| //===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MCTargetDesc/X86BaseInfo.h" |
| #include "llvm/MC/MCTargetAsmParser.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include "llvm/MC/MCParser/MCAsmLexer.h" |
| #include "llvm/MC/MCParser/MCAsmParser.h" |
| #include "llvm/MC/MCParser/MCParsedAsmOperand.h" |
| #include "llvm/ADT/OwningPtr.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| namespace { |
| struct X86Operand; |
| |
| class X86ATTAsmParser : public MCTargetAsmParser { |
| MCSubtargetInfo &STI; |
| MCAsmParser &Parser; |
| |
| private: |
| MCAsmParser &getParser() const { return Parser; } |
| |
| MCAsmLexer &getLexer() const { return Parser.getLexer(); } |
| |
| bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); } |
| |
| X86Operand *ParseOperand(); |
| X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc); |
| |
| bool ParseDirectiveWord(unsigned Size, SMLoc L); |
| bool ParseDirectiveCode(StringRef IDVal, SMLoc L); |
| |
| bool MatchAndEmitInstruction(SMLoc IDLoc, |
| SmallVectorImpl<MCParsedAsmOperand*> &Operands, |
| MCStreamer &Out); |
| |
| /// isSrcOp - Returns true if operand is either (%rsi) or %ds:%(rsi) |
| /// in 64bit mode or (%edi) or %es:(%edi) in 32bit mode. |
| bool isSrcOp(X86Operand &Op); |
| |
| /// isDstOp - Returns true if operand is either %es:(%rdi) in 64bit mode |
| /// or %es:(%edi) in 32bit mode. |
| bool isDstOp(X86Operand &Op); |
| |
| bool is64BitMode() const { |
| // FIXME: Can tablegen auto-generate this? |
| return (STI.getFeatureBits() & X86::Mode64Bit) != 0; |
| } |
| void SwitchMode() { |
| unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(X86::Mode64Bit)); |
| setAvailableFeatures(FB); |
| } |
| |
| /// @name Auto-generated Matcher Functions |
| /// { |
| |
| #define GET_ASSEMBLER_HEADER |
| #include "X86GenAsmMatcher.inc" |
| |
| /// } |
| |
| public: |
| X86ATTAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser) |
| : MCTargetAsmParser(), STI(sti), Parser(parser) { |
| |
| // Initialize the set of available features. |
| setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); |
| } |
| virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc); |
| |
| virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc, |
| SmallVectorImpl<MCParsedAsmOperand*> &Operands); |
| |
| virtual bool ParseDirective(AsmToken DirectiveID); |
| }; |
| } // end anonymous namespace |
| |
| /// @name Auto-generated Match Functions |
| /// { |
| |
| static unsigned MatchRegisterName(StringRef Name); |
| |
| /// } |
| |
| namespace { |
| |
| /// X86Operand - Instances of this class represent a parsed X86 machine |
| /// instruction. |
| struct X86Operand : public MCParsedAsmOperand { |
| enum KindTy { |
| Token, |
| Register, |
| Immediate, |
| Memory |
| } Kind; |
| |
| SMLoc StartLoc, EndLoc; |
| |
| union { |
| struct { |
| const char *Data; |
| unsigned Length; |
| } Tok; |
| |
| struct { |
| unsigned RegNo; |
| } Reg; |
| |
| struct { |
| const MCExpr *Val; |
| } Imm; |
| |
| struct { |
| unsigned SegReg; |
| const MCExpr *Disp; |
| unsigned BaseReg; |
| unsigned IndexReg; |
| unsigned Scale; |
| } Mem; |
| }; |
| |
| X86Operand(KindTy K, SMLoc Start, SMLoc End) |
| : Kind(K), StartLoc(Start), EndLoc(End) {} |
| |
| /// getStartLoc - Get the location of the first token of this operand. |
| SMLoc getStartLoc() const { return StartLoc; } |
| /// getEndLoc - Get the location of the last token of this operand. |
| SMLoc getEndLoc() const { return EndLoc; } |
| |
| virtual void print(raw_ostream &OS) const {} |
| |
| StringRef getToken() const { |
| assert(Kind == Token && "Invalid access!"); |
| return StringRef(Tok.Data, Tok.Length); |
| } |
| void setTokenValue(StringRef Value) { |
| assert(Kind == Token && "Invalid access!"); |
| Tok.Data = Value.data(); |
| Tok.Length = Value.size(); |
| } |
| |
| unsigned getReg() const { |
| assert(Kind == Register && "Invalid access!"); |
| return Reg.RegNo; |
| } |
| |
| const MCExpr *getImm() const { |
| assert(Kind == Immediate && "Invalid access!"); |
| return Imm.Val; |
| } |
| |
| const MCExpr *getMemDisp() const { |
| assert(Kind == Memory && "Invalid access!"); |
| return Mem.Disp; |
| } |
| unsigned getMemSegReg() const { |
| assert(Kind == Memory && "Invalid access!"); |
| return Mem.SegReg; |
| } |
| unsigned getMemBaseReg() const { |
| assert(Kind == Memory && "Invalid access!"); |
| return Mem.BaseReg; |
| } |
| unsigned getMemIndexReg() const { |
| assert(Kind == Memory && "Invalid access!"); |
| return Mem.IndexReg; |
| } |
| unsigned getMemScale() const { |
| assert(Kind == Memory && "Invalid access!"); |
| return Mem.Scale; |
| } |
| |
| bool isToken() const {return Kind == Token; } |
| |
| bool isImm() const { return Kind == Immediate; } |
| |
| bool isImmSExti16i8() const { |
| if (!isImm()) |
