|  | //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file declares the Value class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_IR_VALUE_H | 
|  | #define LLVM_IR_VALUE_H | 
|  |  | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/Support/CBindingWrapping.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm-c/Types.h" | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | class APInt; | 
|  | class Argument; | 
|  | class BasicBlock; | 
|  | class Constant; | 
|  | class ConstantData; | 
|  | class ConstantAggregate; | 
|  | class DataLayout; | 
|  | class Function; | 
|  | class GlobalAlias; | 
|  | class GlobalIFunc; | 
|  | class GlobalIndirectSymbol; | 
|  | class GlobalObject; | 
|  | class GlobalValue; | 
|  | class GlobalVariable; | 
|  | class InlineAsm; | 
|  | class Instruction; | 
|  | class LLVMContext; | 
|  | class Module; | 
|  | class ModuleSlotTracker; | 
|  | class raw_ostream; | 
|  | class StringRef; | 
|  | class Twine; | 
|  | class Type; | 
|  |  | 
|  | template<typename ValueTy> class StringMapEntry; | 
|  | typedef StringMapEntry<Value*> ValueName; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                                 Value Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// \brief LLVM Value Representation | 
|  | /// | 
|  | /// This is a very important LLVM class. It is the base class of all values | 
|  | /// computed by a program that may be used as operands to other values. Value is | 
|  | /// the super class of other important classes such as Instruction and Function. | 
|  | /// All Values have a Type. Type is not a subclass of Value. Some values can | 
|  | /// have a name and they belong to some Module.  Setting the name on the Value | 
|  | /// automatically updates the module's symbol table. | 
|  | /// | 
|  | /// Every value has a "use list" that keeps track of which other Values are | 
|  | /// using this Value.  A Value can also have an arbitrary number of ValueHandle | 
|  | /// objects that watch it and listen to RAUW and Destroy events.  See | 
|  | /// llvm/IR/ValueHandle.h for details. | 
|  | class Value { | 
|  | Type *VTy; | 
|  | Use *UseList; | 
|  |  | 
|  | friend class ValueAsMetadata; // Allow access to IsUsedByMD. | 
|  | friend class ValueHandleBase; | 
|  |  | 
|  | const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast) | 
|  | unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this? | 
|  |  | 
|  | protected: | 
|  | /// \brief Hold subclass data that can be dropped. | 
|  | /// | 
|  | /// This member is similar to SubclassData, however it is for holding | 
|  | /// information which may be used to aid optimization, but which may be | 
|  | /// cleared to zero without affecting conservative interpretation. | 
|  | unsigned char SubclassOptionalData : 7; | 
|  |  | 
|  | private: | 
|  | /// \brief Hold arbitrary subclass data. | 
|  | /// | 
|  | /// This member is defined by this class, but is not used for anything. | 
|  | /// Subclasses can use it to hold whatever state they find useful.  This | 
|  | /// field is initialized to zero by the ctor. | 
|  | unsigned short SubclassData; | 
|  |  | 
|  | protected: | 
|  | /// \brief The number of operands in the subclass. | 
|  | /// | 
|  | /// This member is defined by this class, but not used for anything. | 
|  | /// Subclasses can use it to store their number of operands, if they have | 
|  | /// any. | 
|  | /// | 
|  | /// This is stored here to save space in User on 64-bit hosts.  Since most | 
|  | /// instances of Value have operands, 32-bit hosts aren't significantly | 
|  | /// affected. | 
|  | /// | 
|  | /// Note, this should *NOT* be used directly by any class other than User. | 
