| //===- lib/MC/MachObjectWriter.cpp - Mach-O File Writer -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/MC/MCMachObjectWriter.h" |
| #include "llvm/ADT/OwningPtr.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/MC/MCAssembler.h" |
| #include "llvm/MC/MCAsmBackend.h" |
| #include "llvm/MC/MCAsmLayout.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCObjectWriter.h" |
| #include "llvm/MC/MCSectionMachO.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/MCMachOSymbolFlags.h" |
| #include "llvm/MC/MCValue.h" |
| #include "llvm/Object/MachOFormat.h" |
| #include "llvm/Support/ErrorHandling.h" |
| |
| #include <vector> |
| using namespace llvm; |
| using namespace llvm::object; |
| |
| bool MachObjectWriter:: |
| doesSymbolRequireExternRelocation(const MCSymbolData *SD) { |
| // Undefined symbols are always extern. |
| if (SD->Symbol->isUndefined()) |
| return true; |
| |
| // References to weak definitions require external relocation entries; the |
| // definition may not always be the one in the same object file. |
| if (SD->getFlags() & SF_WeakDefinition) |
| return true; |
| |
| // Otherwise, we can use an internal relocation. |
| return false; |
| } |
| |
| bool MachObjectWriter:: |
| MachSymbolData::operator<(const MachSymbolData &RHS) const { |
| return SymbolData->getSymbol().getName() < |
| RHS.SymbolData->getSymbol().getName(); |
| } |
| |
| bool MachObjectWriter::isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind) { |
| const MCFixupKindInfo &FKI = Asm.getBackend().getFixupKindInfo( |
| (MCFixupKind) Kind); |
| |
| return FKI.Flags & MCFixupKindInfo::FKF_IsPCRel; |
| } |
| |
| uint64_t MachObjectWriter::getFragmentAddress(const MCFragment *Fragment, |
| const MCAsmLayout &Layout) const { |
| return getSectionAddress(Fragment->getParent()) + |
| Layout.getFragmentOffset(Fragment); |
| } |
| |
| uint64_t MachObjectWriter::getSymbolAddress(const MCSymbolData* SD, |
| const MCAsmLayout &Layout) const { |
| const MCSymbol &S = SD->getSymbol(); |
| |
| // If this is a variable, then recursively evaluate now. |
| if (S.isVariable()) { |
| MCValue Target; |
| if (!S.getVariableValue()->EvaluateAsRelocatable(Target, Layout)) |
| report_fatal_error("unable to evaluate offset for variable '" + |
| S.getName() + "'"); |
| |
| // Verify that any used symbols are defined. |
| if (Target.getSymA() && Target.getSymA()->getSymbol().isUndefined()) |
| report_fatal_error("unable to evaluate offset to undefined symbol '" + |
| Target.getSymA()->getSymbol().getName() + "'"); |
| if (Target.getSymB() && Target.getSymB()->getSymbol().isUndefined()) |
| report_fatal_error("unable to evaluate offset to undefined symbol '" + |
| Target.getSymB()->getSymbol().getName() + "'"); |
| |
| uint64_t Address = Target.getConstant(); |
| if (Target.getSymA()) |
| Address += getSymbolAddress(&Layout.getAssembler().getSymbolData( |
| Target.getSymA()->getSymbol()), Layout); |
| if (Target.getSymB()) |
| Address += getSymbolAddress(&Layout.getAssembler().getSymbolData( |
| Target.getSymB()->getSymbol()), Layout); |
| return Address; |
| } |
| |
| return getSectionAddress(SD->getFragment()->getParent()) + |
| Layout.getSymbolOffset(SD); |
| } |
| |
| uint64_t MachObjectWriter::getPaddingSize(const MCSectionData *SD, |
| const MCAsmLayout &Layout) const { |