| return false; |
| |
| // If this isn't a constant expr, just assume it fits and let relaxation |
| // handle it. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) |
| return true; |
| |
| // Otherwise, check the value is in a range that makes sense for this |
| // extension. |
| uint64_t Value = CE->getValue(); |
| return (( Value <= 0x000000000000007FULL)|| |
| (0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)|| |
| (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); |
| } |
| bool isImmSExti32i8() const { |
| if (!isImm()) |
| return false; |
| |
| // If this isn't a constant expr, just assume it fits and let relaxation |
| // handle it. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) |
| return true; |
| |
| // Otherwise, check the value is in a range that makes sense for this |
| // extension. |
| uint64_t Value = CE->getValue(); |
| return (( Value <= 0x000000000000007FULL)|| |
| (0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)|| |
| (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); |
| } |
| bool isImmZExtu32u8() const { |
| if (!isImm()) |
| return false; |
| |
| // If this isn't a constant expr, just assume it fits and let relaxation |
| // handle it. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) |
| return true; |
| |
| // Otherwise, check the value is in a range that makes sense for this |
| // extension. |
| uint64_t Value = CE->getValue(); |
| return (Value <= 0x00000000000000FFULL); |
| } |
| bool isImmSExti64i8() const { |
| if (!isImm()) |
| return false; |
| |
| // If this isn't a constant expr, just assume it fits and let relaxation |
| // handle it. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) |
| return true; |
| |
| // Otherwise, check the value is in a range that makes sense for this |
| // extension. |
| uint64_t Value = CE->getValue(); |
| return (( Value <= 0x000000000000007FULL)|| |
| (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); |
| } |
| bool isImmSExti64i32() const { |
| if (!isImm()) |
| return false; |
| |
| // If this isn't a constant expr, just assume it fits and let relaxation |
| // handle it. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) |
| return true; |
| |
| // Otherwise, check the value is in a range that makes sense for this |
| // extension. |
| uint64_t Value = CE->getValue(); |
| return (( Value <= 0x000000007FFFFFFFULL)|| |
| (0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); |
| } |
| |
| bool isMem() const { return Kind == Memory; } |
| |
| bool isAbsMem() const { |
| return Kind == Memory && !getMemSegReg() && !getMemBaseReg() && |
| !getMemIndexReg() && getMemScale() == 1; |
| } |
| |
| bool isReg() const { return Kind == Register; } |
| |
| void addExpr(MCInst &Inst, const MCExpr *Expr) const { |
| // Add as immediates when possible. |
| if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) |
| Inst.addOperand(MCOperand::CreateImm(CE->getValue())); |
| else |
| Inst.addOperand(MCOperand::CreateExpr(Expr)); |
| } |
| |
| void addRegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateReg(getReg())); |
| } |
| |
| void addImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| addExpr(Inst, getImm()); |
| } |
| |
| void addMemOperands(MCInst &Inst, unsigned N) const { |
| assert((N == 5) && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateReg(getMemBaseReg())); |
| Inst.addOperand(MCOperand::CreateImm(getMemScale())); |
| Inst.addOperand(MCOperand::CreateReg(getMemIndexReg())); |
| addExpr(Inst, getMemDisp()); |
| Inst.addOperand(MCOperand::CreateReg(getMemSegReg())); |
| } |
| |
| void addAbsMemOperands(MCInst &Inst, unsigned N) const { |
| assert((N == 1) && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::CreateExpr(getMemDisp())); |
| } |
| |
| static X86Operand *CreateToken(StringRef Str, SMLoc Loc) { |
| X86Operand *Res = new X86Operand(Token, Loc, Loc); |
| Res->Tok.Data = Str.data(); |
| Res->Tok.Length = Str.size(); |
| return Res; |
| } |
| |
| static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc) { |
| X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc); |
| Res->Reg.RegNo = RegNo; |
| return Res; |
| } |
| |
| static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){ |
| X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc); |
| Res->Imm.Val = Val; |
| return Res; |
| } |
| |
| /// Create an absolute memory operand. |
| static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc, |
| SMLoc EndLoc) { |
| X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc); |
| Res->Mem.SegReg = 0; |
| Res->Mem.Disp = Disp; |
| Res->Mem.BaseReg = 0; |
| Res->Mem.IndexReg = 0; |
| Res->Mem.Scale = 1; |
| return Res; |
| } |
| |
| /// Create a generalized memory operand. |
| static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp, |
