blob: 56a994dd25516eb8cceed4ec506822ad554cbc61 [file] [log] [blame]
; RUN: llc -mtriple=x86_64-pc-linux -x86-cmov-converter=true -verify-machineinstrs < %s | FileCheck -allow-deprecated-dag-overlap %s
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; This test checks that x86-cmov-converter optimization transform CMOV
;; instruction into branches when it is profitable.
;; There are 5 cases below:
;; 1. CmovInCriticalPath:
;; CMOV depends on the condition and it is in the hot path.
;; Thus, it worths transforming.
;;
;; 2. CmovNotInCriticalPath:
;; Similar test like in (1), just that CMOV is not in the hot path.
;; Thus, it does not worth transforming.
;;
;; 3. MaxIndex:
;; Maximum calculation algorithm that is looking for the max index,
;; calculating CMOV value is cheaper than calculating CMOV condition.
;; Thus, it worths transforming.
;;
;; 4. MaxValue:
;; Maximum calculation algorithm that is looking for the max value,
;; calculating CMOV value is not cheaper than calculating CMOV condition.
;; Thus, it does not worth transforming.
;;
;; 5. BinarySearch:
;; Usually, binary search CMOV is not predicted.
;; Thus, it does not worth transforming.
;;
;; Test was created using the following command line:
;; > clang -S -O2 -m64 -fno-vectorize -fno-unroll-loops -emit-llvm foo.c -o -
;; Where foo.c is:
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;void CmovInHotPath(int n, int a, int b, int *c, int *d) {
;; for (int i = 0; i < n; i++) {
;; int t = c[i] + 1;
;; if (c[i] * a > b)
;; t = 10;
;; c[i] = (c[i] + 1) * t;
;; }
;;}
;;
;;
;;void CmovNotInHotPath(int n, int a, int b, int *c, int *d) {
;; for (int i = 0; i < n; i++) {
;; int t = c[i];
;; if (c[i] * a > b)
;; t = 10;
;; c[i] = t;
;; d[i] /= b;
;; }
;;}
;;
;;
;;int MaxIndex(int n, int *a) {
;; int t = 0;
;; for (int i = 1; i < n; i++) {
;; if (a[i] > a[t])
;; t = i;
;; }
;; return a[t];
;;}
;;
;;
;;int MaxValue(int n, int *a) {
;; int t = a[0];
;; for (int i = 1; i < n; i++) {
;; if (a[i] > t)
;; t = a[i];
;; }
;; return t;
;;}
;;
;;typedef struct Node Node;
;;struct Node {
;; unsigned Val;
;; Node *Right;
;; Node *Left;
;;};
;;
;;unsigned BinarySearch(unsigned Mask, Node *Curr, Node *Next) {
;; while (Curr->Val > Next->Val) {
;; Curr = Next;
;; if (Mask & (0x1 << Curr->Val))
;; Next = Curr->Right;
;; else
;; Next = Curr->Left;
;; }
;; return Curr->Val;
;;}
;;
;;
;;void SmallGainPerLoop(int n, int a, int b, int *c, int *d) {
;; for (int i = 0; i < n; i++) {
;; int t = c[i];
;; if (c[i] * a > b)
;; t = 10;
;; c[i] = t;
;; }
;;}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%struct.Node = type { i32, %struct.Node*, %struct.Node* }
; CHECK-LABEL: CmovInHotPath
; CHECK-NOT: cmov
; CHECK: jg
define void @CmovInHotPath(i32 %n, i32 %a, i32 %b, i32* nocapture %c, i32* nocapture readnone %d) #0 {
entry:
%cmp14 = icmp sgt i32 %n, 0
br i1 %cmp14, label %for.body.preheader, label %for.cond.cleanup
for.body.preheader: ; preds = %entry
%wide.trip.count = zext i32 %n to i64
br label %for.body
for.cond.cleanup: ; preds = %for.body, %entry
ret void
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
%arrayidx = getelementptr inbounds i32, i32* %c, i64 %indvars.iv
%0 = load i32, i32* %arrayidx, align 4
%add = add nsw i32 %0, 1
%mul = mul nsw i32 %0, %a
%cmp3 = icmp sgt i32 %mul, %b
