| //===-- InlineAsm.cpp - Implement the InlineAsm class ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the InlineAsm class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/InlineAsm.h" |
| #include "ConstantsContext.h" |
| #include "LLVMContextImpl.h" |
| #include "llvm/DerivedTypes.h" |
| #include <algorithm> |
| #include <cctype> |
| using namespace llvm; |
| |
| // Implement the first virtual method in this class in this file so the |
| // InlineAsm vtable is emitted here. |
| InlineAsm::~InlineAsm() { |
| } |
| |
| |
| InlineAsm *InlineAsm::get(FunctionType *Ty, StringRef AsmString, |
| StringRef Constraints, bool hasSideEffects, |
| bool isAlignStack) { |
| InlineAsmKeyType Key(AsmString, Constraints, hasSideEffects, isAlignStack); |
| LLVMContextImpl *pImpl = Ty->getContext().pImpl; |
| return pImpl->InlineAsms.getOrCreate(PointerType::getUnqual(Ty), Key); |
| } |
| |
| InlineAsm::InlineAsm(PointerType *Ty, const std::string &asmString, |
| const std::string &constraints, bool hasSideEffects, |
| bool isAlignStack) |
| : Value(Ty, Value::InlineAsmVal), |
| AsmString(asmString), |
| Constraints(constraints), HasSideEffects(hasSideEffects), |
| IsAlignStack(isAlignStack) { |
| |
| // Do various checks on the constraint string and type. |
| assert(Verify(getFunctionType(), constraints) && |
| "Function type not legal for constraints!"); |
| } |
| |
| void InlineAsm::destroyConstant() { |
| getType()->getContext().pImpl->InlineAsms.remove(this); |
| delete this; |
| } |
| |
| FunctionType *InlineAsm::getFunctionType() const { |
| return cast<FunctionType>(getType()->getElementType()); |
| } |
| |
| ///Default constructor. |
| InlineAsm::ConstraintInfo::ConstraintInfo() : |
| Type(isInput), isEarlyClobber(false), |
| MatchingInput(-1), isCommutative(false), |
| isIndirect(false), isMultipleAlternative(false), |
| currentAlternativeIndex(0) { |
| } |
| |
| /// Copy constructor. |
| InlineAsm::ConstraintInfo::ConstraintInfo(const ConstraintInfo &other) : |
| Type(other.Type), isEarlyClobber(other.isEarlyClobber), |
| MatchingInput(other.MatchingInput), isCommutative(other.isCommutative), |
| isIndirect(other.isIndirect), Codes(other.Codes), |
| isMultipleAlternative(other.isMultipleAlternative), |
| multipleAlternatives(other.multipleAlternatives), |
| currentAlternativeIndex(other.currentAlternativeIndex) { |
| } |
| |
| /// Parse - Analyze the specified string (e.g. "==&{eax}") and fill in the |
| /// fields in this structure. If the constraint string is not understood, |
| /// return true, otherwise return false. |
| bool InlineAsm::ConstraintInfo::Parse(StringRef Str, |
| InlineAsm::ConstraintInfoVector &ConstraintsSoFar) { |
| StringRef::iterator I = Str.begin(), E = Str.end(); |
| unsigned multipleAlternativeCount = Str.count('|') + 1; |
| unsigned multipleAlternativeIndex = 0; |
| ConstraintCodeVector *pCodes = &Codes; |
| |
| // Initialize |
| isMultipleAlternative = (multipleAlternativeCount > 1 ? true : false); |
| if (isMultipleAlternative) { |
| multipleAlternatives.resize(multipleAlternativeCount); |
| pCodes = &multipleAlternatives[0].Codes; |
| } |
| Type = isInput; |
| isEarlyClobber = false; |
| MatchingInput = -1; |
| isCommutative = false; |
| isIndirect = false; |
| currentAlternativeIndex = 0; |
| |
| // Parse prefixes. |
| if (*I == '~') { |
| Type = isClobber; |
| ++I; |
| } else if (*I == '=') { |
| ++I; |
| Type = isOutput; |
| } |
| |
| if (*I == '*') { |
| isIndirect = true; |
| ++I; |
| } |
| |
| if (I == E) return true; // Just a prefix, like "==" or "~". |
| |
| // Parse the modifiers. |
| bool DoneWithModifiers = false; |
| while (!DoneWithModifiers) { |
| switch (*I) { |
| default: |
| DoneWithModifiers = true; |
| break; |
| case '&': // Early clobber. |
| if (Type != isOutput || // Cannot early clobber anything but output. |
| isEarlyClobber) // Reject &&&&&& |
| return true; |
| isEarlyClobber = true; |
| break; |
| case '%': // Commutative. |
| if (Type == isClobber || // Cannot commute clobbers. |
| isCommutative) // Reject %%%%% |
| return true; |
| isCommutative = true; |
| break; |
| case '#': // Comment. |
| case '*': // Register preferencing. |
| return true; // Not supported. |
| } |
| |
| if (!DoneWithModifiers) { |
| ++I; |
| if (I == E) return true; // Just prefixes and modifiers! |
| } |
| } |
| |
| // Parse the various constraints. |
| while (I != E) { |
| if (*I == '{') { // Physical register reference. |
| // Find the end of the register name. |
| StringRef::iterator ConstraintEnd = std::find(I+1, E, '}'); |