| unsigned BaseReg, unsigned IndexReg, |
| unsigned Scale, SMLoc StartLoc, SMLoc EndLoc) { |
| // We should never just have a displacement, that should be parsed as an |
| // absolute memory operand. |
| assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!"); |
| |
| // The scale should always be one of {1,2,4,8}. |
| assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) && |
| "Invalid scale!"); |
| X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc); |
| Res->Mem.SegReg = SegReg; |
| Res->Mem.Disp = Disp; |
| Res->Mem.BaseReg = BaseReg; |
| Res->Mem.IndexReg = IndexReg; |
| Res->Mem.Scale = Scale; |
| return Res; |
| } |
| }; |
| |
| } // end anonymous namespace. |
| |
| bool X86ATTAsmParser::isSrcOp(X86Operand &Op) { |
| unsigned basereg = is64BitMode() ? X86::RSI : X86::ESI; |
| |
| return (Op.isMem() && |
| (Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::DS) && |
| isa<MCConstantExpr>(Op.Mem.Disp) && |
| cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 && |
| Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0); |
| } |
| |
| bool X86ATTAsmParser::isDstOp(X86Operand &Op) { |
| unsigned basereg = is64BitMode() ? X86::RDI : X86::EDI; |
| |
| return Op.isMem() && Op.Mem.SegReg == X86::ES && |
| isa<MCConstantExpr>(Op.Mem.Disp) && |
| cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 && |
| Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0; |
| } |
| |
| bool X86ATTAsmParser::ParseRegister(unsigned &RegNo, |
| SMLoc &StartLoc, SMLoc &EndLoc) { |
| RegNo = 0; |
| const AsmToken &TokPercent = Parser.getTok(); |
| assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!"); |
| StartLoc = TokPercent.getLoc(); |
| Parser.Lex(); // Eat percent token. |
| |
| const AsmToken &Tok = Parser.getTok(); |
| if (Tok.isNot(AsmToken::Identifier)) |
| return Error(Tok.getLoc(), "invalid register name"); |
| |
| RegNo = MatchRegisterName(Tok.getString()); |
| |
| // If the match failed, try the register name as lowercase. |
| if (RegNo == 0) |
| RegNo = MatchRegisterName(LowercaseString(Tok.getString())); |
| |
| if (!is64BitMode()) { |
| // FIXME: This should be done using Requires<In32BitMode> and |
| // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also |
| // checked. |
| // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a |
| // REX prefix. |
| if (RegNo == X86::RIZ || |
| X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) || |
| X86II::isX86_64NonExtLowByteReg(RegNo) || |
| X86II::isX86_64ExtendedReg(RegNo)) |
| return Error(Tok.getLoc(), "register %" |
| + Tok.getString() + " is only available in 64-bit mode"); |
| } |
| |
| // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens. |
| if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) { |
| RegNo = X86::ST0; |
| EndLoc = Tok.getLoc(); |
| Parser.Lex(); // Eat 'st' |
| |
| // Check to see if we have '(4)' after %st. |
| if (getLexer().isNot(AsmToken::LParen)) |
| return false; |
| // Lex the paren. |
| getParser().Lex(); |
| |
| const AsmToken &IntTok = Parser.getTok(); |
| if (IntTok.isNot(AsmToken::Integer)) |
| return Error(IntTok.getLoc(), "expected stack index"); |
| switch (IntTok.getIntVal()) { |
| case 0: RegNo = X86::ST0; break; |
| case 1: RegNo = X86::ST1; break; |
| case 2: RegNo = X86::ST2; break; |
| case 3: RegNo = X86::ST3; break; |
| case 4: RegNo = X86::ST4; break; |
| case 5: RegNo = X86::ST5; break; |
| case 6: RegNo = X86::ST6; break; |
| case 7: RegNo = X86::ST7; break; |
| default: return Error(IntTok.getLoc(), "invalid stack index"); |
| } |
| |
| if (getParser().Lex().isNot(AsmToken::RParen)) |
| return Error(Parser.getTok().getLoc(), "expected ')'"); |
| |
| EndLoc = Tok.getLoc(); |
| Parser.Lex(); // Eat ')' |
| return false; |
| } |
| |
| // If this is "db[0-7]", match it as an alias |
| // for dr[0-7]. |
| if (RegNo == 0 && Tok.getString().size() == 3 && |
| Tok.getString().startswith("db")) { |
| switch (Tok.getString()[2]) { |
| case '0': RegNo = X86::DR0; break; |
| case '1': RegNo = X86::DR1; break; |
| case '2': RegNo = X86::DR2; break; |
| case '3': RegNo = X86::DR3; break; |
| case '4': RegNo = X86::DR4; break; |
| case '5': RegNo = X86::DR5; break; |
| case '6': RegNo = X86::DR6; break; |
| case '7': RegNo = X86::DR7; break; |
| } |
| |
| if (RegNo != 0) { |
| EndLoc = Tok.getLoc(); |
| Parser.Lex(); // Eat it. |
| return false; |
| } |
| } |
| |
| if (RegNo == 0) |
| return Error(Tok.getLoc(), "invalid register name"); |
| |
| EndLoc = Tok.getLoc(); |
| Parser.Lex(); // Eat identifier token. |
| return false; |
| } |
| |
| X86Operand *X86ATTAsmParser::ParseOperand() { |
| switch (getLexer().getKind()) { |
| default: |
| // Parse a memory operand with no segment register. |
| return ParseMemOperand(0, Parser.getTok().getLoc()); |
| case AsmToken::Percent: { |