|  | /// User uses this value to find the Use list. | 
|  | enum : unsigned { NumUserOperandsBits = 28 }; | 
|  | unsigned NumUserOperands : NumUserOperandsBits; | 
|  |  | 
|  | // Use the same type as the bitfield above so that MSVC will pack them. | 
|  | unsigned IsUsedByMD : 1; | 
|  | unsigned HasName : 1; | 
|  | unsigned HasHungOffUses : 1; | 
|  | unsigned HasDescriptor : 1; | 
|  |  | 
|  | private: | 
|  | template <typename UseT> // UseT == 'Use' or 'const Use' | 
|  | class use_iterator_impl | 
|  | : public std::iterator<std::forward_iterator_tag, UseT *> { | 
|  | UseT *U; | 
|  | explicit use_iterator_impl(UseT *u) : U(u) {} | 
|  | friend class Value; | 
|  |  | 
|  | public: | 
|  | use_iterator_impl() : U() {} | 
|  |  | 
|  | bool operator==(const use_iterator_impl &x) const { return U == x.U; } | 
|  | bool operator!=(const use_iterator_impl &x) const { return !operator==(x); } | 
|  |  | 
|  | use_iterator_impl &operator++() { // Preincrement | 
|  | assert(U && "Cannot increment end iterator!"); | 
|  | U = U->getNext(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | use_iterator_impl operator++(int) { // Postincrement | 
|  | auto tmp = *this; | 
|  | ++*this; | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | UseT &operator*() const { | 
|  | assert(U && "Cannot dereference end iterator!"); | 
|  | return *U; | 
|  | } | 
|  |  | 
|  | UseT *operator->() const { return &operator*(); } | 
|  |  | 
|  | operator use_iterator_impl<const UseT>() const { | 
|  | return use_iterator_impl<const UseT>(U); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename UserTy> // UserTy == 'User' or 'const User' | 
|  | class user_iterator_impl | 
|  | : public std::iterator<std::forward_iterator_tag, UserTy *> { | 
|  | use_iterator_impl<Use> UI; | 
|  | explicit user_iterator_impl(Use *U) : UI(U) {} | 
|  | friend class Value; | 
|  |  | 
|  | public: | 
|  | user_iterator_impl() = default; | 
|  |  | 
|  | bool operator==(const user_iterator_impl &x) const { return UI == x.UI; } | 
|  | bool operator!=(const user_iterator_impl &x) const { return !operator==(x); } | 
|  |  | 
|  | /// \brief Returns true if this iterator is equal to user_end() on the value. | 
|  | bool atEnd() const { return *this == user_iterator_impl(); } | 
|  |  | 
|  | user_iterator_impl &operator++() { // Preincrement | 
|  | ++UI; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | user_iterator_impl operator++(int) { // Postincrement | 
|  | auto tmp = *this; | 
|  | ++*this; | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | // Retrieve a pointer to the current User. | 
|  | UserTy *operator*() const { | 
|  | return UI->getUser(); | 
|  | } | 
|  |  | 
|  | UserTy *operator->() const { return operator*(); } | 
|  |  | 
|  | operator user_iterator_impl<const UserTy>() const { | 
|  | return user_iterator_impl<const UserTy>(*UI); | 
|  | } | 
|  |  | 
|  | Use &getUse() const { return *UI; } | 
|  | }; | 
|  |  | 
|  | protected: | 
|  | Value(Type *Ty, unsigned scid); | 
|  |  | 
|  | public: | 
|  | Value(const Value &) = delete; | 
|  | void operator=(const Value &) = delete; | 
|  | virtual ~Value(); | 
|  |  | 
|  | /// \brief Support for debugging, callable in GDB: V->dump() | 
|  | void dump() const; | 
|  |  | 
|  | /// \brief Implement operator<< on Value. | 
|  | /// @{ | 
|  | void print(raw_ostream &O, bool IsForDebug = false) const; | 
|  | void print(raw_ostream &O, ModuleSlotTracker &MST, | 
|  | bool IsForDebug = false) const; | 
|  | /// @} | 
|  |  | 
|  | /// \brief Print the name of this Value out to the specified raw_ostream. | 
|  | /// | 
|  | /// This is useful when you just want to print 'int %reg126', not the | 
|  | /// instruction that generated it. If you specify a Module for context, then | 