| if (ConstraintEnd == E) return true; // "{foo" |
| pCodes->push_back(std::string(I, ConstraintEnd+1)); |
| I = ConstraintEnd+1; |
| } else if (isdigit(*I)) { // Matching Constraint |
| // Maximal munch numbers. |
| StringRef::iterator NumStart = I; |
| while (I != E && isdigit(*I)) |
| ++I; |
| pCodes->push_back(std::string(NumStart, I)); |
| unsigned N = atoi(pCodes->back().c_str()); |
| // Check that this is a valid matching constraint! |
| if (N >= ConstraintsSoFar.size() || ConstraintsSoFar[N].Type != isOutput|| |
| Type != isInput) |
| return true; // Invalid constraint number. |
| |
| // If Operand N already has a matching input, reject this. An output |
| // can't be constrained to the same value as multiple inputs. |
| if (isMultipleAlternative) { |
| InlineAsm::SubConstraintInfo &scInfo = |
| ConstraintsSoFar[N].multipleAlternatives[multipleAlternativeIndex]; |
| if (scInfo.MatchingInput != -1) |
| return true; |
| // Note that operand #n has a matching input. |
| scInfo.MatchingInput = ConstraintsSoFar.size(); |
| } else { |
| if (ConstraintsSoFar[N].hasMatchingInput()) |
| return true; |
| // Note that operand #n has a matching input. |
| ConstraintsSoFar[N].MatchingInput = ConstraintsSoFar.size(); |
| } |
| } else if (*I == '|') { |
| multipleAlternativeIndex++; |
| pCodes = &multipleAlternatives[multipleAlternativeIndex].Codes; |
| ++I; |
| } else if (*I == '^') { |
| // Multi-letter constraint |
| // FIXME: For now assuming these are 2-character constraints. |
| pCodes->push_back(std::string(I+1, I+3)); |
| I += 3; |
| } else { |
| // Single letter constraint. |
| pCodes->push_back(std::string(I, I+1)); |
| ++I; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// selectAlternative - Point this constraint to the alternative constraint |
| /// indicated by the index. |
| void InlineAsm::ConstraintInfo::selectAlternative(unsigned index) { |
| if (index < multipleAlternatives.size()) { |
| currentAlternativeIndex = index; |
| InlineAsm::SubConstraintInfo &scInfo = |
| multipleAlternatives[currentAlternativeIndex]; |
| MatchingInput = scInfo.MatchingInput; |
| Codes = scInfo.Codes; |
| } |
| } |
| |
| InlineAsm::ConstraintInfoVector |
| InlineAsm::ParseConstraints(StringRef Constraints) { |
| ConstraintInfoVector Result; |
| |
| // Scan the constraints string. |
| for (StringRef::iterator I = Constraints.begin(), |
| E = Constraints.end(); I != E; ) { |
| ConstraintInfo Info; |
| |
| // Find the end of this constraint. |
| StringRef::iterator ConstraintEnd = std::find(I, E, ','); |
| |
| if (ConstraintEnd == I || // Empty constraint like ",," |
| Info.Parse(StringRef(I, ConstraintEnd-I), Result)) { |
| Result.clear(); // Erroneous constraint? |
| break; |
| } |
| |
| Result.push_back(Info); |
| |
| // ConstraintEnd may be either the next comma or the end of the string. In |
| // the former case, we skip the comma. |
| I = ConstraintEnd; |
| if (I != E) { |
| ++I; |
| if (I == E) { Result.clear(); break; } // don't allow "xyz," |
| } |
| } |
| |
| return Result; |
| } |
| |
| /// Verify - Verify that the specified constraint string is reasonable for the |
| /// specified function type, and otherwise validate the constraint string. |
| bool InlineAsm::Verify(FunctionType *Ty, StringRef ConstStr) { |
| if (Ty->isVarArg()) return false; |
| |
| ConstraintInfoVector Constraints = ParseConstraints(ConstStr); |
| |
| // Error parsing constraints. |
| if (Constraints.empty() && !ConstStr.empty()) return false; |
| |
| unsigned NumOutputs = 0, NumInputs = 0, NumClobbers = 0; |
| unsigned NumIndirect = 0; |
| |
| for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { |
| switch (Constraints[i].Type) { |
| case InlineAsm::isOutput: |
| if ((NumInputs-NumIndirect) != 0 || NumClobbers != 0) |
| return false; // outputs before inputs and clobbers. |
| if (!Constraints[i].isIndirect) { |
| ++NumOutputs; |
| break; |
| } |
| ++NumIndirect; |
| // FALLTHROUGH for Indirect Outputs. |
| case InlineAsm::isInput: |
| if (NumClobbers) return false; // inputs before clobbers. |
| ++NumInputs; |
| break; |
| case InlineAsm::isClobber: |
| ++NumClobbers; |
| break; |
| } |
| } |
| |
| switch (NumOutputs) { |
| case 0: |
| if (!Ty->getReturnType()->isVoidTy()) return false; |
| break; |
| case 1: |
| if (Ty->getReturnType()->isStructTy()) return false; |
| break; |
| default: |
| StructType *STy = dyn_cast<StructType>(Ty->getReturnType()); |
| if (STy == 0 || STy->getNumElements() != NumOutputs) |
| return false; |
| break; |
| } |
| |
| if (Ty->getNumParams() != NumInputs) return false; |
| return true; |
| } |
| |