| // Read the register. |
| unsigned RegNo; |
| SMLoc Start, End; |
| if (ParseRegister(RegNo, Start, End)) return 0; |
| if (RegNo == X86::EIZ || RegNo == X86::RIZ) { |
| Error(Start, "%eiz and %riz can only be used as index registers"); |
| return 0; |
| } |
| |
| // If this is a segment register followed by a ':', then this is the start |
| // of a memory reference, otherwise this is a normal register reference. |
| if (getLexer().isNot(AsmToken::Colon)) |
| return X86Operand::CreateReg(RegNo, Start, End); |
| |
| |
| getParser().Lex(); // Eat the colon. |
| return ParseMemOperand(RegNo, Start); |
| } |
| case AsmToken::Dollar: { |
| // $42 -> immediate. |
| SMLoc Start = Parser.getTok().getLoc(), End; |
| Parser.Lex(); |
| const MCExpr *Val; |
| if (getParser().ParseExpression(Val, End)) |
| return 0; |
| return X86Operand::CreateImm(Val, Start, End); |
| } |
| } |
| } |
| |
| /// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix |
| /// has already been parsed if present. |
| X86Operand *X86ATTAsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) { |
| |
| // We have to disambiguate a parenthesized expression "(4+5)" from the start |
| // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The |
| // only way to do this without lookahead is to eat the '(' and see what is |
| // after it. |
| const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext()); |
| if (getLexer().isNot(AsmToken::LParen)) { |
| SMLoc ExprEnd; |
| if (getParser().ParseExpression(Disp, ExprEnd)) return 0; |
| |
| // After parsing the base expression we could either have a parenthesized |
| // memory address or not. If not, return now. If so, eat the (. |
| if (getLexer().isNot(AsmToken::LParen)) { |
| // Unless we have a segment register, treat this as an immediate. |
| if (SegReg == 0) |
| return X86Operand::CreateMem(Disp, MemStart, ExprEnd); |
| return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd); |
| } |
| |
| // Eat the '('. |
| Parser.Lex(); |
| } else { |
| // Okay, we have a '('. We don't know if this is an expression or not, but |
| // so we have to eat the ( to see beyond it. |
| SMLoc LParenLoc = Parser.getTok().getLoc(); |
| Parser.Lex(); // Eat the '('. |
| |
| if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) { |
| // Nothing to do here, fall into the code below with the '(' part of the |
| // memory operand consumed. |
| } else { |
| SMLoc ExprEnd; |
| |
| // It must be an parenthesized expression, parse it now. |
| if (getParser().ParseParenExpression(Disp, ExprEnd)) |
| return 0; |
| |
| // After parsing the base expression we could either have a parenthesized |
| // memory address or not. If not, return now. If so, eat the (. |
| if (getLexer().isNot(AsmToken::LParen)) { |
| // Unless we have a segment register, treat this as an immediate. |
| if (SegReg == 0) |
| return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd); |
| return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd); |
| } |
| |
| // Eat the '('. |
| Parser.Lex(); |
| } |
| } |
| |
| // If we reached here, then we just ate the ( of the memory operand. Process |
| // the rest of the memory operand. |
| unsigned BaseReg = 0, IndexReg = 0, Scale = 1; |
| |
| if (getLexer().is(AsmToken::Percent)) { |
| SMLoc L; |
| if (ParseRegister(BaseReg, L, L)) return 0; |
| if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) { |
| Error(L, "eiz and riz can only be used as index registers"); |
| return 0; |
| } |
| } |
| |
| if (getLexer().is(AsmToken::Comma)) { |
| Parser.Lex(); // Eat the comma. |
| |
| // Following the comma we should have either an index register, or a scale |
| // value. We don't support the later form, but we want to parse it |
| // correctly. |
| // |
| // Not that even though it would be completely consistent to support syntax |
| // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this. |
| if (getLexer().is(AsmToken::Percent)) { |
| SMLoc L; |
| if (ParseRegister(IndexReg, L, L)) return 0; |
| |
| if (getLexer().isNot(AsmToken::RParen)) { |
| // Parse the scale amount: |
| // ::= ',' [scale-expression] |
| if (getLexer().isNot(AsmToken::Comma)) { |
| Error(Parser.getTok().getLoc(), |
| "expected comma in scale expression"); |
| return 0; |
| } |
| Parser.Lex(); // Eat the comma. |
| |
| if (getLexer().isNot(AsmToken::RParen)) { |
| SMLoc Loc = Parser.getTok().getLoc(); |
| |
| int64_t ScaleVal; |
| if (getParser().ParseAbsoluteExpression(ScaleVal)) |
| return 0; |
| |
| // Validate the scale amount. |
| if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){ |
| Error(Loc, "scale factor in address must be 1, 2, 4 or 8"); |
| return 0; |
| } |
| Scale = (unsigned)ScaleVal; |
| } |
| } |
| } else if (getLexer().isNot(AsmToken::RParen)) { |
| // A scale amount without an index is ignored. |
| // index. |