|  | /// even constanst get pretty-printed; for example, the type of a null | 
|  | /// pointer is printed symbolically. | 
|  | /// @{ | 
|  | void printAsOperand(raw_ostream &O, bool PrintType = true, | 
|  | const Module *M = nullptr) const; | 
|  | void printAsOperand(raw_ostream &O, bool PrintType, | 
|  | ModuleSlotTracker &MST) const; | 
|  | /// @} | 
|  |  | 
|  | /// \brief All values are typed, get the type of this value. | 
|  | Type *getType() const { return VTy; } | 
|  |  | 
|  | /// \brief All values hold a context through their type. | 
|  | LLVMContext &getContext() const; | 
|  |  | 
|  | // \brief All values can potentially be named. | 
|  | bool hasName() const { return HasName; } | 
|  | ValueName *getValueName() const; | 
|  | void setValueName(ValueName *VN); | 
|  |  | 
|  | private: | 
|  | void destroyValueName(); | 
|  | void doRAUW(Value *New, bool NoMetadata); | 
|  | void setNameImpl(const Twine &Name); | 
|  |  | 
|  | public: | 
|  | /// \brief Return a constant reference to the value's name. | 
|  | /// | 
|  | /// This is cheap and guaranteed to return the same reference as long as the | 
|  | /// value is not modified. | 
|  | StringRef getName() const; | 
|  |  | 
|  | /// \brief Change the name of the value. | 
|  | /// | 
|  | /// Choose a new unique name if the provided name is taken. | 
|  | /// | 
|  | /// \param Name The new name; or "" if the value's name should be removed. | 
|  | void setName(const Twine &Name); | 
|  |  | 
|  | /// \brief Transfer the name from V to this value. | 
|  | /// | 
|  | /// After taking V's name, sets V's name to empty. | 
|  | /// | 
|  | /// \note It is an error to call V->takeName(V). | 
|  | void takeName(Value *V); | 
|  |  | 
|  | /// \brief Change all uses of this to point to a new Value. | 
|  | /// | 
|  | /// Go through the uses list for this definition and make each use point to | 
|  | /// "V" instead of "this".  After this completes, 'this's use list is | 
|  | /// guaranteed to be empty. | 
|  | void replaceAllUsesWith(Value *V); | 
|  |  | 
|  | /// \brief Change non-metadata uses of this to point to a new Value. | 
|  | /// | 
|  | /// Go through the uses list for this definition and make each use point to | 
|  | /// "V" instead of "this". This function skips metadata entries in the list. | 
|  | void replaceNonMetadataUsesWith(Value *V); | 
|  |  | 
|  | /// replaceUsesOutsideBlock - Go through the uses list for this definition and | 
|  | /// make each use point to "V" instead of "this" when the use is outside the | 
|  | /// block. 'This's use list is expected to have at least one element. | 
|  | /// Unlike replaceAllUsesWith this function does not support basic block | 
|  | /// values or constant users. | 
|  | void replaceUsesOutsideBlock(Value *V, BasicBlock *BB); | 
|  |  | 
|  | //---------------------------------------------------------------------- | 
|  | // Methods for handling the chain of uses of this Value. | 
|  | // | 
|  | // Materializing a function can introduce new uses, so these methods come in | 
|  | // two variants: | 
|  | // The methods that start with materialized_ check the uses that are | 
|  | // currently known given which functions are materialized. Be very careful | 
|  | // when using them since you might not get all uses. | 
|  | // The methods that don't start with materialized_ assert that modules is | 
|  | // fully materialized. | 
|  | void assertModuleIsMaterialized() const; | 
|  |  | 
|  | bool use_empty() const { | 
|  | assertModuleIsMaterialized(); | 
|  | return UseList == nullptr; | 
|  | } | 
|  |  | 
|  | typedef use_iterator_impl<Use> use_iterator; | 
|  | typedef use_iterator_impl<const Use> const_use_iterator; | 
