32; |
| return false; |
| #else |
| return true; |
| #endif |
| } |
| |
| static void detectX86FamilyModel(unsigned EAX, unsigned *Family, |
| unsigned *Model) { |
| *Family = (EAX >> 8) & 0xf; // Bits 8 - 11 |
| *Model = (EAX >> 4) & 0xf; // Bits 4 - 7 |
| if (*Family == 6 || *Family == 0xf) { |
| if (*Family == 0xf) |
| // Examine extended family ID if family ID is F. |
| *Family += (EAX >> 20) & 0xff; // Bits 20 - 27 |
| // Examine extended model ID if family ID is 6 or F. |
| *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 |
| } |
| } |
| |
| static void |
| getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model, |
| unsigned Brand_id, unsigned Features, |
| unsigned Features2, unsigned *Type, |
| unsigned *Subtype) { |
| if (Brand_id != 0) |
| return; |
| switch (Family) { |
| case 3: |
| *Type = X86::INTEL_i386; |
| break; |
| case 4: |
| *Type = X86::INTEL_i486; |
| break; |
| case 5: |
| if (Features & (1 << X86::FEATURE_MMX)) { |
| *Type = X86::INTEL_PENTIUM_MMX; |
| break; |
| } |
| *Type = X86::INTEL_PENTIUM; |
| break; |
| case 6: |
| switch (Model) { |
| case 0x01: // Pentium Pro processor |
| *Type = X86::INTEL_PENTIUM_PRO; |
| break; |
| case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor, |
| // model 03 |
| case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor, |
| // model 05, and Intel Celeron processor, model 05 |
| case 0x06: // Celeron processor, model 06 |
| *Type = X86::INTEL_PENTIUM_II; |
| break; |
| case 0x07: // Pentium III processor, model 07, and Pentium III Xeon |
| // processor, model 07 |
| case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor, |
| // model 08, and Celeron processor, model 08 |
| case 0x0a: // Pentium III Xeon processor, model 0Ah |
| case 0x0b: // Pentium III processor, model 0Bh |
| *Type = X86::INTEL_PENTIUM_III; |
| break; |
| case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09. |
| case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model |
| // 0Dh. All processors are manufactured using the 90 nm process. |
| case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579 |
| // Integrated Processor with Intel QuickAssist Technology |
| *Type = X86::INTEL_PENTIUM_M; |
| break; |
| case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model |
| // 0Eh. All processors are manufactured using the 65 nm process. |
| *Type = X86::INTEL_CORE_DUO; |
| break; // yonah |
| case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile |
| // processor, Intel Core 2 Quad processor, Intel Core 2 Quad |
| // mobile processor, Intel Core 2 Extreme processor, Intel |
| // Pentium Dual-Core processor, Intel Xeon processor, model |
| // 0Fh. All processors are manufactured using the 65 nm process. |
| case 0x16: // Intel Celeron processor model 16h. All processors are |
| // manufactured using the 65 nm process |
| *Type = X86::INTEL_CORE2; // "core2" |
| *Subtype = X86::INTEL_CORE2_65; |
| break; |
| case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model |
| // 17h. All processors are manufactured using the 45 nm process. |
| // |
| // 45nm: Penryn , Wolfdale, Yorkfield (XE) |
| case 0x1d: // Intel Xeon processor MP. All processors are manufactured using |
| // the 45 nm process. |
| *Type = X86::INTEL_CORE2; // "penryn" |
| *Subtype = X86::INTEL_CORE2_45; |
| break; |
| case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All |
| // processors are manufactured using the 45 nm process. |
| case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz. |
| // As found in a Summer 2010 model iMac. |
| case 0x1f: |
| case 0x2e: // Nehalem EX |
| *Type = X86::INTEL_COREI7; // "nehalem" |
| *Subtype = X86::INTEL_COREI7_NEHALEM; |
| break; |
| case 0x25: // Intel Core i7, laptop version. |
| case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All |