%. = select i1 %cmp3, i32 10, i32 %add
%mul7 = mul nsw i32 %., %add
store i32 %mul7, i32* %arrayidx, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
br i1 %exitcond, label %for.cond.cleanup, label %for.body
}
; CHECK-LABEL: CmovNotInHotPath
; CHECK: cmovg
define void @CmovNotInHotPath(i32 %n, i32 %a, i32 %b, i32* nocapture %c, i32* nocapture %d) #0 {
entry:
%cmp18 = icmp sgt i32 %n, 0
br i1 %cmp18, label %for.body.preheader, label %for.cond.cleanup
for.body.preheader: ; preds = %entry
%wide.trip.count = zext i32 %n to i64
br label %for.body
for.cond.cleanup: ; preds = %for.body, %entry
ret void
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
%arrayidx = getelementptr inbounds i32, i32* %c, i64 %indvars.iv
%0 = load i32, i32* %arrayidx, align 4
%mul = mul nsw i32 %0, %a
%cmp3 = icmp sgt i32 %mul, %b
%. = select i1 %cmp3, i32 10, i32 %0
store i32 %., i32* %arrayidx, align 4
%arrayidx7 = getelementptr inbounds i32, i32* %d, i64 %indvars.iv
%1 = load i32, i32* %arrayidx7, align 4
%div = sdiv i32 %1, %b
store i32 %div, i32* %arrayidx7, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
br i1 %exitcond, label %for.cond.cleanup, label %for.body
}
; CHECK-LABEL: MaxIndex
; CHECK-NOT: cmov
; CHECK: jg
define i32 @MaxIndex(i32 %n, i32* nocapture readonly %a) #0 {
entry:
%cmp14 = icmp sgt i32 %n, 1
br i1 %cmp14, label %for.body.preheader, label %for.cond.cleanup
for.body.preheader: ; preds = %entry
%wide.trip.count = zext i32 %n to i64
br label %for.body
for.cond.cleanup.loopexit: ; preds = %for.body
%phitmp = sext i32 %i.0.t.0 to i64
br label %for.cond.cleanup
for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry
%t.0.lcssa = phi i64 [ 0, %entry ], [ %phitmp, %for.cond.cleanup.loopexit ]
%arrayidx5 = getelementptr inbounds i32, i32* %a, i64 %t.0.lcssa
%0 = load i32, i32* %arrayidx5, align 4
ret i32 %0
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 1, %for.body.preheader ]
%t.015 = phi i32 [ %i.0.t.0, %for.body ], [ 0, %for.body.preheader ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %indvars.iv
%1 = load i32, i32* %arrayidx, align 4
%idxprom1 = sext i32 %t.015 to i64
%arrayidx2 = getelementptr inbounds i32, i32* %a, i64 %idxprom1
%2 = load i32, i32* %arrayidx2, align 4
%cmp3 = icmp sgt i32 %1, %2
%3 = trunc i64 %indvars.iv to i32
%i.0.t.0 = select i1 %cmp3, i32 %3, i32 %t.015
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
br i1 %exitcond, label %for.cond.cleanup.loopexit, label %for.body
}
; CHECK-LABEL: MaxValue
; CHECK-NOT: jg
; CHECK: cmovg
define i32 @MaxValue(i32 %n, i32* nocapture readonly %a) #0 {
entry:
%0 = load i32, i32* %a, align 4
%cmp13 = icmp sgt i32 %n, 1
br i1 %cmp13, label %for.body.preheader, label %for.cond.cleanup
for.body.preheader: ; preds = %entry
%wide.trip.count = zext i32 %n to i64
br label %for.body
for.cond.cleanup: ; preds = %for.body, %entry
%t.0.lcssa = phi i32 [ %0, %entry ], [ %.t.0, %for.body ]
ret i32 %t.0.lcssa
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 1, %for.body.preheader ]
%t.014 = phi i32 [ %.t.0, %for.body ], [ %0, %for.body.preheader ]
%arrayidx1 = getelementptr inbounds i32, i32* %a, i64 %indvars.iv
%1 = load i32, i32* %arrayidx1, align 4
%cmp2 = icmp sgt i32 %1, %t.014
%.t.0 = select i1 %cmp2, i32 %1, i32 %t.014
