| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
| "http://www.w3.org/TR/html4/strict.dtd"> |
| |
| <html> |
| <head> |
| <title>Kaleidoscope: Implementing a Parser and AST</title> |
| <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> |
| <meta name="author" content="Chris Lattner"> |
| <link rel="stylesheet" href="../llvm.css" type="text/css"> |
| </head> |
| |
| <body> |
| |
| <h1>Kaleidoscope: Implementing a Parser and AST</h1> |
| |
| <ul> |
| <li><a href="index.html">Up to Tutorial Index</a></li> |
| <li>Chapter 2 |
| <ol> |
| <li><a href="#intro">Chapter 2 Introduction</a></li> |
| <li><a href="#ast">The Abstract Syntax Tree (AST)</a></li> |
| <li><a href="#parserbasics">Parser Basics</a></li> |
| <li><a href="#parserprimexprs">Basic Expression Parsing</a></li> |
| <li><a href="#parserbinops">Binary Expression Parsing</a></li> |
| <li><a href="#parsertop">Parsing the Rest</a></li> |
| <li><a href="#driver">The Driver</a></li> |
| <li><a href="#conclusions">Conclusions</a></li> |
| <li><a href="#code">Full Code Listing</a></li> |
| </ol> |
| </li> |
| <li><a href="LangImpl3.html">Chapter 3</a>: Code generation to LLVM IR</li> |
| </ul> |
| |
| <div class="doc_author"> |
| <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <h2><a name="intro">Chapter 2 Introduction</a></h2> |
| <!-- *********************************************************************** --> |
| |
| <div> |
| |
| <p>Welcome to Chapter 2 of the "<a href="index.html">Implementing a language |
| with LLVM</a>" tutorial. This chapter shows you how to use the lexer, built in |
| <a href="LangImpl1.html">Chapter 1</a>, to build a full <a |
| href="http://en.wikipedia.org/wiki/Parsing">parser</a> for |
| our Kaleidoscope language. Once we have a parser, we'll define and build an <a |
| href="http://en.wikipedia.org/wiki/Abstract_syntax_tree">Abstract Syntax |
| Tree</a> (AST).</p> |
| |
| <p>The parser we will build uses a combination of <a |
| href="http://en.wikipedia.org/wiki/Recursive_descent_parser">Recursive Descent |
| Parsing</a> and <a href= |
| "http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence |
| Parsing</a> to parse the Kaleidoscope language (the latter for |
| binary expressions and the former for everything else). Before we get to |
| parsing though, lets talk about the output of the parser: the Abstract Syntax |
| Tree.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <h2><a name="ast">The Abstract Syntax Tree (AST)</a></h2> |
| <!-- *********************************************************************** --> |
| |
| <div> |
| |
| <p>The AST for a program captures its behavior in such a way that it is easy for |
| later stages of the compiler (e.g. code generation) to interpret. We basically |
| want one object for each construct in the language, and the AST should closely |
| model the language. In Kaleidoscope, we have expressions, a prototype, and a |
| function object. We'll start with expressions first:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// ExprAST - Base class for all expression nodes. |
| class ExprAST { |
| public: |
| virtual ~ExprAST() {} |
| }; |
| |
| /// NumberExprAST - Expression class for numeric literals like "1.0". |
| class NumberExprAST : public ExprAST { |
| double Val; |
| public: |
| NumberExprAST(double val) : Val(val) {} |
| }; |
| </pre> |
| </div> |
| |
| <p>The code above shows the definition of the base ExprAST class and one |
| subclass which we use for numeric literals. The important thing to note about |
| this code is that the NumberExprAST class captures the numeric value of the |
| literal as an instance variable. This allows later phases of the compiler to |
| know what the stored numeric value is.</p> |
| |
| <p>Right now we only create the AST, so there are no useful accessor methods on |
| them. It would be very easy to add a virtual method to pretty print the code, |
| for example. Here are the other expression AST node definitions that we'll use |
| in the basic form of the Kaleidoscope language: |
| </p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// VariableExprAST - Expression class for referencing a variable, like "a". |
| class VariableExprAST : public ExprAST { |
| std::string Name; |
| public: |
| VariableExprAST(const std::string &name) : Name(name) {} |
| }; |
| |
| /// BinaryExprAST - Expression class for a binary operator. |
| class BinaryExprAST : public ExprAST { |
| char Op; |
| ExprAST *LHS, *RHS; |
| public: |
| BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) |
| : Op(op), LHS(lhs), RHS(rhs) {} |
| }; |
| |
| /// CallExprAST - Expression class for function calls. |
| class CallExprAST : public ExprAST { |
| std::string Callee; |
| std::vector<ExprAST*> Args; |
| public: |
| CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) |
| : Callee(callee), Args(args) {} |
| }; |
| </pre> |
| </div> |
| |
| <p>This is all (intentionally) rather straight-forward: variables capture the |
| variable name, binary operators capture their opcode (e.g. '+'), and calls |
| capture a function name as well as a list of any argument expressions. One thing |
| that is nice about our AST is that it captures the language features without |
| talking about the syntax of the language. Note that there is no discussion about |