| // processors are manufactured using the 32 nm process. |
| case 0x2f: // Westmere EX |
| *Type = X86::INTEL_COREI7; // "westmere" |
| *Subtype = X86::INTEL_COREI7_WESTMERE; |
| break; |
| case 0x2a: // Intel Core i7 processor. All processors are manufactured |
| // using the 32 nm process. |
| case 0x2d: |
| *Type = X86::INTEL_COREI7; //"sandybridge" |
| *Subtype = X86::INTEL_COREI7_SANDYBRIDGE; |
| break; |
| case 0x3a: |
| case 0x3e: // Ivy Bridge EP |
| *Type = X86::INTEL_COREI7; // "ivybridge" |
| *Subtype = X86::INTEL_COREI7_IVYBRIDGE; |
| break; |
| |
| // Haswell: |
| case 0x3c: |
| case 0x3f: |
| case 0x45: |
| case 0x46: |
| *Type = X86::INTEL_COREI7; // "haswell" |
| *Subtype = X86::INTEL_COREI7_HASWELL; |
| break; |
| |
| // Broadwell: |
| case 0x3d: |
| case 0x47: |
| case 0x4f: |
| case 0x56: |
| *Type = X86::INTEL_COREI7; // "broadwell" |
| *Subtype = X86::INTEL_COREI7_BROADWELL; |
| break; |
| |
| // Skylake: |
| case 0x4e: // Skylake mobile |
| case 0x5e: // Skylake desktop |
| case 0x8e: // Kaby Lake mobile |
| case 0x9e: // Kaby Lake desktop |
| *Type = X86::INTEL_COREI7; // "skylake" |
| *Subtype = X86::INTEL_COREI7_SKYLAKE; |
| break; |
| |
| // Skylake Xeon: |
| case 0x55: |
| *Type = X86::INTEL_COREI7; |
| *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512" |
| break; |
| |
| // Cannonlake: |
| case 0x66: |
| *Type = X86::INTEL_COREI7; |
| *Subtype = X86::INTEL_COREI7_CANNONLAKE; // "cannonlake" |
| break; |
| |
| case 0x1c: // Most 45 nm Intel Atom processors |
| case 0x26: // 45 nm Atom Lincroft |
| case 0x27: // 32 nm Atom Medfield |
| case 0x35: // 32 nm Atom Midview |
| case 0x36: // 32 nm Atom Midview |
| *Type = X86::INTEL_BONNELL; |
| break; // "bonnell" |
| |
| // Atom Silvermont codes from the Intel software optimization guide. |
| case 0x37: |
| case 0x4a: |
| case 0x4d: |
| case 0x5a: |
| case 0x5d: |
| case 0x4c: // really airmont |
| *Type = X86::INTEL_SILVERMONT; |
| break; // "silvermont" |
| // Goldmont: |
| case 0x5c: // Apollo Lake |
| case 0x5f: // Denverton |
| *Type = X86::INTEL_GOLDMONT; |
| break; // "goldmont" |
| case 0x7a: |
| *Type = X86::INTEL_GOLDMONT_PLUS; |
| break; |
| case 0x57: |
| *Type = X86::INTEL_KNL; // knl |
| break; |
| case 0x85: |
| *Type = X86::INTEL_KNM; // knm |
| break; |
| |
| default: // Unknown family 6 CPU, try to guess. |
| if (Features & (1 << X86::FEATURE_AVX512VBMI)) { |
| *Type = X86::INTEL_COREI7; |
| *Subtype = X86::INTEL_COREI7_CANNONLAKE; |
| break; |
| } |
| |
| if (Features & (1 << X86::FEATURE_AVX512VL)) { |
| *Type = X86::INTEL_COREI7; |
| *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; |
| break; |
| } |
| |
| if (Features & (1 << X86::FEATURE_AVX512ER)) { |
| *Type = X86::INTEL_KNL; // knl |
| break; |
| } |
| |
| if (Features2 & (1 << (X86::FEATURE_CLFLUSHOPT - 32))) { |
| if (Features2 & (1 << (X86::FEATURE_SHA - 32))) { |
| *Type = X86::INTEL_GOLDMONT; |
| } else { |
| *Type = X86::INTEL_COREI7; |
| *Subtype = X86::INTEL_COREI7_SKYLAKE; |
| } |
| break; |
| } |
| if (Features2 & (1 << (X86::FEATURE_ADX - 32))) { |
| *Type = X86::INTEL_COREI7; |
| *Subtype = X86::INTEL_COREI7_BROADWELL; |
| break; |
| } |
| if (Features & (1 << X86::FEATURE_AVX2)) { |
| *Type = X86::INTEL_COREI7; |
| *Subtype = X86::INTEL_COREI7_HASWELL; |
| break; |
| } |
| if (Features & (1 << X86::FEATURE_AVX)) { |
| *Type = X86::INTEL_COREI7; |
| *Subtype = X86::INTEL_COREI7_SANDYBRIDGE; |
| break; |
| } |
| if (Features & (1 << X86::FEATURE_SSE4_2)) { |
| if (Features2 & (1 << (X86::FEATURE_MOVBE - 32))) { |
| *Type = X86::INTEL_SILVERMONT; |
| } else { |
| *Type = X86::INTEL_COREI7; |
| *Subtype = X86::INTEL_COREI7_NEHALEM; |
| } |
| break; |
| } |
| if (Features & (1 << X86::FEATURE_SSE4_1)) { |
| *Type = X86::INTEL_CORE2; // "penryn" |