| uint64_t EndAddr = getSectionAddress(SD) + Layout.getSectionAddressSize(SD); |
| unsigned Next = SD->getLayoutOrder() + 1; |
| if (Next >= Layout.getSectionOrder().size()) |
| return 0; |
| |
| const MCSectionData &NextSD = *Layout.getSectionOrder()[Next]; |
| if (NextSD.getSection().isVirtualSection()) |
| return 0; |
| return OffsetToAlignment(EndAddr, NextSD.getAlignment()); |
| } |
| |
| void MachObjectWriter::WriteHeader(unsigned NumLoadCommands, |
| unsigned LoadCommandsSize, |
| bool SubsectionsViaSymbols) { |
| uint32_t Flags = 0; |
| |
| if (SubsectionsViaSymbols) |
| Flags |= macho::HF_SubsectionsViaSymbols; |
| |
| // struct mach_header (28 bytes) or |
| // struct mach_header_64 (32 bytes) |
| |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| Write32(is64Bit() ? macho::HM_Object64 : macho::HM_Object32); |
| |
| Write32(TargetObjectWriter->getCPUType()); |
| Write32(TargetObjectWriter->getCPUSubtype()); |
| |
| Write32(macho::HFT_Object); |
| Write32(NumLoadCommands); |
| Write32(LoadCommandsSize); |
| Write32(Flags); |
| if (is64Bit()) |
| Write32(0); // reserved |
| |
| assert(OS.tell() - Start == |
| (is64Bit() ? macho::Header64Size : macho::Header32Size)); |
| } |
| |
| /// WriteSegmentLoadCommand - Write a segment load command. |
| /// |
| /// \arg NumSections - The number of sections in this segment. |
| /// \arg SectionDataSize - The total size of the sections. |
| void MachObjectWriter::WriteSegmentLoadCommand(unsigned NumSections, |
| uint64_t VMSize, |
| uint64_t SectionDataStartOffset, |
| uint64_t SectionDataSize) { |
| // struct segment_command (56 bytes) or |
| // struct segment_command_64 (72 bytes) |
| |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| unsigned SegmentLoadCommandSize = |
| is64Bit() ? macho::SegmentLoadCommand64Size: |
| macho::SegmentLoadCommand32Size; |
| Write32(is64Bit() ? macho::LCT_Segment64 : macho::LCT_Segment); |
| Write32(SegmentLoadCommandSize + |
| NumSections * (is64Bit() ? macho::Section64Size : |
| macho::Section32Size)); |
| |
| WriteBytes("", 16); |
| if (is64Bit()) { |
| Write64(0); // vmaddr |
| Write64(VMSize); // vmsize |
| Write64(SectionDataStartOffset); // file offset |
| Write64(SectionDataSize); // file size |
| } else { |
| Write32(0); // vmaddr |
| Write32(VMSize); // vmsize |
| Write32(SectionDataStartOffset); // file offset |
| Write32(SectionDataSize); // file size |
| } |
| Write32(0x7); // maxprot |
| Write32(0x7); // initprot |
| Write32(NumSections); |
| Write32(0); // flags |
| |
| assert(OS.tell() - Start == SegmentLoadCommandSize); |
| } |
| |
| void MachObjectWriter::WriteSection(const MCAssembler &Asm, |
| const MCAsmLayout &Layout, |
| const MCSectionData &SD, |
| uint64_t FileOffset, |
| uint64_t RelocationsStart, |
| unsigned NumRelocations) { |
| uint64_t SectionSize = Layout.getSectionAddressSize(&SD); |
| |
| // The offset is unused for virtual sections. |
| if (SD.getSection().isVirtualSection()) { |
| assert(Layout.getSectionFileSize(&SD) == 0 && "Invalid file size!"); |
| FileOffset = 0; |
| } |
| |
| // struct section (68 bytes) or |
| // struct section_64 (80 bytes) |
| |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| const MCSectionMachO &Section = cast<MCSectionMachO>(SD.getSection()); |
| WriteBytes(Section.getSectionName(), 16); |