| precedence of binary operators, lexical structure, etc.</p> |
| |
| <p>For our basic language, these are all of the expression nodes we'll define. |
| Because it doesn't have conditional control flow, it isn't Turing-complete; |
| we'll fix that in a later installment. The two things we need next are a way |
| to talk about the interface to a function, and a way to talk about functions |
| themselves:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// PrototypeAST - This class represents the "prototype" for a function, |
| /// which captures its name, and its argument names (thus implicitly the number |
| /// of arguments the function takes). |
| class PrototypeAST { |
| std::string Name; |
| std::vector<std::string> Args; |
| public: |
| PrototypeAST(const std::string &name, const std::vector<std::string> &args) |
| : Name(name), Args(args) {} |
| }; |
| |
| /// FunctionAST - This class represents a function definition itself. |
| class FunctionAST { |
| PrototypeAST *Proto; |
| ExprAST *Body; |
| public: |
| FunctionAST(PrototypeAST *proto, ExprAST *body) |
| : Proto(proto), Body(body) {} |
| }; |
| </pre> |
| </div> |
| |
| <p>In Kaleidoscope, functions are typed with just a count of their arguments. |
| Since all values are double precision floating point, the type of each argument |
| doesn't need to be stored anywhere. In a more aggressive and realistic |
| language, the "ExprAST" class would probably have a type field.</p> |
| |
| <p>With this scaffolding, we can now talk about parsing expressions and function |
| bodies in Kaleidoscope.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <h2><a name="parserbasics">Parser Basics</a></h2> |
| <!-- *********************************************************************** --> |
| |
| <div> |
| |
| <p>Now that we have an AST to build, we need to define the parser code to build |
| it. The idea here is that we want to parse something like "x+y" (which is |
| returned as three tokens by the lexer) into an AST that could be generated with |
| calls like this:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| ExprAST *X = new VariableExprAST("x"); |
| ExprAST *Y = new VariableExprAST("y"); |
| ExprAST *Result = new BinaryExprAST('+', X, Y); |
| </pre> |
| </div> |
| |
| <p>In order to do this, we'll start by defining some basic helper routines:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| /// token the parser is looking at. getNextToken reads another token from the |
| /// lexer and updates CurTok with its results. |
| static int CurTok; |
| static int getNextToken() { |
| return CurTok = gettok(); |
| } |
| </pre> |
| </div> |
| |
| <p> |
| This implements a simple token buffer around the lexer. This allows |
| us to look one token ahead at what the lexer is returning. Every function in |
| our parser will assume that CurTok is the current token that needs to be |
| parsed.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| |
| /// Error* - These are little helper functions for error handling. |
| ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} |
| PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } |
| FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } |
| </pre> |
| </div> |
| |
| <p> |
| The <tt>Error</tt> routines are simple helper routines that our parser will use |
| to handle errors. The error recovery in our parser will not be the best and |
| is not particular user-friendly, but it will be enough for our tutorial. These |
| routines make it easier to handle errors in routines that have various return |
| types: they always return null.</p> |
| |
| <p>With these basic helper functions, we can implement the first |
| piece of our grammar: numeric literals.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <h2><a name="parserprimexprs">Basic Expression Parsing</a></h2> |
| <!-- *********************************************************************** --> |
| |
| <div> |
| |
| <p>We start with numeric literals, because they are the simplest to process. |
| For each production in our grammar, we'll define a function which parses that |
| production. For numeric literals, we have: |
| </p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// numberexpr ::= number |
| static ExprAST *ParseNumberExpr() { |
| ExprAST *Result = new NumberExprAST(NumVal); |
| getNextToken(); // consume the number |
| return Result; |
| } |
| </pre> |
| </div> |
| |
| <p>This routine is very simple: it expects to be called when the current token |
| is a <tt>tok_number</tt> token. It takes the current number value, creates |
| a <tt>NumberExprAST</tt> node, advances the lexer to the next token, and finally |
| returns.</p> |
| |
| <p>There are some interesting aspects to this. The most important one is that |
| this routine eats all of the tokens that correspond to the production and |
| returns the lexer buffer with the next token (which is not part of the grammar |
| production) ready to go. This is a fairly standard way to go for recursive |
| descent parsers. For a better example, the parenthesis operator is defined like |
| this:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// parenexpr ::= '(' expression ')' |
| static ExprAST *ParseParenExpr() { |
| getNextToken(); // eat (. |