| *Subtype = X86::INTEL_CORE2_45; |
| break; |
| } |
| if (Features & (1 << X86::FEATURE_SSSE3)) { |
| if (Features2 & (1 << (X86::FEATURE_MOVBE - 32))) { |
| *Type = X86::INTEL_BONNELL; // "bonnell" |
| } else { |
| *Type = X86::INTEL_CORE2; // "core2" |
| *Subtype = X86::INTEL_CORE2_65; |
| } |
| break; |
| } |
| if (Features2 & (1 << (X86::FEATURE_EM64T - 32))) { |
| *Type = X86::INTEL_CORE2; // "core2" |
| *Subtype = X86::INTEL_CORE2_65; |
| break; |
| } |
| if (Features & (1 << X86::FEATURE_SSE3)) { |
| *Type = X86::INTEL_CORE_DUO; |
| break; |
| } |
| if (Features & (1 << X86::FEATURE_SSE2)) { |
| *Type = X86::INTEL_PENTIUM_M; |
| break; |
| } |
| if (Features & (1 << X86::FEATURE_SSE)) { |
| *Type = X86::INTEL_PENTIUM_III; |
| break; |
| } |
| if (Features & (1 << X86::FEATURE_MMX)) { |
| *Type = X86::INTEL_PENTIUM_II; |
| break; |
| } |
| *Type = X86::INTEL_PENTIUM_PRO; |
| break; |
| } |
| break; |
| case 15: { |
| if (Features2 & (1 << (X86::FEATURE_EM64T - 32))) { |
| *Type = X86::INTEL_NOCONA; |
| break; |
| } |
| if (Features & (1 << X86::FEATURE_SSE3)) { |
| *Type = X86::INTEL_PRESCOTT; |
| break; |
| } |
| *Type = X86::INTEL_PENTIUM_IV; |
| break; |
| } |
| default: |
| break; /*"generic"*/ |
| } |
| } |
| |
| static void getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model, |
| unsigned Features, unsigned *Type, |
| unsigned *Subtype) { |
| // FIXME: this poorly matches the generated SubtargetFeatureKV table. There |
| // appears to be no way to generate the wide variety of AMD-specific targets |
| // from the information returned from CPUID. |
| switch (Family) { |
| case 4: |
| *Type = X86::AMD_i486; |
| break; |
| case 5: |
| *Type = X86::AMDPENTIUM; |
| switch (Model) { |
| case 6: |
| case 7: |
| *Subtype = X86::AMDPENTIUM_K6; |
| break; // "k6" |
| case 8: |
| *Subtype = X86::AMDPENTIUM_K62; |
| break; // "k6-2" |
| case 9: |
| case 13: |
| *Subtype = X86::AMDPENTIUM_K63; |
| break; // "k6-3" |
| case 10: |
| *Subtype = X86::AMDPENTIUM_GEODE; |
| break; // "geode" |
| } |
| break; |
| case 6: |
| if (Features & (1 << X86::FEATURE_SSE)) { |
| *Type = X86::AMD_ATHLON_XP; |
| break; // "athlon-xp" |
| } |
| *Type = X86::AMD_ATHLON; |
| break; // "athlon" |
| case 15: |
| if (Features & (1 << X86::FEATURE_SSE3)) { |
| *Type = X86::AMD_K8SSE3; |
| break; // "k8-sse3" |
| } |
| *Type = X86::AMD_K8; |
| break; // "k8" |
| case 16: |
| *Type = X86::AMDFAM10H; // "amdfam10" |
| switch (Model) { |
| case 2: |
| *Subtype = X86::AMDFAM10H_BARCELONA; |
| break; |
| case 4: |
| *Subtype = X86::AMDFAM10H_SHANGHAI; |
| break; |
| case 8: |
| *Subtype = X86::AMDFAM10H_ISTANBUL; |
| break; |
| } |
| break; |
| case 20: |
| *Type = X86::AMD_BTVER1; |
| break; // "btver1"; |
| case 21: |
| *Type = X86::AMDFAM15H; |
| if (Model >= 0x60 && Model <= 0x7f) { |
| *Subtype = X86::AMDFAM15H_BDVER4; |
| break; // "bdver4"; 60h-7Fh: Excavator |
| } |
| if (Model >= 0x30 && Model <= 0x3f) { |
| *Subtype = X86::AMDFAM15H_BDVER3; |
| break; // "bdver3"; 30h-3Fh: Steamroller |
| } |
| if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) { |
| *Subtype = X86::AMDFAM15H_BDVER2; |
| break; // "bdver2"; 02h, 10h-1Fh: Piledriver |
| } |
| if (Model <= 0x0f) { |
| *Subtype = X86::AMDFAM15H_BDVER1; |
| break; // "bdver1"; 00h-0Fh: Bulldozer |
| } |
| break; |
| case 22: |
| *Type = X86::AMD_BTVER2; |
| break; // "btver2" |
| case 23: |
| *Type = X86::AMDFAM17H; |
| *Subtype = X86::AMDFAM17H_ZNVER1; |
| break; |
| default: |
| break; // "generic" |
| } |
| } |
| |
| static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf, |
| unsigned *FeaturesOut, |
| unsigned *Features2Out) { |
| unsigned Features = 0; |
| unsigned Features2 = 0; |
| unsigned EAX, EBX; |
| |
| if ((EDX >> 15) & 1) |
| Features |= 1 << X86::FEATURE_CMOV; |