| WriteBytes(Section.getSegmentName(), 16); |
| if (is64Bit()) { |
| Write64(getSectionAddress(&SD)); // address |
| Write64(SectionSize); // size |
| } else { |
| Write32(getSectionAddress(&SD)); // address |
| Write32(SectionSize); // size |
| } |
| Write32(FileOffset); |
| |
| unsigned Flags = Section.getTypeAndAttributes(); |
| if (SD.hasInstructions()) |
| Flags |= MCSectionMachO::S_ATTR_SOME_INSTRUCTIONS; |
| |
| assert(isPowerOf2_32(SD.getAlignment()) && "Invalid alignment!"); |
| Write32(Log2_32(SD.getAlignment())); |
| Write32(NumRelocations ? RelocationsStart : 0); |
| Write32(NumRelocations); |
| Write32(Flags); |
| Write32(IndirectSymBase.lookup(&SD)); // reserved1 |
| Write32(Section.getStubSize()); // reserved2 |
| if (is64Bit()) |
| Write32(0); // reserved3 |
| |
| assert(OS.tell() - Start == (is64Bit() ? macho::Section64Size : |
| macho::Section32Size)); |
| } |
| |
| void MachObjectWriter::WriteSymtabLoadCommand(uint32_t SymbolOffset, |
| uint32_t NumSymbols, |
| uint32_t StringTableOffset, |
| uint32_t StringTableSize) { |
| // struct symtab_command (24 bytes) |
| |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| Write32(macho::LCT_Symtab); |
| Write32(macho::SymtabLoadCommandSize); |
| Write32(SymbolOffset); |
| Write32(NumSymbols); |
| Write32(StringTableOffset); |
| Write32(StringTableSize); |
| |
| assert(OS.tell() - Start == macho::SymtabLoadCommandSize); |
| } |
| |
| void MachObjectWriter::WriteDysymtabLoadCommand(uint32_t FirstLocalSymbol, |
| uint32_t NumLocalSymbols, |
| uint32_t FirstExternalSymbol, |
| uint32_t NumExternalSymbols, |
| uint32_t FirstUndefinedSymbol, |
| uint32_t NumUndefinedSymbols, |
| uint32_t IndirectSymbolOffset, |
| uint32_t NumIndirectSymbols) { |
| // struct dysymtab_command (80 bytes) |
| |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| Write32(macho::LCT_Dysymtab); |
| Write32(macho::DysymtabLoadCommandSize); |
| Write32(FirstLocalSymbol); |
| Write32(NumLocalSymbols); |
| Write32(FirstExternalSymbol); |
| Write32(NumExternalSymbols); |
| Write32(FirstUndefinedSymbol); |
| Write32(NumUndefinedSymbols); |
| Write32(0); // tocoff |
| Write32(0); // ntoc |
| Write32(0); // modtaboff |
| Write32(0); // nmodtab |
| Write32(0); // extrefsymoff |
| Write32(0); // nextrefsyms |
| Write32(IndirectSymbolOffset); |
| Write32(NumIndirectSymbols); |
| Write32(0); // extreloff |
| Write32(0); // nextrel |
| Write32(0); // locreloff |
| Write32(0); // nlocrel |
| |
| assert(OS.tell() - Start == macho::DysymtabLoadCommandSize); |
| } |
| |
| void MachObjectWriter::WriteNlist(MachSymbolData &MSD, |
| const MCAsmLayout &Layout) { |
| MCSymbolData &Data = *MSD.SymbolData; |
| const MCSymbol &Symbol = Data.getSymbol(); |
| uint8_t Type = 0; |
| uint16_t Flags = Data.getFlags(); |
| uint64_t Address = 0; |
| |
| // Set the N_TYPE bits. See <mach-o/nlist.h>. |
| // |
| // FIXME: Are the prebound or indirect fields possible here? |
| if (Symbol.isUndefined()) |
| Type = macho::STT_Undefined; |
| else if (Symbol.isAbsolute()) |
| Type = macho::STT_Absolute; |
| else |
| Type = macho::STT_Section; |
| |
| // FIXME: Set STAB bits. |
| |
| if (Data.isPrivateExtern()) |
| Type |= macho::STF_PrivateExtern; |
| |
| // Set external bit. |
| if (Data.isExternal() || Symbol.isUndefined()) |