| ExprAST *V = ParseExpression(); |
| if (!V) return 0; |
| |
| if (CurTok != ')') |
| return Error("expected ')'"); |
| getNextToken(); // eat ). |
| return V; |
| } |
| </pre> |
| </div> |
| |
| <p>This function illustrates a number of interesting things about the |
| parser:</p> |
| |
| <p> |
| 1) It shows how we use the Error routines. When called, this function expects |
| that the current token is a '(' token, but after parsing the subexpression, it |
| is possible that there is no ')' waiting. For example, if the user types in |
| "(4 x" instead of "(4)", the parser should emit an error. Because errors can |
| occur, the parser needs a way to indicate that they happened: in our parser, we |
| return null on an error.</p> |
| |
| <p>2) Another interesting aspect of this function is that it uses recursion by |
| calling <tt>ParseExpression</tt> (we will soon see that <tt>ParseExpression</tt> can call |
| <tt>ParseParenExpr</tt>). This is powerful because it allows us to handle |
| recursive grammars, and keeps each production very simple. Note that |
| parentheses do not cause construction of AST nodes themselves. While we could |
| do it this way, the most important role of parentheses are to guide the parser |
| and provide grouping. Once the parser constructs the AST, parentheses are not |
| needed.</p> |
| |
| <p>The next simple production is for handling variable references and function |
| calls:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// identifierexpr |
| /// ::= identifier |
| /// ::= identifier '(' expression* ')' |
| static ExprAST *ParseIdentifierExpr() { |
| std::string IdName = IdentifierStr; |
| |
| getNextToken(); // eat identifier. |
| |
| if (CurTok != '(') // Simple variable ref. |
| return new VariableExprAST(IdName); |
| |
| // Call. |
| getNextToken(); // eat ( |
| std::vector<ExprAST*> Args; |
| if (CurTok != ')') { |
| while (1) { |
| ExprAST *Arg = ParseExpression(); |
| if (!Arg) return 0; |
| Args.push_back(Arg); |
| |
| if (CurTok == ')') break; |
| |
| if (CurTok != ',') |
| return Error("Expected ')' or ',' in argument list"); |
| getNextToken(); |
| } |
| } |
| |
| // Eat the ')'. |
| getNextToken(); |
| |
| return new CallExprAST(IdName, Args); |
| } |
| </pre> |
| </div> |
| |
| <p>This routine follows the same style as the other routines. (It expects to be |
| called if the current token is a <tt>tok_identifier</tt> token). It also has |
| recursion and error handling. One interesting aspect of this is that it uses |
| <em>look-ahead</em> to determine if the current identifier is a stand alone |
| variable reference or if it is a function call expression. It handles this by |
| checking to see if the token after the identifier is a '(' token, constructing |
| either a <tt>VariableExprAST</tt> or <tt>CallExprAST</tt> node as appropriate. |
| </p> |
| |
| <p>Now that we have all of our simple expression-parsing logic in place, we can |
| define a helper function to wrap it together into one entry point. We call this |
| class of expressions "primary" expressions, for reasons that will become more |
| clear <a href="LangImpl6.html#unary">later in the tutorial</a>. In order to |
| parse an arbitrary primary expression, we need to determine what sort of |
| expression it is:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// primary |
| /// ::= identifierexpr |
| /// ::= numberexpr |
| /// ::= parenexpr |
| static ExprAST *ParsePrimary() { |
| switch (CurTok) { |
| default: return Error("unknown token when expecting an expression"); |
| case tok_identifier: return ParseIdentifierExpr(); |
| case tok_number: return ParseNumberExpr(); |
| case '(': return ParseParenExpr(); |
| } |
| } |
| </pre> |
| </div> |
| |
| <p>Now that you see the definition of this function, it is more obvious why we |
| can assume the state of CurTok in the various functions. This uses look-ahead |
| to determine which sort of expression is being inspected, and then parses it |
| with a function call.</p> |
| |
| <p>Now that basic expressions are handled, we need to handle binary expressions. |
| They are a bit more complex.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <h2><a name="parserbinops">Binary Expression Parsing</a></h2> |
| <!-- *********************************************************************** --> |
| |
| <div> |
| |
| <p>Binary expressions are significantly harder to parse because they are often |
| ambiguous. For example, when given the string "x+y*z", the parser can choose |
| to parse it as either "(x+y)*z" or "x+(y*z)". With common definitions from |
| mathematics, we expect the later parse, because "*" (multiplication) has |
| higher <em>precedence</em> than "+" (addition).</p> |
| |
| <p>There are many ways to handle this, but an elegant and efficient way is to |
| use <a href= |
| "http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence |
| Parsing</a>. This parsing technique uses the precedence of binary operators to |
| guide recursion. To start with, we need a table of precedences:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// BinopPrecedence - This holds the precedence for each binary operator that is |
| /// defined. |
| static std::map<char, int> BinopPrecedence; |
| |