| if ((EDX >> 23) & 1) |
| Features |= 1 << X86::FEATURE_MMX; |
| if ((EDX >> 25) & 1) |
| Features |= 1 << X86::FEATURE_SSE; |
| if ((EDX >> 26) & 1) |
| Features |= 1 << X86::FEATURE_SSE2; |
| |
| if ((ECX >> 0) & 1) |
| Features |= 1 << X86::FEATURE_SSE3; |
| if ((ECX >> 1) & 1) |
| Features |= 1 << X86::FEATURE_PCLMUL; |
| if ((ECX >> 9) & 1) |
| Features |= 1 << X86::FEATURE_SSSE3; |
| if ((ECX >> 12) & 1) |
| Features |= 1 << X86::FEATURE_FMA; |
| if ((ECX >> 19) & 1) |
| Features |= 1 << X86::FEATURE_SSE4_1; |
| if ((ECX >> 20) & 1) |
| Features |= 1 << X86::FEATURE_SSE4_2; |
| if ((ECX >> 23) & 1) |
| Features |= 1 << X86::FEATURE_POPCNT; |
| if ((ECX >> 25) & 1) |
| Features |= 1 << X86::FEATURE_AES; |
| |
| if ((ECX >> 22) & 1) |
| Features2 |= 1 << (X86::FEATURE_MOVBE - 32); |
| |
| // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV |
| // indicates that the AVX registers will be saved and restored on context |
| // switch, then we have full AVX support. |
| const unsigned AVXBits = (1 << 27) | (1 << 28); |
| bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) && |
| ((EAX & 0x6) == 0x6); |
| bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0); |
| |
| if (HasAVX) |
| Features |= 1 << X86::FEATURE_AVX; |
| |
| bool HasLeaf7 = |
| MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); |
| |
| if (HasLeaf7 && ((EBX >> 3) & 1)) |
| Features |= 1 << X86::FEATURE_BMI; |
| if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX) |
| Features |= 1 << X86::FEATURE_AVX2; |
| if (HasLeaf7 && ((EBX >> 9) & 1)) |
| Features |= 1 << X86::FEATURE_BMI2; |
| if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save) |
| Features |= 1 << X86::FEATURE_AVX512F; |
| if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save) |
| Features |= 1 << X86::FEATURE_AVX512DQ; |
| if (HasLeaf7 && ((EBX >> 19) & 1)) |
| Features2 |= 1 << (X86::FEATURE_ADX - 32); |
| if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save) |
| Features |= 1 << X86::FEATURE_AVX512IFMA; |
| if (HasLeaf7 && ((EBX >> 23) & 1)) |
| Features2 |= 1 << (X86::FEATURE_CLFLUSHOPT - 32); |
| if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save) |
| Features |= 1 << X86::FEATURE_AVX512PF; |
| if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save) |
| Features |= 1 << X86::FEATURE_AVX512ER; |
| if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save) |
| Features |= 1 << X86::FEATURE_AVX512CD; |
| if (HasLeaf7 && ((EBX >> 29) & 1)) |
| Features2 |= 1 << (X86::FEATURE_SHA - 32); |
| if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save) |
| Features |= 1 << X86::FEATURE_AVX512BW; |
| if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save) |
| Features |= 1 << X86::FEATURE_AVX512VL; |
| |
| if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save) |
| Features |= 1 << X86::FEATURE_AVX512VBMI; |
| if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save) |
| Features |= 1 << X86::FEATURE_AVX512VPOPCNTDQ; |
| |
| if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save) |
| Features |= 1 << X86::FEATURE_AVX5124VNNIW; |
| if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save) |
| Features |= 1 << X86::FEATURE_AVX5124FMAPS; |
| |
| unsigned MaxExtLevel; |
| getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); |
| |
| bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && |
| !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); |
| if (HasExtLeaf1 && ((ECX >> 6) & 1)) |
| Features |= 1 << X86::FEATURE_SSE4_A; |
| if (HasExtLeaf1 && ((ECX >> 11) & 1)) |
| Features |= 1 << X86::FEATURE_XOP; |
| if (HasExtLeaf1 && ((ECX >> 16) & 1)) |
| Features |= 1 << X86::FEATURE_FMA4; |
| |
| if (HasExtLeaf1 && ((EDX >> 29) & 1)) |
| Features2 |= 1 << (X86::FEATURE_EM64T - 32); |
| |