|  | use_iterator materialized_use_begin() { return use_iterator(UseList); } | 
|  | const_use_iterator materialized_use_begin() const { | 
|  | return const_use_iterator(UseList); | 
|  | } | 
|  | use_iterator use_begin() { | 
|  | assertModuleIsMaterialized(); | 
|  | return materialized_use_begin(); | 
|  | } | 
|  | const_use_iterator use_begin() const { | 
|  | assertModuleIsMaterialized(); | 
|  | return materialized_use_begin(); | 
|  | } | 
|  | use_iterator use_end() { return use_iterator(); } | 
|  | const_use_iterator use_end() const { return const_use_iterator(); } | 
|  | iterator_range<use_iterator> materialized_uses() { | 
|  | return make_range(materialized_use_begin(), use_end()); | 
|  | } | 
|  | iterator_range<const_use_iterator> materialized_uses() const { | 
|  | return make_range(materialized_use_begin(), use_end()); | 
|  | } | 
|  | iterator_range<use_iterator> uses() { | 
|  | assertModuleIsMaterialized(); | 
|  | return materialized_uses(); | 
|  | } | 
|  | iterator_range<const_use_iterator> uses() const { | 
|  | assertModuleIsMaterialized(); | 
|  | return materialized_uses(); | 
|  | } | 
|  |  | 
|  | bool user_empty() const { | 
|  | assertModuleIsMaterialized(); | 
|  | return UseList == nullptr; | 
|  | } | 
|  |  | 
|  | typedef user_iterator_impl<User> user_iterator; | 
|  | typedef user_iterator_impl<const User> const_user_iterator; | 
|  | user_iterator materialized_user_begin() { return user_iterator(UseList); } | 
|  | const_user_iterator materialized_user_begin() const { | 
|  | return const_user_iterator(UseList); | 
|  | } | 
|  | user_iterator user_begin() { | 
|  | assertModuleIsMaterialized(); | 
|  | return materialized_user_begin(); | 
|  | } | 
|  | const_user_iterator user_begin() const { | 
|  | assertModuleIsMaterialized(); | 
|  | return materialized_user_begin(); | 
|  | } | 
|  | user_iterator user_end() { return user_iterator(); } | 
|  | const_user_iterator user_end() const { return const_user_iterator(); } | 
|  | User *user_back() { | 
|  | assertModuleIsMaterialized(); | 
|  | return *materialized_user_begin(); | 
|  | } | 
|  | const User *user_back() const { | 
|  | assertModuleIsMaterialized(); | 
|  | return *materialized_user_begin(); | 
|  | } | 
|  | iterator_range<user_iterator> materialized_users() { | 
|  | return make_range(materialized_user_begin(), user_end()); | 
|  | } | 
|  | iterator_range<const_user_iterator> materialized_users() const { | 
|  | return make_range(materialized_user_begin(), user_end()); | 
|  | } | 
|  | iterator_range<user_iterator> users() { | 
|  | assertModuleIsMaterialized(); | 
|  | return materialized_users(); | 
|  | } | 
|  | iterator_range<const_user_iterator> users() const { | 
|  | assertModuleIsMaterialized(); | 
|  | return materialized_users(); | 
|  | } | 
|  |  | 
|  | /// \brief Return true if there is exactly one user of this value. | 
|  | /// | 
|  | /// This is specialized because it is a common request and does not require | 
|  | /// traversing the whole use list. | 
|  | bool hasOneUse() const { | 
|  | const_use_iterator I = use_begin(), E = use_end(); | 
|  | if (I == E) return false; | 
|  | return ++I == E; | 
|  | } | 
|  |  | 
|  | /// \brief Return true if this Value has exactly N users. | 
|  | bool hasNUses(unsigned N) const; | 
|  |  | 
|  | /// \brief Return true if this value has N users or more. | 
|  | /// | 
|  | /// This is logically equivalent to getNumUses() >= N. | 
|  | bool hasNUsesOrMore(unsigned N) const; | 
|  |  | 
|  | /// \brief Check if this value is used in the specified basic block. | 
|  | bool isUsedInBasicBlock(const BasicBlock *BB) const; | 
|  |  | 
|  | /// \brief This method computes the number of uses of this Value. | 
|  | /// | 