| /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| static int GetTokPrecedence() { |
| if (!isascii(CurTok)) |
| return -1; |
| |
| // Make sure it's a declared binop. |
| int TokPrec = BinopPrecedence[CurTok]; |
| if (TokPrec <= 0) return -1; |
| return TokPrec; |
| } |
| |
| int main() { |
| // Install standard binary operators. |
| // 1 is lowest precedence. |
| BinopPrecedence['<'] = 10; |
| BinopPrecedence['+'] = 20; |
| BinopPrecedence['-'] = 20; |
| BinopPrecedence['*'] = 40; // highest. |
| ... |
| } |
| </pre> |
| </div> |
| |
| <p>For the basic form of Kaleidoscope, we will only support 4 binary operators |
| (this can obviously be extended by you, our brave and intrepid reader). The |
| <tt>GetTokPrecedence</tt> function returns the precedence for the current token, |
| or -1 if the token is not a binary operator. Having a map makes it easy to add |
| new operators and makes it clear that the algorithm doesn't depend on the |
| specific operators involved, but it would be easy enough to eliminate the map |
| and do the comparisons in the <tt>GetTokPrecedence</tt> function. (Or just use |
| a fixed-size array).</p> |
| |
| <p>With the helper above defined, we can now start parsing binary expressions. |
| The basic idea of operator precedence parsing is to break down an expression |
| with potentially ambiguous binary operators into pieces. Consider ,for example, |
| the expression "a+b+(c+d)*e*f+g". Operator precedence parsing considers this |
| as a stream of primary expressions separated by binary operators. As such, |
| it will first parse the leading primary expression "a", then it will see the |
| pairs [+, b] [+, (c+d)] [*, e] [*, f] and [+, g]. Note that because parentheses |
| are primary expressions, the binary expression parser doesn't need to worry |
| about nested subexpressions like (c+d) at all. |
| </p> |
| |
| <p> |
| To start, an expression is a primary expression potentially followed by a |
| sequence of [binop,primaryexpr] pairs:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// expression |
| /// ::= primary binoprhs |
| /// |
| static ExprAST *ParseExpression() { |
| ExprAST *LHS = ParsePrimary(); |
| if (!LHS) return 0; |
| |
| return ParseBinOpRHS(0, LHS); |
| } |
| </pre> |
| </div> |
| |
| <p><tt>ParseBinOpRHS</tt> is the function that parses the sequence of pairs for |
| us. It takes a precedence and a pointer to an expression for the part that has been |
| parsed so far. Note that "x" is a perfectly valid expression: As such, "binoprhs" is |
| allowed to be empty, in which case it returns the expression that is passed into |
| it. In our example above, the code passes the expression for "a" into |
| <tt>ParseBinOpRHS</tt> and the current token is "+".</p> |
| |
| <p>The precedence value passed into <tt>ParseBinOpRHS</tt> indicates the <em> |
| minimal operator precedence</em> that the function is allowed to eat. For |
| example, if the current pair stream is [+, x] and <tt>ParseBinOpRHS</tt> is |
| passed in a precedence of 40, it will not consume any tokens (because the |
| precedence of '+' is only 20). With this in mind, <tt>ParseBinOpRHS</tt> starts |
| with:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// binoprhs |
| /// ::= ('+' primary)* |
| static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| // If this is a binop, find its precedence. |
| while (1) { |
| int TokPrec = GetTokPrecedence(); |
| |
| // If this is a binop that binds at least as tightly as the current binop, |
| // consume it, otherwise we are done. |
| if (TokPrec < ExprPrec) |
| return LHS; |
| </pre> |
| </div> |
| |
| <p>This code gets the precedence of the current token and checks to see if if is |
| too low. Because we defined invalid tokens to have a precedence of -1, this |
| check implicitly knows that the pair-stream ends when the token stream runs out |
| of binary operators. If this check succeeds, we know that the token is a binary |
| operator and that it will be included in this expression:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // Okay, we know this is a binop. |
| int BinOp = CurTok; |
| getNextToken(); // eat binop |
| |
| // Parse the primary expression after the binary operator. |
| ExprAST *RHS = ParsePrimary(); |
| if (!RHS) return 0; |
| </pre> |
| </div> |
| |
| <p>As such, this code eats (and remembers) the binary operator and then parses |
| the primary expression that follows. This builds up the whole pair, the first of |
| which is [+, b] for the running example.</p> |
| |
| <p>Now that we parsed the left-hand side of an expression and one pair of the |
| RHS sequence, we have to decide which way the expression associates. In |
| particular, we could have "(a+b) binop unparsed" or "a + (b binop unparsed)". |
| To determine this, we look ahead at "binop" to determine its precedence and |
| compare it to BinOp's precedence (which is '+' in this case):</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // If BinOp binds less tightly with RHS than the operator after RHS, let |
| // the pending operator take RHS as its LHS. |
| int NextPrec = GetTokPrecedence(); |
| if (TokPrec < NextPrec) { |
| </pre> |
| </div> |
| |
| <p>If the precedence of the binop to the right of "RHS" is lower or equal to the |