| SMLoc Loc = Parser.getTok().getLoc(); |
| |
| int64_t Value; |
| if (getParser().ParseAbsoluteExpression(Value)) |
| return 0; |
| |
| if (Value != 1) |
| Warning(Loc, "scale factor without index register is ignored"); |
| Scale = 1; |
| } |
| } |
| |
| // Ok, we've eaten the memory operand, verify we have a ')' and eat it too. |
| if (getLexer().isNot(AsmToken::RParen)) { |
| Error(Parser.getTok().getLoc(), "unexpected token in memory operand"); |
| return 0; |
| } |
| SMLoc MemEnd = Parser.getTok().getLoc(); |
| Parser.Lex(); // Eat the ')'. |
| |
| return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, |
| MemStart, MemEnd); |
| } |
| |
| bool X86ATTAsmParser:: |
| ParseInstruction(StringRef Name, SMLoc NameLoc, |
| SmallVectorImpl<MCParsedAsmOperand*> &Operands) { |
| StringRef PatchedName = Name; |
| |
| // FIXME: Hack to recognize setneb as setne. |
| if (PatchedName.startswith("set") && PatchedName.endswith("b") && |
| PatchedName != "setb" && PatchedName != "setnb") |
| PatchedName = PatchedName.substr(0, Name.size()-1); |
| |
| // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}. |
| const MCExpr *ExtraImmOp = 0; |
| if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) && |
| (PatchedName.endswith("ss") || PatchedName.endswith("sd") || |
| PatchedName.endswith("ps") || PatchedName.endswith("pd"))) { |
| bool IsVCMP = PatchedName.startswith("vcmp"); |
| unsigned SSECCIdx = IsVCMP ? 4 : 3; |
| unsigned SSEComparisonCode = StringSwitch<unsigned>( |
| PatchedName.slice(SSECCIdx, PatchedName.size() - 2)) |
| .Case("eq", 0) |
| .Case("lt", 1) |
| .Case("le", 2) |
| .Case("unord", 3) |
| .Case("neq", 4) |
| .Case("nlt", 5) |
| .Case("nle", 6) |
| .Case("ord", 7) |
| .Case("eq_uq", 8) |
| .Case("nge", 9) |
| .Case("ngt", 0x0A) |
| .Case("false", 0x0B) |
| .Case("neq_oq", 0x0C) |
| .Case("ge", 0x0D) |
| .Case("gt", 0x0E) |
| .Case("true", 0x0F) |
| .Case("eq_os", 0x10) |
| .Case("lt_oq", 0x11) |
| .Case("le_oq", 0x12) |
| .Case("unord_s", 0x13) |
| .Case("neq_us", 0x14) |
| .Case("nlt_uq", 0x15) |
| .Case("nle_uq", 0x16) |
| .Case("ord_s", 0x17) |
| .Case("eq_us", 0x18) |
| .Case("nge_uq", 0x19) |
| .Case("ngt_uq", 0x1A) |
| .Case("false_os", 0x1B) |
| .Case("neq_os", 0x1C) |
| .Case("ge_oq", 0x1D) |
| .Case("gt_oq", 0x1E) |
| .Case("true_us", 0x1F) |
| .Default(~0U); |
| if (SSEComparisonCode != ~0U) { |
| ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode, |
| getParser().getContext()); |
| if (PatchedName.endswith("ss")) { |
| PatchedName = IsVCMP ? "vcmpss" : "cmpss"; |
| } else if (PatchedName.endswith("sd")) { |
| PatchedName = IsVCMP ? "vcmpsd" : "cmpsd"; |
| } else if (PatchedName.endswith("ps")) { |
| PatchedName = IsVCMP ? "vcmpps" : "cmpps"; |
| } else { |
| assert(PatchedName.endswith("pd") && "Unexpected mnemonic!"); |
| PatchedName = IsVCMP ? "vcmppd" : "cmppd"; |
| } |
| } |
| } |
| |
| Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc)); |
| |
| if (ExtraImmOp) |
| Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc)); |
| |
| |
| // Determine whether this is an instruction prefix. |
| bool isPrefix = |
| Name == "lock" || Name == "rep" || |
| Name == "repe" || Name == "repz" || |
| Name == "repne" || Name == "repnz" || |
| Name == "rex64" || Name == "data16"; |
| |
| |
| // This does the actual operand parsing. Don't parse any more if we have a |
| // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we |
| // just want to parse the "lock" as the first instruction and the "incl" as |
| // the next one. |
| if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) { |
| |
| // Parse '*' modifier. |
| if (getLexer().is(AsmToken::Star)) { |
| SMLoc Loc = Parser.getTok().getLoc(); |
| Operands.push_back(X86Operand::CreateToken("*", Loc)); |
| Parser.Lex(); // Eat the star. |
| } |
| |
| // Read the first operand. |
| if (X86Operand *Op = ParseOperand()) |
| Operands.push_back(Op); |
| else { |
| Parser.EatToEndOfStatement(); |
| return true; |
| } |
| |
| while (getLexer().is(AsmToken::Comma)) { |
| Parser.Lex(); // Eat the comma. |
| |
| // Parse and remember the operand. |
| if (X86Operand *Op = ParseOperand()) |
| Operands.push_back(Op); |
| else { |
| Parser.EatToEndOfStatement(); |
| return true; |
| } |
| } |
| |
| if (getLexer().isNot(AsmToken::EndOfStatement)) { |
| SMLoc Loc = getLexer().getLoc(); |
| Parser.EatToEndOfStatement(); |
| return Error(Loc, "unexpected token in argument list"); |
| } |
| } |
| |
| if (getLexer().is(AsmToken::EndOfStatement)) |
| Parser.Lex(); // Consume the EndOfStatement |
| else if (isPrefix && getLexer().is(AsmToken::Slash)) |
| Parser.Lex(); // Consume the prefix separator Slash |
| |
| // This is a terrible hack to handle "out[bwl]? %al, (%dx)" -> |
| // "outb %al, %dx". Out doesn't take a memory form, but this is a widely |