|  | /// This is a linear time operation.  Use hasOneUse, hasNUses, or | 
|  | /// hasNUsesOrMore to check for specific values. | 
|  | unsigned getNumUses() const; | 
|  |  | 
|  | /// \brief This method should only be used by the Use class. | 
|  | void addUse(Use &U) { U.addToList(&UseList); } | 
|  |  | 
|  | /// \brief Concrete subclass of this. | 
|  | /// | 
|  | /// An enumeration for keeping track of the concrete subclass of Value that | 
|  | /// is actually instantiated. Values of this enumeration are kept in the | 
|  | /// Value classes SubclassID field. They are used for concrete type | 
|  | /// identification. | 
|  | enum ValueTy { | 
|  | #define HANDLE_VALUE(Name) Name##Val, | 
|  | #include "llvm/IR/Value.def" | 
|  |  | 
|  | // Markers: | 
|  | #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val, | 
|  | #include "llvm/IR/Value.def" | 
|  | }; | 
|  |  | 
|  | /// \brief Return an ID for the concrete type of this object. | 
|  | /// | 
|  | /// This is used to implement the classof checks.  This should not be used | 
|  | /// for any other purpose, as the values may change as LLVM evolves.  Also, | 
|  | /// note that for instructions, the Instruction's opcode is added to | 
|  | /// InstructionVal. So this means three things: | 
|  | /// # there is no value with code InstructionVal (no opcode==0). | 
|  | /// # there are more possible values for the value type than in ValueTy enum. | 
|  | /// # the InstructionVal enumerator must be the highest valued enumerator in | 
|  | ///   the ValueTy enum. | 
|  | unsigned getValueID() const { | 
|  | return SubclassID; | 
|  | } | 
|  |  | 
|  | /// \brief Return the raw optional flags value contained in this value. | 
|  | /// | 
|  | /// This should only be used when testing two Values for equivalence. | 
|  | unsigned getRawSubclassOptionalData() const { | 
|  | return SubclassOptionalData; | 
|  | } | 
|  |  | 
|  | /// \brief Clear the optional flags contained in this value. | 
|  | void clearSubclassOptionalData() { | 
|  | SubclassOptionalData = 0; | 
|  | } | 
|  |  | 
|  | /// \brief Check the optional flags for equality. | 
|  | bool hasSameSubclassOptionalData(const Value *V) const { | 
|  | return SubclassOptionalData == V->SubclassOptionalData; | 
|  | } | 
|  |  | 
|  | /// \brief Return true if there is a value handle associated with this value. | 
|  | bool hasValueHandle() const { return HasValueHandle; } | 
|  |  | 
|  | /// \brief Return true if there is metadata referencing this value. | 
|  | bool isUsedByMetadata() const { return IsUsedByMD; } | 
|  |  | 
|  | /// \brief Return true if this value is a swifterror value. | 
|  | /// | 
|  | /// swifterror values can be either a function argument or an alloca with a | 
|  | /// swifterror attribute. | 
|  | bool isSwiftError() const; | 
|  |  | 
|  | /// \brief Strip off pointer casts, all-zero GEPs, and aliases. | 
|  | /// | 
|  | /// Returns the original uncasted value.  If this is called on a non-pointer | 
|  | /// value, it returns 'this'. | 
|  | Value *stripPointerCasts(); | 
|  | const Value *stripPointerCasts() const { | 
|  | return const_cast<Value*>(this)->stripPointerCasts(); | 
|  | } | 
|  |  | 
|  | /// \brief Strip off pointer casts and all-zero GEPs. | 
|  | /// | 
|  | /// Returns the original uncasted value.  If this is called on a non-pointer | 
|  | /// value, it returns 'this'. | 
|  | Value *stripPointerCastsNoFollowAliases(); | 
|  | const Value *stripPointerCastsNoFollowAliases() const { | 
|  | return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases(); | 
|  | } | 
|  |  | 
|  | /// \brief Strip off pointer casts and all-constant inbounds GEPs. | 
|  | /// | 
|  | /// Returns the original pointer value.  If this is called on a non-pointer | 