| precedence of our current operator, then we know that the parentheses associate |
| as "(a+b) binop ...". In our example, the current operator is "+" and the next |
| operator is "+", we know that they have the same precedence. In this case we'll |
| create the AST node for "a+b", and then continue parsing:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| ... if body omitted ... |
| } |
| |
| // Merge LHS/RHS. |
| LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| } // loop around to the top of the while loop. |
| } |
| </pre> |
| </div> |
| |
| <p>In our example above, this will turn "a+b+" into "(a+b)" and execute the next |
| iteration of the loop, with "+" as the current token. The code above will eat, |
| remember, and parse "(c+d)" as the primary expression, which makes the |
| current pair equal to [+, (c+d)]. It will then evaluate the 'if' conditional above with |
| "*" as the binop to the right of the primary. In this case, the precedence of "*" is |
| higher than the precedence of "+" so the if condition will be entered.</p> |
| |
| <p>The critical question left here is "how can the if condition parse the right |
| hand side in full"? In particular, to build the AST correctly for our example, |
| it needs to get all of "(c+d)*e*f" as the RHS expression variable. The code to |
| do this is surprisingly simple (code from the above two blocks duplicated for |
| context):</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // If BinOp binds less tightly with RHS than the operator after RHS, let |
| // the pending operator take RHS as its LHS. |
| int NextPrec = GetTokPrecedence(); |
| if (TokPrec < NextPrec) { |
| <b>RHS = ParseBinOpRHS(TokPrec+1, RHS); |
| if (RHS == 0) return 0;</b> |
| } |
| // Merge LHS/RHS. |
| LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| } // loop around to the top of the while loop. |
| } |
| </pre> |
| </div> |
| |
| <p>At this point, we know that the binary operator to the RHS of our primary |
| has higher precedence than the binop we are currently parsing. As such, we know |
| that any sequence of pairs whose operators are all higher precedence than "+" |
| should be parsed together and returned as "RHS". To do this, we recursively |
| invoke the <tt>ParseBinOpRHS</tt> function specifying "TokPrec+1" as the minimum |
| precedence required for it to continue. In our example above, this will cause |
| it to return the AST node for "(c+d)*e*f" as RHS, which is then set as the RHS |
| of the '+' expression.</p> |
| |
| <p>Finally, on the next iteration of the while loop, the "+g" piece is parsed |
| and added to the AST. With this little bit of code (14 non-trivial lines), we |
| correctly handle fully general binary expression parsing in a very elegant way. |
| This was a whirlwind tour of this code, and it is somewhat subtle. I recommend |
| running through it with a few tough examples to see how it works. |
| </p> |
| |
| <p>This wraps up handling of expressions. At this point, we can point the |
| parser at an arbitrary token stream and build an expression from it, stopping |
| at the first token that is not part of the expression. Next up we need to |
| handle function definitions, etc.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <h2><a name="parsertop">Parsing the Rest</a></h2> |
| <!-- *********************************************************************** --> |
| |
| <div> |
| |
| <p> |
| The next thing missing is handling of function prototypes. In Kaleidoscope, |
| these are used both for 'extern' function declarations as well as function body |
| definitions. The code to do this is straight-forward and not very interesting |
| (once you've survived expressions): |
| </p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// prototype |
| /// ::= id '(' id* ')' |
| static PrototypeAST *ParsePrototype() { |
| if (CurTok != tok_identifier) |
| return ErrorP("Expected function name in prototype"); |
| |
| std::string FnName = IdentifierStr; |
| getNextToken(); |
| |
| if (CurTok != '(') |
| return ErrorP("Expected '(' in prototype"); |
| |
| // Read the list of argument names. |
| std::vector<std::string> ArgNames; |
| while (getNextToken() == tok_identifier) |
| ArgNames.push_back(IdentifierStr); |
| if (CurTok != ')') |
| return ErrorP("Expected ')' in prototype"); |
| |
| // success. |
| getNextToken(); // eat ')'. |
| |
| return new PrototypeAST(FnName, ArgNames); |
| } |
| </pre> |
| </div> |
| |
| <p>Given this, a function definition is very simple, just a prototype plus |
| an expression to implement the body:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// definition ::= 'def' prototype expression |
| static FunctionAST *ParseDefinition() { |
| getNextToken(); // eat def. |
| PrototypeAST *Proto = ParsePrototype(); |
| if (Proto == 0) return 0; |
| |
| if (ExprAST *E = ParseExpression()) |
| return new FunctionAST(Proto, E); |
| return 0; |
| } |
| </pre> |
| </div> |
| |
| <p>In addition, we support 'extern' to declare functions like 'sin' and 'cos' as |
| well as to support forward declaration of user functions. These 'extern's are just |
| prototypes with no body:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// external ::= 'extern' prototype |
| static PrototypeAST *ParseExtern() { |
| getNextToken(); // eat extern. |