| // documented form in various unofficial manuals, so a lot of code uses it. |
| if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") && |
| Operands.size() == 3) { |
| X86Operand &Op = *(X86Operand*)Operands.back(); |
| if (Op.isMem() && Op.Mem.SegReg == 0 && |
| isa<MCConstantExpr>(Op.Mem.Disp) && |
| cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 && |
| Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) { |
| SMLoc Loc = Op.getEndLoc(); |
| Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc); |
| delete &Op; |
| } |
| } |
| // Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al". |
| if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") && |
| Operands.size() == 3) { |
| X86Operand &Op = *(X86Operand*)Operands.begin()[1]; |
| if (Op.isMem() && Op.Mem.SegReg == 0 && |
| isa<MCConstantExpr>(Op.Mem.Disp) && |
| cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 && |
| Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) { |
| SMLoc Loc = Op.getEndLoc(); |
| Operands.begin()[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc); |
| delete &Op; |
| } |
| } |
| // Transform "ins[bwl] %dx, %es:(%edi)" into "ins[bwl]" |
| if (Name.startswith("ins") && Operands.size() == 3 && |
| (Name == "insb" || Name == "insw" || Name == "insl")) { |
| X86Operand &Op = *(X86Operand*)Operands.begin()[1]; |
| X86Operand &Op2 = *(X86Operand*)Operands.begin()[2]; |
| if (Op.isReg() && Op.getReg() == X86::DX && isDstOp(Op2)) { |
| Operands.pop_back(); |
| Operands.pop_back(); |
| delete &Op; |
| delete &Op2; |
| } |
| } |
| |
| // Transform "outs[bwl] %ds:(%esi), %dx" into "out[bwl]" |
| if (Name.startswith("outs") && Operands.size() == 3 && |
| (Name == "outsb" || Name == "outsw" || Name == "outsl")) { |
| X86Operand &Op = *(X86Operand*)Operands.begin()[1]; |
| X86Operand &Op2 = *(X86Operand*)Operands.begin()[2]; |
| if (isSrcOp(Op) && Op2.isReg() && Op2.getReg() == X86::DX) { |
| Operands.pop_back(); |
| Operands.pop_back(); |
| delete &Op; |
| delete &Op2; |
| } |
| } |
| |
| // Transform "movs[bwl] %ds:(%esi), %es:(%edi)" into "movs[bwl]" |
| if (Name.startswith("movs") && Operands.size() == 3 && |
| (Name == "movsb" || Name == "movsw" || Name == "movsl" || |
| (is64BitMode() && Name == "movsq"))) { |
| X86Operand &Op = *(X86Operand*)Operands.begin()[1]; |
| X86Operand &Op2 = *(X86Operand*)Operands.begin()[2]; |
| if (isSrcOp(Op) && isDstOp(Op2)) { |
| Operands.pop_back(); |
| Operands.pop_back(); |
| delete &Op; |
| delete &Op2; |
| } |
| } |
| // Transform "lods[bwl] %ds:(%esi),{%al,%ax,%eax,%rax}" into "lods[bwl]" |
| if (Name.startswith("lods") && Operands.size() == 3 && |
| (Name == "lods" || Name == "lodsb" || Name == "lodsw" || |
| Name == "lodsl" || (is64BitMode() && Name == "lodsq"))) { |
| X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]); |
| X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]); |
| if (isSrcOp(*Op1) && Op2->isReg()) { |
| const char *ins; |
| unsigned reg = Op2->getReg(); |
| bool isLods = Name == "lods"; |
| if (reg == X86::AL && (isLods || Name == "lodsb")) |
| ins = "lodsb"; |
| else if (reg == X86::AX && (isLods || Name == "lodsw")) |
| ins = "lodsw"; |
| else if (reg == X86::EAX && (isLods || Name == "lodsl")) |
| ins = "lodsl"; |
| else if (reg == X86::RAX && (isLods || Name == "lodsq")) |
| ins = "lodsq"; |
| else |
| ins = NULL; |
| if (ins != NULL) { |
| Operands.pop_back(); |
| Operands.pop_back(); |
| delete Op1; |
| delete Op2; |
| if (Name != ins) |
| static_cast<X86Operand*>(Operands[0])->setTokenValue(ins); |
| } |
| } |
| } |
| // Transform "stos[bwl] {%al,%ax,%eax,%rax},%es:(%edi)" into "stos[bwl]" |
| if (Name.startswith("stos") && Operands.size() == 3 && |
| (Name == "stos" || Name == "stosb" || Name == "stosw" || |
| Name == "stosl" || (is64BitMode() && Name == "stosq"))) { |
| X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]); |
| X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]); |
| if (isDstOp(*Op2) && Op1->isReg()) { |
| const char *ins; |
| unsigned reg = Op1->getReg(); |
| bool isStos = Name == "stos"; |
| if (reg == X86::AL && (isStos || Name == "stosb")) |
| ins = "stosb"; |
| else if (reg == X86::AX && (isStos || Name == "stosw")) |
| ins = "stosw"; |
| else if (reg == X86::EAX && (isStos || Name == "stosl")) |
| ins = "stosl"; |
| else if (reg == X86::RAX && (isStos || Name == "stosq")) |
| ins = "stosq"; |
| else |
| ins = NULL; |
| if (ins != NULL) { |
| Operands.pop_back(); |
| Operands.pop_back(); |
| delete Op1; |
| delete Op2; |
| if (Name != ins) |
| static_cast<X86Operand*>(Operands[0])->setTokenValue(ins); |
| } |
| } |
| } |
| |
| // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to |
| // "shift <op>". |
| if ((Name.startswith("shr") || Name.startswith("sar") || |
| Name.startswith("shl") || Name.startswith("sal") || |