| *FeaturesOut = Features; |
| *Features2Out = Features2; |
| } |
| |
| StringRef sys::getHostCPUName() { |
| unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; |
| unsigned MaxLeaf, Vendor; |
| |
| #if defined(__GNUC__) || defined(__clang__) |
| //FIXME: include cpuid.h from clang or copy __get_cpuid_max here |
| // and simplify it to not invoke __cpuid (like cpu_model.c in |
| // compiler-rt/lib/builtins/cpu_model.c? |
| // Opting for the second option. |
| if(!isCpuIdSupported()) |
| return "generic"; |
| #endif |
| if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1) |
| return "generic"; |
| getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX); |
| |
| unsigned Brand_id = EBX & 0xff; |
| unsigned Family = 0, Model = 0; |
| unsigned Features = 0, Features2 = 0; |
| detectX86FamilyModel(EAX, &Family, &Model); |
| getAvailableFeatures(ECX, EDX, MaxLeaf, &Features, &Features2); |
| |
| unsigned Type = 0; |
| unsigned Subtype = 0; |
| |
| if (Vendor == SIG_INTEL) { |
| getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, |
| Features2, &Type, &Subtype); |
| } else if (Vendor == SIG_AMD) { |
| getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype); |
| } |
| |
| // Check subtypes first since those are more specific. |
| #define X86_CPU_SUBTYPE(ARCHNAME, ENUM) \ |
| if (Subtype == X86::ENUM) \ |
| return ARCHNAME; |
| #include "llvm/Support/X86TargetParser.def" |
| |
| // Now check types. |
| #define X86_CPU_TYPE(ARCHNAME, ENUM) \ |
| if (Type == X86::ENUM) \ |
| return ARCHNAME; |
| #include "llvm/Support/X86TargetParser.def" |
| |
| return "generic"; |
| } |
| |
| #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) |
| StringRef sys::getHostCPUName() { |
| host_basic_info_data_t hostInfo; |
| mach_msg_type_number_t infoCount; |
| |
| infoCount = HOST_BASIC_INFO_COUNT; |
| host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo, |
| &infoCount); |
| |
| if (hostInfo.cpu_type != CPU_TYPE_POWERPC) |
| return "generic"; |
| |
| switch (hostInfo.cpu_subtype) { |
| case CPU_SUBTYPE_POWERPC_601: |
| return "601"; |
| case CPU_SUBTYPE_POWERPC_602: |
| return "602"; |
| case CPU_SUBTYPE_POWERPC_603: |
| return "603"; |
| case CPU_SUBTYPE_POWERPC_603e: |
| return "603e"; |
| case CPU_SUBTYPE_POWERPC_603ev: |
| return "603ev"; |
| case CPU_SUBTYPE_POWERPC_604: |
| return "604"; |
| case CPU_SUBTYPE_POWERPC_604e: |
| return "604e"; |
| case CPU_SUBTYPE_POWERPC_620: |
| return "620"; |
| case CPU_SUBTYPE_POWERPC_750: |
| return "750"; |
| case CPU_SUBTYPE_POWERPC_7400: |
| return "7400"; |
| case CPU_SUBTYPE_POWERPC_7450: |
| return "7450"; |
| case CPU_SUBTYPE_POWERPC_970: |
| return "970"; |
| default:; |
| } |
| |
| return "generic"; |
| } |
| #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__)) |
| StringRef sys::getHostCPUName() { |
| std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); |
| StringRef Content = P ? P->getBuffer() : ""; |
| return detail::getHostCPUNameForPowerPC(Content); |
| } |
| #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) |
| StringRef sys::getHostCPUName() { |
| std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); |
| StringRef Content = P ? P->getBuffer() : ""; |
| return detail::getHostCPUNameForARM(Content); |
| } |
| #elif defined(__linux__) && defined(__s390x__) |
| StringRef sys::getHostCPUName() { |
| std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); |
| StringRef Content = P ? P->getBuffer() : ""; |
| return detail::getHostCPUNameForS390x(Content); |
| } |
| #else |
| StringRef sys::getHostCPUName() { return "generic"; } |
| #endif |
| |
| #if defined(__linux__) && defined(__x86_64__) |
| // On Linux, the number of physical cores can be computed from /proc/cpuinfo, |
| // using the number of unique physical/core id pairs. The following |