| return ParsePrototype(); |
| } |
| </pre> |
| </div> |
| |
| <p>Finally, we'll also let the user type in arbitrary top-level expressions and |
| evaluate them on the fly. We will handle this by defining anonymous nullary |
| (zero argument) functions for them:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// toplevelexpr ::= expression |
| static FunctionAST *ParseTopLevelExpr() { |
| if (ExprAST *E = ParseExpression()) { |
| // Make an anonymous proto. |
| PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); |
| return new FunctionAST(Proto, E); |
| } |
| return 0; |
| } |
| </pre> |
| </div> |
| |
| <p>Now that we have all the pieces, let's build a little driver that will let us |
| actually <em>execute</em> this code we've built!</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <h2><a name="driver">The Driver</a></h2> |
| <!-- *********************************************************************** --> |
| |
| <div> |
| |
| <p>The driver for this simply invokes all of the parsing pieces with a top-level |
| dispatch loop. There isn't much interesting here, so I'll just include the |
| top-level loop. See <a href="#code">below</a> for full code in the "Top-Level |
| Parsing" section.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// top ::= definition | external | expression | ';' |
| static void MainLoop() { |
| while (1) { |
| fprintf(stderr, "ready> "); |
| switch (CurTok) { |
| case tok_eof: return; |
| case ';': getNextToken(); break; // ignore top-level semicolons. |
| case tok_def: HandleDefinition(); break; |
| case tok_extern: HandleExtern(); break; |
| default: HandleTopLevelExpression(); break; |
| } |
| } |
| } |
| </pre> |
| </div> |
| |
| <p>The most interesting part of this is that we ignore top-level semicolons. |
| Why is this, you ask? The basic reason is that if you type "4 + 5" at the |
| command line, the parser doesn't know whether that is the end of what you will type |
| or not. For example, on the next line you could type "def foo..." in which case |
| 4+5 is the end of a top-level expression. Alternatively you could type "* 6", |
| which would continue the expression. Having top-level semicolons allows you to |
| type "4+5;", and the parser will know you are done.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <h2><a name="conclusions">Conclusions</a></h2> |
| <!-- *********************************************************************** --> |
| |
| <div> |
| |
| <p>With just under 400 lines of commented code (240 lines of non-comment, |
| non-blank code), we fully defined our minimal language, including a lexer, |
| parser, and AST builder. With this done, the executable will validate |
| Kaleidoscope code and tell us if it is grammatically invalid. For |
| example, here is a sample interaction:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| $ <b>./a.out</b> |
| ready> <b>def foo(x y) x+foo(y, 4.0);</b> |
| Parsed a function definition. |
| ready> <b>def foo(x y) x+y y;</b> |
| Parsed a function definition. |
| Parsed a top-level expr |
| ready> <b>def foo(x y) x+y );</b> |
| Parsed a function definition. |
| Error: unknown token when expecting an expression |
| ready> <b>extern sin(a);</b> |
| ready> Parsed an extern |
| ready> <b>^D</b> |
| $ |
| </pre> |
| </div> |
| |
| <p>There is a lot of room for extension here. You can define new AST nodes, |
| extend the language in many ways, etc. In the <a href="LangImpl3.html">next |
| installment</a>, we will describe how to generate LLVM Intermediate |
| Representation (IR) from the AST.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <h2><a name="code">Full Code Listing</a></h2> |
| <!-- *********************************************************************** --> |
| |
| <div> |
| |
| <p> |
| Here is the complete code listing for this and the previous chapter. |
| Note that it is fully self-contained: you don't need LLVM or any external |
| libraries at all for this. (Besides the C and C++ standard libraries, of |
| course.) To build this, just compile with:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| # Compile |
| clang++ -g -O3 toy.cpp |
| # Run |
| ./a.out |
| </pre> |
| </div> |
| |
| <p>Here is the code:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| #include <cstdio> |
| #include <cstdlib> |
| #include <string> |
| #include <map> |
| #include <vector> |
| |
| //===----------------------------------------------------------------------===// |
| // Lexer |
| //===----------------------------------------------------------------------===// |
| |
| // The lexer returns tokens [0-255] if it is an unknown character, otherwise one |
| // of these for known things. |
| enum Token { |
| tok_eof = -1, |
| |
| // commands |
| tok_def = -2, tok_extern = -3, |
| |
| // primary |
| tok_identifier = -4, tok_number = -5 |
| }; |
| |
| static std::string IdentifierStr; // Filled in if tok_identifier |
| static double NumVal; // Filled in if tok_number |
| |
| /// gettok - Return the next token from standard input. |
| static int gettok() { |
| static int LastChar = ' '; |
| |
| // Skip any whitespace. |
| while (isspace(LastChar)) |
| LastChar = getchar(); |
| |
| if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* |
| IdentifierStr = LastChar; |