| Name.startswith("rcl") || Name.startswith("rcr") || |
| Name.startswith("rol") || Name.startswith("ror")) && |
| Operands.size() == 3) { |
| X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]); |
| if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) && |
| cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) { |
| delete Operands[1]; |
| Operands.erase(Operands.begin() + 1); |
| } |
| } |
| |
| // Transforms "int $3" into "int3" as a size optimization. We can't write an |
| // instalias with an immediate operand yet. |
| if (Name == "int" && Operands.size() == 2) { |
| X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]); |
| if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) && |
| cast<MCConstantExpr>(Op1->getImm())->getValue() == 3) { |
| delete Operands[1]; |
| Operands.erase(Operands.begin() + 1); |
| static_cast<X86Operand*>(Operands[0])->setTokenValue("int3"); |
| } |
| } |
| |
| return false; |
| } |
| |
| bool X86ATTAsmParser:: |
| MatchAndEmitInstruction(SMLoc IDLoc, |
| SmallVectorImpl<MCParsedAsmOperand*> &Operands, |
| MCStreamer &Out) { |
| assert(!Operands.empty() && "Unexpect empty operand list!"); |
| X86Operand *Op = static_cast<X86Operand*>(Operands[0]); |
| assert(Op->isToken() && "Leading operand should always be a mnemonic!"); |
| |
| // First, handle aliases that expand to multiple instructions. |
| // FIXME: This should be replaced with a real .td file alias mechanism. |
| // Also, MatchInstructionImpl should do actually *do* the EmitInstruction |
| // call. |
| if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" || |
| Op->getToken() == "fstsww" || Op->getToken() == "fstcww" || |
| Op->getToken() == "finit" || Op->getToken() == "fsave" || |
| Op->getToken() == "fstenv" || Op->getToken() == "fclex") { |
| MCInst Inst; |
| Inst.setOpcode(X86::WAIT); |
| Out.EmitInstruction(Inst); |
| |
| const char *Repl = |
| StringSwitch<const char*>(Op->getToken()) |
| .Case("finit", "fninit") |
| .Case("fsave", "fnsave") |
| .Case("fstcw", "fnstcw") |
| .Case("fstcww", "fnstcw") |
| .Case("fstenv", "fnstenv") |
| .Case("fstsw", "fnstsw") |
| .Case("fstsww", "fnstsw") |
| .Case("fclex", "fnclex") |
| .Default(0); |
| assert(Repl && "Unknown wait-prefixed instruction"); |
| delete Operands[0]; |
| Operands[0] = X86Operand::CreateToken(Repl, IDLoc); |
| } |
| |
| bool WasOriginallyInvalidOperand = false; |
| unsigned OrigErrorInfo; |
| MCInst Inst; |
| |
| // First, try a direct match. |
| switch (MatchInstructionImpl(Operands, Inst, OrigErrorInfo)) { |
| default: break; |
| case Match_Success: |
| Out.EmitInstruction(Inst); |
| return false; |
| case Match_MissingFeature: |
| Error(IDLoc, "instruction requires a CPU feature not currently enabled"); |
| return true; |
| case Match_ConversionFail: |
| return Error(IDLoc, "unable to convert operands to instruction"); |
| case Match_InvalidOperand: |
| WasOriginallyInvalidOperand = true; |
| break; |
| case Match_MnemonicFail: |
| break; |
| } |
| |
| // FIXME: Ideally, we would only attempt suffix matches for things which are |
| // valid prefixes, and we could just infer the right unambiguous |
| // type. However, that requires substantially more matcher support than the |
| // following hack. |
| |
| // Change the operand to point to a temporary token. |
| StringRef Base = Op->getToken(); |
| SmallString<16> Tmp; |
| Tmp += Base; |
| Tmp += ' '; |
| Op->setTokenValue(Tmp.str()); |
| |
| // If this instruction starts with an 'f', then it is a floating point stack |
| // instruction. These come in up to three forms for 32-bit, 64-bit, and |
| // 80-bit floating point, which use the suffixes s,l,t respectively. |
| // |
| // Otherwise, we assume that this may be an integer instruction, which comes |
| // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively. |
| const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0"; |
| |
| // Check for the various suffix matches. |
| Tmp[Base.size()] = Suffixes[0]; |
| unsigned ErrorInfoIgnore; |
| unsigned Match1, Match2, Match3, Match4; |
| |
| Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore); |
| Tmp[Base.size()] = Suffixes[1]; |
| Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore); |
| Tmp[Base.size()] = Suffixes[2]; |
| Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore); |
| Tmp[Base.size()] = Suffixes[3]; |
| Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore); |
| |
| // Restore the old token. |
| Op->setTokenValue(Base); |
| |
| // If exactly one matched, then we treat that as a successful match (and the |
| // instruction will already have been filled in correctly, since the failing |
| // matches won't have modified it). |
| unsigned NumSuccessfulMatches = |
| (Match1 == Match_Success) + (Match2 == Match_Success) + |