|  | /// value, it returns 'this'. | 
|  | Value *stripInBoundsConstantOffsets(); | 
|  | const Value *stripInBoundsConstantOffsets() const { | 
|  | return const_cast<Value*>(this)->stripInBoundsConstantOffsets(); | 
|  | } | 
|  |  | 
|  | /// \brief Accumulate offsets from \a stripInBoundsConstantOffsets(). | 
|  | /// | 
|  | /// Stores the resulting constant offset stripped into the APInt provided. | 
|  | /// The provided APInt will be extended or truncated as needed to be the | 
|  | /// correct bitwidth for an offset of this pointer type. | 
|  | /// | 
|  | /// If this is called on a non-pointer value, it returns 'this'. | 
|  | Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, | 
|  | APInt &Offset); | 
|  | const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, | 
|  | APInt &Offset) const { | 
|  | return const_cast<Value *>(this) | 
|  | ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); | 
|  | } | 
|  |  | 
|  | /// \brief Strip off pointer casts and inbounds GEPs. | 
|  | /// | 
|  | /// Returns the original pointer value.  If this is called on a non-pointer | 
|  | /// value, it returns 'this'. | 
|  | Value *stripInBoundsOffsets(); | 
|  | const Value *stripInBoundsOffsets() const { | 
|  | return const_cast<Value*>(this)->stripInBoundsOffsets(); | 
|  | } | 
|  |  | 
|  | /// \brief Returns the number of bytes known to be dereferenceable for the | 
|  | /// pointer value. | 
|  | /// | 
|  | /// If CanBeNull is set by this function the pointer can either be null or be | 
|  | /// dereferenceable up to the returned number of bytes. | 
|  | unsigned getPointerDereferenceableBytes(const DataLayout &DL, | 
|  | bool &CanBeNull) const; | 
|  |  | 
|  | /// \brief Returns an alignment of the pointer value. | 
|  | /// | 
|  | /// Returns an alignment which is either specified explicitly, e.g. via | 
|  | /// align attribute of a function argument, or guaranteed by DataLayout. | 
|  | unsigned getPointerAlignment(const DataLayout &DL) const; | 
|  |  | 
|  | /// \brief Translate PHI node to its predecessor from the given basic block. | 
|  | /// | 
|  | /// If this value is a PHI node with CurBB as its parent, return the value in | 
|  | /// the PHI node corresponding to PredBB.  If not, return ourself.  This is | 
|  | /// useful if you want to know the value something has in a predecessor | 
|  | /// block. | 
|  | Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB); | 
|  |  | 
|  | const Value *DoPHITranslation(const BasicBlock *CurBB, | 
|  | const BasicBlock *PredBB) const{ | 
|  | return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB); | 
|  | } | 
|  |  | 
|  | /// \brief The maximum alignment for instructions. | 
|  | /// | 
|  | /// This is the greatest alignment value supported by load, store, and alloca | 
|  | /// instructions, and global values. | 
|  | static const unsigned MaxAlignmentExponent = 29; | 
|  | static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent; | 
|  |  | 
|  | /// \brief Mutate the type of this Value to be of the specified type. | 
|  | /// | 
|  | /// Note that this is an extremely dangerous operation which can create | 
|  | /// completely invalid IR very easily.  It is strongly recommended that you | 
|  | /// recreate IR objects with the right types instead of mutating them in | 
|  | /// place. | 
|  | void mutateType(Type *Ty) { | 
|  | VTy = Ty; | 
|  | } | 
|  |  | 
|  | /// \brief Sort the use-list. | 
|  | /// | 
|  | /// Sorts the Value's use-list by Cmp using a stable mergesort.  Cmp is | 
|  | /// expected to compare two \a Use references. | 
|  | template <class Compare> void sortUseList(Compare Cmp); | 
|  |  | 
|  | /// \brief Reverse the use-list. | 