| while (isalnum((LastChar = getchar()))) |
| IdentifierStr += LastChar; |
| |
| if (IdentifierStr == "def") return tok_def; |
| if (IdentifierStr == "extern") return tok_extern; |
| return tok_identifier; |
| } |
| |
| if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ |
| std::string NumStr; |
| do { |
| NumStr += LastChar; |
| LastChar = getchar(); |
| } while (isdigit(LastChar) || LastChar == '.'); |
| |
| NumVal = strtod(NumStr.c_str(), 0); |
| return tok_number; |
| } |
| |
| if (LastChar == '#') { |
| // Comment until end of line. |
| do LastChar = getchar(); |
| while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); |
| |
| if (LastChar != EOF) |
| return gettok(); |
| } |
| |
| // Check for end of file. Don't eat the EOF. |
| if (LastChar == EOF) |
| return tok_eof; |
| |
| // Otherwise, just return the character as its ascii value. |
| int ThisChar = LastChar; |
| LastChar = getchar(); |
| return ThisChar; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Abstract Syntax Tree (aka Parse Tree) |
| //===----------------------------------------------------------------------===// |
| |
| /// ExprAST - Base class for all expression nodes. |
| class ExprAST { |
| public: |
| virtual ~ExprAST() {} |
| }; |
| |
| /// NumberExprAST - Expression class for numeric literals like "1.0". |
| class NumberExprAST : public ExprAST { |
| double Val; |
| public: |
| NumberExprAST(double val) : Val(val) {} |
| }; |
| |
| /// VariableExprAST - Expression class for referencing a variable, like "a". |
| class VariableExprAST : public ExprAST { |
| std::string Name; |
| public: |
| VariableExprAST(const std::string &name) : Name(name) {} |
| }; |
| |
| /// BinaryExprAST - Expression class for a binary operator. |
| class BinaryExprAST : public ExprAST { |
| char Op; |
| ExprAST *LHS, *RHS; |
| public: |
| BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) |
| : Op(op), LHS(lhs), RHS(rhs) {} |
| }; |
| |
| /// CallExprAST - Expression class for function calls. |
| class CallExprAST : public ExprAST { |
| std::string Callee; |
| std::vector<ExprAST*> Args; |
| public: |
| CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) |
| : Callee(callee), Args(args) {} |
| }; |
| |
| /// PrototypeAST - This class represents the "prototype" for a function, |
| /// which captures its name, and its argument names (thus implicitly the number |
| /// of arguments the function takes). |
| class PrototypeAST { |
| std::string Name; |
| std::vector<std::string> Args; |
| public: |
| PrototypeAST(const std::string &name, const std::vector<std::string> &args) |
| : Name(name), Args(args) {} |
| |
| }; |
| |
| /// FunctionAST - This class represents a function definition itself. |
| class FunctionAST { |
| PrototypeAST *Proto; |
| ExprAST *Body; |
| public: |
| FunctionAST(PrototypeAST *proto, ExprAST *body) |
| : Proto(proto), Body(body) {} |
| |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Parser |
| //===----------------------------------------------------------------------===// |
| |
| /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| /// token the parser is looking at. getNextToken reads another token from the |
| /// lexer and updates CurTok with its results. |
| static int CurTok; |
| static int getNextToken() { |
| return CurTok = gettok(); |
| } |
| |
| /// BinopPrecedence - This holds the precedence for each binary operator that is |
| /// defined. |
| static std::map<char, int> BinopPrecedence; |
| |
| /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| static int GetTokPrecedence() { |
| if (!isascii(CurTok)) |
| return -1; |
| |
| // Make sure it's a declared binop. |
| int TokPrec = BinopPrecedence[CurTok]; |
| if (TokPrec <= 0) return -1; |
| return TokPrec; |
| } |
| |
| /// Error* - These are little helper functions for error handling. |
| ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} |
| PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } |
| FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } |
| |
| static ExprAST *ParseExpression(); |
| |
| /// identifierexpr |
| /// ::= identifier |
| /// ::= identifier '(' expression* ')' |
| static ExprAST *ParseIdentifierExpr() { |
| std::string IdName = IdentifierStr; |
| |
| getNextToken(); // eat identifier. |
| |
| if (CurTok != '(') // Simple variable ref. |
| return new VariableExprAST(IdName); |
| |
| // Call. |
| getNextToken(); // eat ( |
| std::vector<ExprAST*> Args; |
| if (CurTok != ')') { |
| while (1) { |
| ExprAST *Arg = ParseExpression(); |
| if (!Arg) return 0; |
| Args.push_back(Arg); |
| |
| if (CurTok == ')') break; |
| |
| if (CurTok != ',') |
| return Error("Expected ')' or ',' in argument list"); |
| getNextToken(); |
| } |
| } |
| |
| // Eat the ')'. |
| getNextToken(); |
| |
| return new CallExprAST(IdName, Args); |
| } |
| |
| /// numberexpr ::= number |
| static ExprAST *ParseNumberExpr() { |
| ExprAST *Result = new NumberExprAST(NumVal); |
| getNextToken(); // consume the number |
| return Result; |
| } |
| |
| /// parenexpr ::= '(' expression ')' |
| static ExprAST *ParseParenExpr() { |
| getNextToken(); // eat (. |
| ExprAST *V = ParseExpression(); |
| if (!V) return 0; |
| |
| if (CurTok != ')') |
| return Error("expected ')'"); |
| getNextToken(); // eat ). |