| Type |= macho::STF_External; |
| |
| // Compute the symbol address. |
| if (Symbol.isDefined()) { |
| if (Symbol.isAbsolute()) { |
| Address = cast<MCConstantExpr>(Symbol.getVariableValue())->getValue(); |
| } else { |
| Address = getSymbolAddress(&Data, Layout); |
| } |
| } else if (Data.isCommon()) { |
| // Common symbols are encoded with the size in the address |
| // field, and their alignment in the flags. |
| Address = Data.getCommonSize(); |
| |
| // Common alignment is packed into the 'desc' bits. |
| if (unsigned Align = Data.getCommonAlignment()) { |
| unsigned Log2Size = Log2_32(Align); |
| assert((1U << Log2Size) == Align && "Invalid 'common' alignment!"); |
| if (Log2Size > 15) |
| report_fatal_error("invalid 'common' alignment '" + |
| Twine(Align) + "'"); |
| // FIXME: Keep this mask with the SymbolFlags enumeration. |
| Flags = (Flags & 0xF0FF) | (Log2Size << 8); |
| } |
| } |
| |
| // struct nlist (12 bytes) |
| |
| Write32(MSD.StringIndex); |
| Write8(Type); |
| Write8(MSD.SectionIndex); |
| |
| // The Mach-O streamer uses the lowest 16-bits of the flags for the 'desc' |
| // value. |
| Write16(Flags); |
| if (is64Bit()) |
| Write64(Address); |
| else |
| Write32(Address); |
| } |
| |
| void MachObjectWriter::RecordRelocation(const MCAssembler &Asm, |
| const MCAsmLayout &Layout, |
| const MCFragment *Fragment, |
| const MCFixup &Fixup, |
| MCValue Target, |
| uint64_t &FixedValue) { |
| TargetObjectWriter->RecordRelocation(this, Asm, Layout, Fragment, Fixup, |
| Target, FixedValue); |
| } |
| |
| void MachObjectWriter::BindIndirectSymbols(MCAssembler &Asm) { |
| // This is the point where 'as' creates actual symbols for indirect symbols |
| // (in the following two passes). It would be easier for us to do this sooner |
| // when we see the attribute, but that makes getting the order in the symbol |
| // table much more complicated than it is worth. |
| // |
| // FIXME: Revisit this when the dust settles. |
| |
| // Bind non lazy symbol pointers first. |
| unsigned IndirectIndex = 0; |
| for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(), |
| ie = Asm.indirect_symbol_end(); it != ie; ++it, ++IndirectIndex) { |
| const MCSectionMachO &Section = |
| cast<MCSectionMachO>(it->SectionData->getSection()); |
| |
| if (Section.getType() != MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) |
| continue; |
| |
| // Initialize the section indirect symbol base, if necessary. |
| if (!IndirectSymBase.count(it->SectionData)) |
| IndirectSymBase[it->SectionData] = IndirectIndex; |
| |
| Asm.getOrCreateSymbolData(*it->Symbol); |
| } |
| |
| // Then lazy symbol pointers and symbol stubs. |
| IndirectIndex = 0; |
| for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(), |
| ie = Asm.indirect_symbol_end(); it != ie; ++it, ++IndirectIndex) { |
| const MCSectionMachO &Section = |
| cast<MCSectionMachO>(it->SectionData->getSection()); |
| |
| if (Section.getType() != MCSectionMachO::S_LAZY_SYMBOL_POINTERS && |
| Section.getType() != MCSectionMachO::S_SYMBOL_STUBS) |
| continue; |
| |
| // Initialize the section indirect symbol base, if necessary. |
| if (!IndirectSymBase.count(it->SectionData)) |
| IndirectSymBase[it->SectionData] = IndirectIndex; |
| |
| // Set the symbol type to undefined lazy, but only on construction. |