|  | void reverseUseList(); | 
|  |  | 
|  | private: | 
|  | /// \brief Merge two lists together. | 
|  | /// | 
|  | /// Merges \c L and \c R using \c Cmp.  To enable stable sorts, always pushes | 
|  | /// "equal" items from L before items from R. | 
|  | /// | 
|  | /// \return the first element in the list. | 
|  | /// | 
|  | /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update). | 
|  | template <class Compare> | 
|  | static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) { | 
|  | Use *Merged; | 
|  | Use **Next = &Merged; | 
|  |  | 
|  | for (;;) { | 
|  | if (!L) { | 
|  | *Next = R; | 
|  | break; | 
|  | } | 
|  | if (!R) { | 
|  | *Next = L; | 
|  | break; | 
|  | } | 
|  | if (Cmp(*R, *L)) { | 
|  | *Next = R; | 
|  | Next = &R->Next; | 
|  | R = R->Next; | 
|  | } else { | 
|  | *Next = L; | 
|  | Next = &L->Next; | 
|  | L = L->Next; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Merged; | 
|  | } | 
|  |  | 
|  | /// \brief Tail-recursive helper for \a mergeUseLists(). | 
|  | /// | 
|  | /// \param[out] Next the first element in the list. | 
|  | template <class Compare> | 
|  | static void mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp); | 
|  |  | 
|  | protected: | 
|  | unsigned short getSubclassDataFromValue() const { return SubclassData; } | 
|  | void setValueSubclassData(unsigned short D) { SubclassData = D; } | 
|  | }; | 
|  |  | 
|  | inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) { | 
|  | V.print(OS); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | void Use::set(Value *V) { | 
|  | if (Val) removeFromList(); | 
|  | Val = V; | 
|  | if (V) V->addUse(*this); | 
|  | } | 
|  |  | 
|  | Value *Use::operator=(Value *RHS) { | 
|  | set(RHS); | 
|  | return RHS; | 
|  | } | 
|  |  | 
|  | const Use &Use::operator=(const Use &RHS) { | 
|  | set(RHS.Val); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <class Compare> void Value::sortUseList(Compare Cmp) { | 
|  | if (!UseList || !UseList->Next) | 
|  | // No need to sort 0 or 1 uses. | 
|  | return; | 
|  |  | 
|  | // Note: this function completely ignores Prev pointers until the end when | 
|  | // they're fixed en masse. | 
|  |  | 
|  | // Create a binomial vector of sorted lists, visiting uses one at a time and | 
|  | // merging lists as necessary. | 
|  | const unsigned MaxSlots = 32; | 
|  | Use *Slots[MaxSlots]; | 
|  |  | 
|  | // Collect the first use, turning it into a single-item list. | 
|  | Use *Next = UseList->Next; | 
|  | UseList->Next = nullptr; | 
|  | unsigned NumSlots = 1; | 
|  | Slots[0] = UseList; | 
|  |  | 
|  | // Collect all but the last use. | 
|  | while (Next->Next) { | 
|  | Use *Current = Next; | 
|  | Next = Current->Next; | 
|  |  | 
|  | // Turn Current into a single-item list. | 
|  | Current->Next = nullptr; | 
|  |  | 
|  | // Save Current in the first available slot, merging on collisions. | 
|  | unsigned I; | 
|  | for (I = 0; I < NumSlots; ++I) { | 
|  | if (!Slots[I]) | 
|  | break; | 
|  |  | 
|  | // Merge two lists, doubling the size of Current and emptying slot I. | 
|  | // | 
|  | // Since the uses in Slots[I] originally preceded those in Current, send | 
|  | // Slots[I] in as the left parameter to maintain a stable sort. | 
|  | Current = mergeUseLists(Slots[I], Current, Cmp); | 
|  | Slots[I] = nullptr; | 
|  | } | 
|  | // Check if this is a new slot. | 
|  | if (I == NumSlots) { | 
|  | ++NumSlots; | 
|  | assert(NumSlots <= MaxSlots && "Use list bigger than 2^32"); | 
|  | } | 
|  |  | 
|  | // Found an open slot. | 
|  | Slots[I] = Current; | 
|  | } | 
|  |  | 
|  | // Merge all the lists together. | 
|  | assert(Next && "Expected one more Use"); | 
|  | assert(!Next->Next && "Expected only one Use"); | 