| return V; |
| } |
| |
| /// primary |
| /// ::= identifierexpr |
| /// ::= numberexpr |
| /// ::= parenexpr |
| static ExprAST *ParsePrimary() { |
| switch (CurTok) { |
| default: return Error("unknown token when expecting an expression"); |
| case tok_identifier: return ParseIdentifierExpr(); |
| case tok_number: return ParseNumberExpr(); |
| case '(': return ParseParenExpr(); |
| } |
| } |
| |
| /// binoprhs |
| /// ::= ('+' primary)* |
| static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| // If this is a binop, find its precedence. |
| while (1) { |
| int TokPrec = GetTokPrecedence(); |
| |
| // If this is a binop that binds at least as tightly as the current binop, |
| // consume it, otherwise we are done. |
| if (TokPrec < ExprPrec) |
| return LHS; |
| |
| // Okay, we know this is a binop. |
| int BinOp = CurTok; |
| getNextToken(); // eat binop |
| |
| // Parse the primary expression after the binary operator. |
| ExprAST *RHS = ParsePrimary(); |
| if (!RHS) return 0; |
| |
| // If BinOp binds less tightly with RHS than the operator after RHS, let |
| // the pending operator take RHS as its LHS. |
| int NextPrec = GetTokPrecedence(); |
| if (TokPrec < NextPrec) { |
| RHS = ParseBinOpRHS(TokPrec+1, RHS); |
| if (RHS == 0) return 0; |
| } |
| |
| // Merge LHS/RHS. |
| LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| } |
| } |
| |
| /// expression |
| /// ::= primary binoprhs |
| /// |
| static ExprAST *ParseExpression() { |
| ExprAST *LHS = ParsePrimary(); |
| if (!LHS) return 0; |
| |
| return ParseBinOpRHS(0, LHS); |
| } |
| |
| /// prototype |
| /// ::= id '(' id* ')' |
| static PrototypeAST *ParsePrototype() { |
| if (CurTok != tok_identifier) |
| return ErrorP("Expected function name in prototype"); |
| |
| std::string FnName = IdentifierStr; |
| getNextToken(); |
| |
| if (CurTok != '(') |
| return ErrorP("Expected '(' in prototype"); |
| |
| std::vector<std::string> ArgNames; |
| while (getNextToken() == tok_identifier) |
| ArgNames.push_back(IdentifierStr); |
| if (CurTok != ')') |
| return ErrorP("Expected ')' in prototype"); |
| |
| // success. |
| getNextToken(); // eat ')'. |
| |
| return new PrototypeAST(FnName, ArgNames); |
| } |
| |
| /// definition ::= 'def' prototype expression |
| static FunctionAST *ParseDefinition() { |
| getNextToken(); // eat def. |
| PrototypeAST *Proto = ParsePrototype(); |
| if (Proto == 0) return 0; |
| |
| if (ExprAST *E = ParseExpression()) |
| return new FunctionAST(Proto, E); |
| return 0; |
| } |
| |
| /// toplevelexpr ::= expression |
| static FunctionAST *ParseTopLevelExpr() { |
| if (ExprAST *E = ParseExpression()) { |
| // Make an anonymous proto. |
| PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); |
| return new FunctionAST(Proto, E); |
| } |
| return 0; |
| } |
| |
| /// external ::= 'extern' prototype |
| static PrototypeAST *ParseExtern() { |
| getNextToken(); // eat extern. |
| return ParsePrototype(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top-Level parsing |
| //===----------------------------------------------------------------------===// |
| |
| static void HandleDefinition() { |
| if (ParseDefinition()) { |
| fprintf(stderr, "Parsed a function definition.\n"); |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| static void HandleExtern() { |
| if (ParseExtern()) { |
| fprintf(stderr, "Parsed an extern\n"); |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| static void HandleTopLevelExpression() { |
| // Evaluate a top-level expression into an anonymous function. |
| if (ParseTopLevelExpr()) { |
| fprintf(stderr, "Parsed a top-level expr\n"); |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| /// top ::= definition | external | expression | ';' |
| static void MainLoop() { |
| while (1) { |
| fprintf(stderr, "ready> "); |
| switch (CurTok) { |
| case tok_eof: return; |
| case ';': getNextToken(); break; // ignore top-level semicolons. |
| case tok_def: HandleDefinition(); break; |
| case tok_extern: HandleExtern(); break; |
| default: HandleTopLevelExpression(); break; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Main driver code. |
| //===----------------------------------------------------------------------===// |
| |
| int main() { |
| // Install standard binary operators. |
| // 1 is lowest precedence. |
| BinopPrecedence['<'] = 10; |
| BinopPrecedence['+'] = 20; |
| BinopPrecedence['-'] = 20; |
| BinopPrecedence['*'] = 40; // highest. |
| |
| // Prime the first token. |
| fprintf(stderr, "ready> "); |
| getNextToken(); |
| |
| // Run the main "interpreter loop" now. |
| MainLoop(); |
| |
| return 0; |
| } |
| </pre> |
| </div> |
| <a href="LangImpl3.html">Next: Implementing Code Generation to LLVM IR</a> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <hr> |
| <address> |
| <a href="http://jigsaw.w3.org/css-validator/check/referer"><img |
| src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> |
| <a href="http://validator.w3.org/check/referer"><img |
| src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> |
| |
| <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> |
| <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br> |
| Last modified: $Date: 2011-10-16 04:07:38 -0400 (Sun, 16 Oct 2011) $ |
| </address> |
| </body> |
| </html> |