| // implementation reads the /proc/cpuinfo format on an x86_64 system. |
| static int computeHostNumPhysicalCores() { |
| // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be |
| // mmapped because it appears to have 0 size. |
| llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text = |
| llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); |
| if (std::error_code EC = Text.getError()) { |
| llvm::errs() << "Can't read " |
| << "/proc/cpuinfo: " << EC.message() << "\n"; |
| return -1; |
| } |
| SmallVector<StringRef, 8> strs; |
| (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1, |
| /*KeepEmpty=*/false); |
| int CurPhysicalId = -1; |
| int CurCoreId = -1; |
| SmallSet<std::pair<int, int>, 32> UniqueItems; |
| for (auto &Line : strs) { |
| Line = Line.trim(); |
| if (!Line.startswith("physical id") && !Line.startswith("core id")) |
| continue; |
| std::pair<StringRef, StringRef> Data = Line.split(':'); |
| auto Name = Data.first.trim(); |
| auto Val = Data.second.trim(); |
| if (Name == "physical id") { |
| assert(CurPhysicalId == -1 && |
| "Expected a core id before seeing another physical id"); |
| Val.getAsInteger(10, CurPhysicalId); |
| } |
| if (Name == "core id") { |
| assert(CurCoreId == -1 && |
| "Expected a physical id before seeing another core id"); |
| Val.getAsInteger(10, CurCoreId); |
| } |
| if (CurPhysicalId != -1 && CurCoreId != -1) { |
| UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId)); |
| CurPhysicalId = -1; |
| CurCoreId = -1; |
| } |
| } |
| return UniqueItems.size(); |
| } |
| #elif defined(__APPLE__) && defined(__x86_64__) |
| #include <sys/param.h> |
| #include <sys/sysctl.h> |
| |
| // Gets the number of *physical cores* on the machine. |
| static int computeHostNumPhysicalCores() { |
| uint32_t count; |
| size_t len = sizeof(count); |
| sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0); |
| if (count < 1) { |
| int nm[2]; |
| nm[0] = CTL_HW; |
| nm[1] = HW_AVAILCPU; |
| sysctl(nm, 2, &count, &len, NULL, 0); |
| if (count < 1) |
| return -1; |
| } |
| return count; |
| } |
| #else |
| // On other systems, return -1 to indicate unknown. |
| static int computeHostNumPhysicalCores() { return -1; } |
| #endif |
| |
| int sys::getHostNumPhysicalCores() { |
| static int NumCores = computeHostNumPhysicalCores(); |
| return NumCores; |
| } |
| |
| #if defined(__i386__) || defined(_M_IX86) || \ |
| defined(__x86_64__) || defined(_M_X64) |
| bool sys::getHostCPUFeatures(StringMap<bool> &Features) { |
| unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; |
| unsigned MaxLevel; |
| union { |
| unsigned u[3]; |
| char c[12]; |
| } text; |
| |
| if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) || |
| MaxLevel < 1) |
| return false; |
| |
| getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX); |
| |
| Features["cmov"] = (EDX >> 15) & 1; |
| Features["mmx"] = (EDX >> 23) & 1; |
| Features["sse"] = (EDX >> 25) & 1; |
| Features["sse2"] = (EDX >> 26) & 1; |
| |
| Features["sse3"] = (ECX >> 0) & 1; |
| Features["pclmul"] = (ECX >> 1) & 1; |
| Features["ssse3"] = (ECX >> 9) & 1; |
| Features["cx16"] = (ECX >> 13) & 1; |
| Features["sse4.1"] = (ECX >> 19) & 1; |
| Features["sse4.2"] = (ECX >> 20) & 1; |
| Features["movbe"] = (ECX >> 22) & 1; |
| Features["popcnt"] = (ECX >> 23) & 1; |
| Features["aes"] = (ECX >> 25) & 1; |
| Features["rdrnd"] = (ECX >> 30) & 1; |
| |
| // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV |
| // indicates that the AVX registers will be saved and restored on context |
| // switch, then we have full AVX support. |
| bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) && |
| !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6); |
| // AVX512 requires additional context to be saved by the OS. |
| bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0); |
| |
| Features["avx"] = HasAVXSave; |
| Features["fma"] = ((ECX >> 12) & 1) && HasAVXSave; |
| // Only enable XSAVE if OS has enabled support for saving YMM state. |
| Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave; |
| Features["f16c"] = ((ECX >> 29) & 1) && HasAVXSave; |
| |
| unsigned MaxExtLevel; |
| getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); |
| |
| bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && |
| !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); |
| Features["sahf"] = HasExtLeaf1 && ((ECX >> 0) & 1); |
| Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1); |
| Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1); |
| Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1); |
| Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave; |
| Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1); |
| Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave; |
| Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1); |
| Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1); |
| |
| // Miscellaneous memory related features, detected by |
| // using the 0x80000008 leaf of the CPUID instruction |
| bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 && |
| !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX); |
| Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1); |
| Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1); |
| |
| bool HasLeaf7 = |
| MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); |
| |
| Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1); |
| Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1); |
| Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1); |
| // AVX2 is only supported if we have the OS save support from AVX. |
| Features["avx2"] = HasLeaf7 && ((EBX >> 5) & 1) && HasAVXSave; |
| Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1); |
| Features["invpcid"] = HasLeaf7 && ((EBX >> 10) & 1); |
| Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1); |
| // AVX512 is only supported if the OS supports the context save for it. |
| Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save; |
| Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save; |
| Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1); |
| Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1); |
| Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save; |
| Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1); |
| Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1); |
| Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save; |
| Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save; |
| Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save; |
| Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1); |
| Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save; |
| Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save; |
| |
| Features["prefetchwt1"] = HasLeaf7 && ((ECX >> 0) & 1); |
| Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save; |
| Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1); |
| Features["waitpkg"] = HasLeaf7 && ((ECX >> 5) & 1); |
| Features["avx512vbmi2"] = HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save; |
| Features["shstk"] = HasLeaf7 && ((ECX >> 7) & 1); |
| Features["gfni"] = HasLeaf7 && ((ECX >> 8) & 1); |
| Features["vaes"] = HasLeaf7 && ((ECX >> 9) & 1) && HasAVXSave; |
| Features["vpclmulqdq"] = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave; |
| Features["avx512vnni"] = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save; |
| Features["avx512bitalg"] = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save; |
| Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save; |
| Features["rdpid"] = HasLeaf7 && ((ECX >> 22) & 1); |