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
br i1 %exitcond, label %for.cond.cleanup, label %for.body
}
; CHECK-LABEL: BinarySearch
; CHECK: set
define i32 @BinarySearch(i32 %Mask, %struct.Node* nocapture readonly %Curr, %struct.Node* nocapture readonly %Next) #0 {
entry:
%Val8 = getelementptr inbounds %struct.Node, %struct.Node* %Curr, i64 0, i32 0
%0 = load i32, i32* %Val8, align 8
%Val19 = getelementptr inbounds %struct.Node, %struct.Node* %Next, i64 0, i32 0
%1 = load i32, i32* %Val19, align 8
%cmp10 = icmp ugt i32 %0, %1
br i1 %cmp10, label %while.body, label %while.end
while.body: ; preds = %entry, %while.body
%2 = phi i32 [ %4, %while.body ], [ %1, %entry ]
%Next.addr.011 = phi %struct.Node* [ %3, %while.body ], [ %Next, %entry ]
%shl = shl i32 1, %2
%and = and i32 %shl, %Mask
%tobool = icmp eq i32 %and, 0
%Left = getelementptr inbounds %struct.Node, %struct.Node* %Next.addr.011, i64 0, i32 2
%Right = getelementptr inbounds %struct.Node, %struct.Node* %Next.addr.011, i64 0, i32 1
%Left.sink = select i1 %tobool, %struct.Node** %Left, %struct.Node** %Right
%3 = load %struct.Node*, %struct.Node** %Left.sink, align 8
%Val1 = getelementptr inbounds %struct.Node, %struct.Node* %3, i64 0, i32 0
%4 = load i32, i32* %Val1, align 8
%cmp = icmp ugt i32 %2, %4
br i1 %cmp, label %while.body, label %while.end
while.end: ; preds = %while.body, %entry
%.lcssa = phi i32 [ %0, %entry ], [ %2, %while.body ]
ret i32 %.lcssa
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; The following test checks that x86-cmov-converter optimization transforms
;; CMOV instructions into branch correctly.
;;
;; MBB:
;; cond = cmp ...
;; v1 = CMOVgt t1, f1, cond
;; v2 = CMOVle s1, f2, cond
;;
;; Where: t1 = 11, f1 = 22, f2 = a
;;
;; After CMOV transformation
;; -------------------------
;; MBB:
;; cond = cmp ...
;; ja %SinkMBB
;;
;; FalseMBB:
;; jmp %SinkMBB
;;
;; SinkMBB:
;; %v1 = phi[%f1, %FalseMBB], [%t1, %MBB]
;; %v2 = phi[%f1, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch
;; ; true-value with false-value
;; ; Phi instruction cannot use
;; ; previous Phi instruction result
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; CHECK-LABEL: Transform
; CHECK-NOT: cmov
; CHECK: divl [[a:%[0-9a-z]*]]
; CHECK: movl $11, [[s1:%[0-9a-z]*]]
; CHECK: movl [[a]], [[s2:%[0-9a-z]*]]
; CHECK: cmpl [[a]], %edx
; CHECK: ja [[SinkBB:.*]]
; CHECK: [[FalseBB:.*]]:
; CHECK: movl $22, [[s1]]
; CHECK: movl $22, [[s2]]
; CHECK: [[SinkBB]]:
; CHECK: ja
define void @Transform(i32 *%arr, i32 *%arr2, i32 %a, i32 %b, i32 %c, i32 %n) #0 {
entry:
%cmp10 = icmp ugt i32 0, %n
br i1 %cmp10, label %while.body, label %while.end
while.body: ; preds = %entry, %while.body
%i = phi i32 [ %i_inc, %while.body ], [ 0, %entry ]
%arr_i = getelementptr inbounds i32, i32* %arr, i32 %i
%x = load i32, i32* %arr_i, align 4
%div = udiv i32 %x, %a
%cond = icmp ugt i32 %div, %a
%condOpp = icmp ule i32 %div, %a
%s1 = select i1 %cond, i32 11, i32 22
%s2 = select i1 %condOpp, i32 %s1, i32 %a
%sum = urem i32 %s1, %s2
store i32 %sum, i32* %arr_i, align 4
%i_inc = add i32 %i, 1
%cmp = icmp ugt i32 %i_inc, %n
br i1 %cmp, label %while.body, label %while.end
while.end: ; preds = %while.body, %entry
ret void
}
; Test that we always will convert a cmov with a memory operand into a branch,
; even outside of a loop.