| (Match3 == Match_Success) + (Match4 == Match_Success); |
| if (NumSuccessfulMatches == 1) { |
| Out.EmitInstruction(Inst); |
| return false; |
| } |
| |
| // Otherwise, the match failed, try to produce a decent error message. |
| |
| // If we had multiple suffix matches, then identify this as an ambiguous |
| // match. |
| if (NumSuccessfulMatches > 1) { |
| char MatchChars[4]; |
| unsigned NumMatches = 0; |
| if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0]; |
| if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1]; |
| if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2]; |
| if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3]; |
| |
| SmallString<126> Msg; |
| raw_svector_ostream OS(Msg); |
| OS << "ambiguous instructions require an explicit suffix (could be "; |
| for (unsigned i = 0; i != NumMatches; ++i) { |
| if (i != 0) |
| OS << ", "; |
| if (i + 1 == NumMatches) |
| OS << "or "; |
| OS << "'" << Base << MatchChars[i] << "'"; |
| } |
| OS << ")"; |
| Error(IDLoc, OS.str()); |
| return true; |
| } |
| |
| // Okay, we know that none of the variants matched successfully. |
| |
| // If all of the instructions reported an invalid mnemonic, then the original |
| // mnemonic was invalid. |
| if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) && |
| (Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) { |
| if (!WasOriginallyInvalidOperand) { |
| Error(IDLoc, "invalid instruction mnemonic '" + Base + "'"); |
| return true; |
| } |
| |
| // Recover location info for the operand if we know which was the problem. |
| SMLoc ErrorLoc = IDLoc; |
| if (OrigErrorInfo != ~0U) { |
| if (OrigErrorInfo >= Operands.size()) |
| return Error(IDLoc, "too few operands for instruction"); |
| |
| ErrorLoc = ((X86Operand*)Operands[OrigErrorInfo])->getStartLoc(); |
| if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; |
| } |
| |
| return Error(ErrorLoc, "invalid operand for instruction"); |
| } |
| |
| // If one instruction matched with a missing feature, report this as a |
| // missing feature. |
| if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) + |
| (Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){ |
| Error(IDLoc, "instruction requires a CPU feature not currently enabled"); |
| return true; |
| } |
| |
| // If one instruction matched with an invalid operand, report this as an |
| // operand failure. |
| if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) + |
| (Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){ |
| Error(IDLoc, "invalid operand for instruction"); |
| return true; |
| } |
| |
| // If all of these were an outright failure, report it in a useless way. |
| // FIXME: We should give nicer diagnostics about the exact failure. |
| Error(IDLoc, "unknown use of instruction mnemonic without a size suffix"); |
| return true; |
| } |
| |
| |
| bool X86ATTAsmParser::ParseDirective(AsmToken DirectiveID) { |
| StringRef IDVal = DirectiveID.getIdentifier(); |
| if (IDVal == ".word") |
| return ParseDirectiveWord(2, DirectiveID.getLoc()); |
| else if (IDVal.startswith(".code")) |
| return ParseDirectiveCode(IDVal, DirectiveID.getLoc()); |
| return true; |
| } |
| |
| /// ParseDirectiveWord |
| /// ::= .word [ expression (, expression)* ] |
| bool X86ATTAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { |
| if (getLexer().isNot(AsmToken::EndOfStatement)) { |
| for (;;) { |
| const MCExpr *Value; |
| if (getParser().ParseExpression(Value)) |
| return true; |
| |
| getParser().getStreamer().EmitValue(Value, Size, 0 /*addrspace*/); |
| |
| if (getLexer().is(AsmToken::EndOfStatement)) |
| break; |
| |
| // FIXME: Improve diagnostic. |
| if (getLexer().isNot(AsmToken::Comma)) |
| return Error(L, "unexpected token in directive"); |
| Parser.Lex(); |
| } |
| } |
| |
| Parser.Lex(); |
| return false; |
| } |
| |
| /// ParseDirectiveCode |
| /// ::= .code32 | .code64 |
| bool X86ATTAsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) { |
| if (IDVal == ".code32") { |
| Parser.Lex(); |
| if (is64BitMode()) { |
| SwitchMode(); |
| getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); |
| } |
| } else if (IDVal == ".code64") { |
| Parser.Lex(); |
| if (!is64BitMode()) { |
| SwitchMode(); |
| getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64); |
| } |
| } else { |
| return Error(L, "unexpected directive " + IDVal); |
| } |
| |
| return false; |
| } |
| |
| |
| extern "C" void LLVMInitializeX86AsmLexer(); |
| |
| // Force static initialization. |
| extern "C" void LLVMInitializeX86AsmParser() { |
| RegisterMCAsmParser<X86ATTAsmParser> X(TheX86_32Target); |
| RegisterMCAsmParser<X86ATTAsmParser> Y(TheX86_64Target); |
| LLVMInitializeX86AsmLexer(); |
| } |
| |
| #define GET_REGISTER_MATCHER |
| #define GET_MATCHER_IMPLEMENTATION |
| #include "X86GenAsmMatcher.inc" |