|  | UseList = Next; | 
|  | for (unsigned I = 0; I < NumSlots; ++I) | 
|  | if (Slots[I]) | 
|  | // Since the uses in Slots[I] originally preceded those in UseList, send | 
|  | // Slots[I] in as the left parameter to maintain a stable sort. | 
|  | UseList = mergeUseLists(Slots[I], UseList, Cmp); | 
|  |  | 
|  | // Fix the Prev pointers. | 
|  | for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) { | 
|  | I->setPrev(Prev); | 
|  | Prev = &I->Next; | 
|  | } | 
|  | } | 
|  |  | 
|  | // isa - Provide some specializations of isa so that we don't have to include | 
|  | // the subtype header files to test to see if the value is a subclass... | 
|  | // | 
|  | template <> struct isa_impl<Constant, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() >= Value::ConstantFirstVal && | 
|  | Val.getValueID() <= Value::ConstantLastVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<ConstantData, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() >= Value::ConstantDataFirstVal && | 
|  | Val.getValueID() <= Value::ConstantDataLastVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<ConstantAggregate, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() >= Value::ConstantAggregateFirstVal && | 
|  | Val.getValueID() <= Value::ConstantAggregateLastVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<Argument, Value> { | 
|  | static inline bool doit (const Value &Val) { | 
|  | return Val.getValueID() == Value::ArgumentVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<InlineAsm, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() == Value::InlineAsmVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<Instruction, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() >= Value::InstructionVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<BasicBlock, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() == Value::BasicBlockVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<Function, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() == Value::FunctionVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<GlobalVariable, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() == Value::GlobalVariableVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<GlobalAlias, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() == Value::GlobalAliasVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<GlobalIFunc, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return Val.getValueID() == Value::GlobalIFuncVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<GlobalIndirectSymbol, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<GlobalValue, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<GlobalObject, Value> { | 
|  | static inline bool doit(const Value &Val) { | 
|  | return isa<GlobalVariable>(Val) || isa<Function>(Val); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Create wrappers for C Binding types (see CBindingWrapping.h). | 
|  | DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef) | 
|  |  | 
|  | // Specialized opaque value conversions. | 
|  | inline Value **unwrap(LLVMValueRef *Vals) { | 
|  | return reinterpret_cast<Value**>(Vals); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | inline T **unwrap(LLVMValueRef *Vals, unsigned Length) { | 
|  | #ifndef NDEBUG | 
|  | for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I) | 
|  | unwrap<T>(*I); // For side effect of calling assert on invalid usage. | 
|  | #endif | 
|  | (void)Length; | 
|  | return reinterpret_cast<T**>(Vals); | 
|  | } | 
|  |  | 
|  | inline LLVMValueRef *wrap(const Value **Vals) { | 
|  | return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals)); | 
|  | } | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | #endif // LLVM_IR_VALUE_H |