define i32 @test_cmov_memoperand(i32 %a, i32 %b, i32 %x, i32* %y) #0 {
; CHECK-LABEL: test_cmov_memoperand:
entry:
%cond = icmp ugt i32 %a, %b
; CHECK: cmpl
%load = load i32, i32* %y
%z = select i1 %cond, i32 %x, i32 %load
; CHECK-NOT: cmov
; CHECK: ja [[FALSE_BB:.*]]
; CHECK: movl (%r{{..}}), %[[R:.*]]
; CHECK: [[FALSE_BB]]:
; CHECK: movl %[[R]], %
ret i32 %z
}
; Test that we can convert a group of cmovs where only one has a memory
; operand.
define i32 @test_cmov_memoperand_in_group(i32 %a, i32 %b, i32 %x, i32* %y.ptr) #0 {
; CHECK-LABEL: test_cmov_memoperand_in_group:
entry:
%cond = icmp ugt i32 %a, %b
; CHECK: cmpl
%y = load i32, i32* %y.ptr
%z1 = select i1 %cond, i32 %x, i32 %a
%z2 = select i1 %cond, i32 %x, i32 %y
%z3 = select i1 %cond, i32 %x, i32 %b
; CHECK-NOT: cmov
; CHECK: ja [[FALSE_BB:.*]]
; CHECK-DAG: movl %{{.*}}, %[[R1:.*]]
; CHECK-DAG: movl (%r{{..}}), %[[R2:.*]]
; CHECK-DAG: movl %{{.*}} %[[R3:.*]]
; CHECK: [[FALSE_BB]]:
; CHECK: addl
; CHECK-DAG: %[[R1]]
; CHECK-DAG: ,
; CHECK-DAG: %[[R3]]
; CHECK-DAG: addl
; CHECK-DAG: %[[R2]]
; CHECK-DAG: ,
; CHECK-DAG: %[[R3]]
; CHECK: movl %[[R3]], %eax
; CHECK: retq
%s1 = add i32 %z1, %z2
%s2 = add i32 %s1, %z3
ret i32 %s2
}
; Same as before but with operands reversed in the select with a load.
define i32 @test_cmov_memoperand_in_group2(i32 %a, i32 %b, i32 %x, i32* %y.ptr) #0 {
; CHECK-LABEL: test_cmov_memoperand_in_group2:
entry:
%cond = icmp ugt i32 %a, %b
; CHECK: cmpl
%y = load i32, i32* %y.ptr
%z2 = select i1 %cond, i32 %a, i32 %x
%z1 = select i1 %cond, i32 %y, i32 %x
%z3 = select i1 %cond, i32 %b, i32 %x
; CHECK-NOT: cmov
; CHECK: jbe [[FALSE_BB:.*]]
; CHECK-DAG: movl %{{.*}}, %[[R1:.*]]
; CHECK-DAG: movl (%r{{..}}), %[[R2:.*]]
; CHECK-DAG: movl %{{.*}} %[[R3:.*]]
; CHECK: [[FALSE_BB]]:
; CHECK: addl
; CHECK-DAG: %[[R1]]
; CHECK-DAG: ,
; CHECK-DAG: %[[R3]]
; CHECK-DAG: addl
; CHECK-DAG: %[[R2]]
; CHECK-DAG: ,
; CHECK-DAG: %[[R3]]
; CHECK: movl %[[R3]], %eax
; CHECK: retq
%s1 = add i32 %z1, %z2
%s2 = add i32 %s1, %z3
ret i32 %s2
}
; Test that we don't convert a group of cmovs with conflicting directions of
; loads.