| Features["cldemote"] = HasLeaf7 && ((ECX >> 25) & 1); |
| Features["movdiri"] = HasLeaf7 && ((ECX >> 27) & 1); |
| Features["movdir64b"] = HasLeaf7 && ((ECX >> 28) & 1); |
| |
| // There are two CPUID leafs which information associated with the pconfig |
| // instruction: |
| // EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th |
| // bit of EDX), while the EAX=0x1b leaf returns information on the |
| // availability of specific pconfig leafs. |
| // The target feature here only refers to the the first of these two. |
| // Users might need to check for the availability of specific pconfig |
| // leaves using cpuid, since that information is ignored while |
| // detecting features using the "-march=native" flag. |
| // For more info, see X86 ISA docs. |
| Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1); |
| |
| bool HasLeafD = MaxLevel >= 0xd && |
| !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX); |
| |
| // Only enable XSAVE if OS has enabled support for saving YMM state. |
| Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave; |
| Features["xsavec"] = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave; |
| Features["xsaves"] = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave; |
| |
| bool HasLeaf14 = MaxLevel >= 0x14 && |
| !getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX); |
| |
| Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1); |
| |
| return true; |
| } |
| #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) |
| bool sys::getHostCPUFeatures(StringMap<bool> &Features) { |
| std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); |
| if (!P) |
| return false; |
| |
| SmallVector<StringRef, 32> Lines; |
| P->getBuffer().split(Lines, "\n"); |
| |
| SmallVector<StringRef, 32> CPUFeatures; |
| |
| // Look for the CPU features. |
| for (unsigned I = 0, E = Lines.size(); I != E; ++I) |
| if (Lines[I].startswith("Features")) { |
| Lines[I].split(CPUFeatures, ' '); |
| break; |
| } |
| |
| #if defined(__aarch64__) |
| // Keep track of which crypto features we have seen |
| enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 }; |
| uint32_t crypto = 0; |
| #endif |
| |
| for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { |
| StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I]) |
| #if defined(__aarch64__) |
| .Case("asimd", "neon") |
| .Case("fp", "fp-armv8") |
| .Case("crc32", "crc") |
| #else |
| .Case("half", "fp16") |
| .Case("neon", "neon") |
| .Case("vfpv3", "vfp3") |
| .Case("vfpv3d16", "d16") |
| .Case("vfpv4", "vfp4") |
| .Case("idiva", "hwdiv-arm") |
| .Case("idivt", "hwdiv") |
| #endif |
| .Default(""); |
| |
| #if defined(__aarch64__) |
| // We need to check crypto separately since we need all of the crypto |
| // extensions to enable the subtarget feature |
| if (CPUFeatures[I] == "aes") |
| crypto |= CAP_AES; |
| else if (CPUFeatures[I] == "pmull") |
| crypto |= CAP_PMULL; |
| else if (CPUFeatures[I] == "sha1") |
| crypto |= CAP_SHA1; |
| else if (CPUFeatures[I] == "sha2") |
| crypto |= CAP_SHA2; |
| #endif |
| |
| if (LLVMFeatureStr != "") |
| Features[LLVMFeatureStr] = true; |
| } |
| |
| #if defined(__aarch64__) |
| // If we have all crypto bits we can add the feature |
| if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2)) |
| Features["crypto"] = true; |
| #endif |
| |
| return true; |
| } |
| #else |
| bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; } |
| #endif |
| |
| std::string sys::getProcessTriple() { |
| std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE); |
| Triple PT(Triple::normalize(TargetTripleString)); |
| |
| if (sizeof(void *) == 8 && PT.isArch32Bit()) |
| PT = PT.get64BitArchVariant(); |
| if (sizeof(void *) == 4 && PT.isArch64Bit()) |
| PT = PT.get32BitArchVariant(); |
| |
| return PT.str(); |
| } |