define i32 @test_cmov_memoperand_conflicting_dir(i32 %a, i32 %b, i32 %x, i32* %y1.ptr, i32* %y2.ptr) #0 {
; CHECK-LABEL: test_cmov_memoperand_conflicting_dir:
entry:
%cond = icmp ugt i32 %a, %b
; CHECK: cmpl
%y1 = load i32, i32* %y1.ptr
%y2 = load i32, i32* %y2.ptr
%z1 = select i1 %cond, i32 %x, i32 %y1
%z2 = select i1 %cond, i32 %y2, i32 %x
; CHECK: cmoval
; CHECK: cmoval
%s1 = add i32 %z1, %z2
ret i32 %s1
}
; Test that we can convert a group of cmovs where only one has a memory
; operand and where that memory operand's registers come from a prior cmov in
; the group.
define i32 @test_cmov_memoperand_in_group_reuse_for_addr(i32 %a, i32 %b, i32* %x, i32* %y) #0 {
; CHECK-LABEL: test_cmov_memoperand_in_group_reuse_for_addr:
entry:
%cond = icmp ugt i32 %a, %b
; CHECK: cmpl
%p = select i1 %cond, i32* %x, i32* %y
%load = load i32, i32* %p
%z = select i1 %cond, i32 %a, i32 %load
; CHECK-NOT: cmov
; CHECK: ja [[FALSE_BB:.*]]
; CHECK: movl (%r{{..}}), %[[R:.*]]
; CHECK: [[FALSE_BB]]:
; CHECK: movl %[[R]], %eax
; CHECK: retq
ret i32 %z
}
; Test that we can convert a group of two cmovs with memory operands where one
; uses the result of the other as part of the address.
define i32 @test_cmov_memoperand_in_group_reuse_for_addr2(i32 %a, i32 %b, i32* %x, i32** %y) #0 {
; CHECK-LABEL: test_cmov_memoperand_in_group_reuse_for_addr2:
entry:
%cond = icmp ugt i32 %a, %b
; CHECK: cmpl
%load1 = load i32*, i32** %y
%p = select i1 %cond, i32* %x, i32* %load1
%load2 = load i32, i32* %p
%z = select i1 %cond, i32 %a, i32 %load2
; CHECK-NOT: cmov
; CHECK: ja [[FALSE_BB:.*]]
; CHECK: movq (%r{{..}}), %[[R1:.*]]
; CHECK: movl (%[[R1]]), %[[R2:.*]]
; CHECK: [[FALSE_BB]]:
; CHECK: movl %[[R2]], %eax
; CHECK: retq
ret i32 %z
}
; Test that we can convert a group of cmovs where only one has a memory
; operand and where that memory operand's registers come from a prior cmov and
; where that cmov gets *its* input from a prior cmov in the group.
define i32 @test_cmov_memoperand_in_group_reuse_for_addr3(i32 %a, i32 %b, i32* %x, i32* %y, i32* %z) #0 {
; CHECK-LABEL: test_cmov_memoperand_in_group_reuse_for_addr3:
entry:
%cond = icmp ugt i32 %a, %b
; CHECK: cmpl
%p = select i1 %cond, i32* %x, i32* %y
%p2 = select i1 %cond, i32* %z, i32* %p
%load = load i32, i32* %p2
%r = select i1 %cond, i32 %a, i32 %load
; CHECK-NOT: cmov
; CHECK: ja [[FALSE_BB:.*]]
; CHECK: movl (%r{{..}}), %[[R:.*]]
; CHECK: [[FALSE_BB]]:
; CHECK: movl %[[R]], %eax
; CHECK: retq
ret i32 %r
}
attributes #0 = {"target-cpu"="x86-64"}