| // |
| // FIXME: Do not hardcode. |
| bool Created; |
| MCSymbolData &Entry = Asm.getOrCreateSymbolData(*it->Symbol, &Created); |
| if (Created) |
| Entry.setFlags(Entry.getFlags() | 0x0001); |
| } |
| } |
| |
| /// ComputeSymbolTable - Compute the symbol table data |
| /// |
| /// \param StringTable [out] - The string table data. |
| /// \param StringIndexMap [out] - Map from symbol names to offsets in the |
| /// string table. |
| void MachObjectWriter:: |
| ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable, |
| std::vector<MachSymbolData> &LocalSymbolData, |
| std::vector<MachSymbolData> &ExternalSymbolData, |
| std::vector<MachSymbolData> &UndefinedSymbolData) { |
| // Build section lookup table. |
| DenseMap<const MCSection*, uint8_t> SectionIndexMap; |
| unsigned Index = 1; |
| for (MCAssembler::iterator it = Asm.begin(), |
| ie = Asm.end(); it != ie; ++it, ++Index) |
| SectionIndexMap[&it->getSection()] = Index; |
| assert(Index <= 256 && "Too many sections!"); |
| |
| // Index 0 is always the empty string. |
| StringMap<uint64_t> StringIndexMap; |
| StringTable += '\x00'; |
| |
| // Build the symbol arrays and the string table, but only for non-local |
| // symbols. |
| // |
| // The particular order that we collect the symbols and create the string |
| // table, then sort the symbols is chosen to match 'as'. Even though it |
| // doesn't matter for correctness, this is important for letting us diff .o |
| // files. |
| for (MCAssembler::symbol_iterator it = Asm.symbol_begin(), |
| ie = Asm.symbol_end(); it != ie; ++it) { |
| const MCSymbol &Symbol = it->getSymbol(); |
| |
| // Ignore non-linker visible symbols. |
| if (!Asm.isSymbolLinkerVisible(it->getSymbol())) |
| continue; |
| |
| if (!it->isExternal() && !Symbol.isUndefined()) |
| continue; |
| |
| uint64_t &Entry = StringIndexMap[Symbol.getName()]; |
| if (!Entry) { |
| Entry = StringTable.size(); |
| StringTable += Symbol.getName(); |
| StringTable += '\x00'; |
| } |
| |
| MachSymbolData MSD; |
| MSD.SymbolData = it; |
| MSD.StringIndex = Entry; |
| |
| if (Symbol.isUndefined()) { |
| MSD.SectionIndex = 0; |
| UndefinedSymbolData.push_back(MSD); |
| } else if (Symbol.isAbsolute()) { |
| MSD.SectionIndex = 0; |
| ExternalSymbolData.push_back(MSD); |
| } else { |
| MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection()); |
| assert(MSD.SectionIndex && "Invalid section index!"); |
| ExternalSymbolData.push_back(MSD); |
| } |
| } |
| |
| // Now add the data for local symbols. |
| for (MCAssembler::symbol_iterator it = Asm.symbol_begin(), |
| ie = Asm.symbol_end(); it != ie; ++it) { |
| const MCSymbol &Symbol = it->getSymbol(); |
| |
| // Ignore non-linker visible symbols. |
| if (!Asm.isSymbolLinkerVisible(it->getSymbol())) |
| continue; |
| |
| if (it->isExternal() || Symbol.isUndefined()) |
| continue; |
| |
| uint64_t &Entry = StringIndexMap[Symbol.getName()]; |
| if (!Entry) { |
| Entry = StringTable.size(); |
| StringTable += Symbol.getName(); |
| StringTable += '\x00'; |
| } |
| |
| MachSymbolData MSD; |
| MSD.SymbolData = it; |
| MSD.StringIndex = Entry; |
| |
| if (Symbol.isAbsolute()) { |
| MSD.SectionIndex = 0; |
| LocalSymbolData.push_back(MSD); |
| } else { |
| MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection()); |
| assert(MSD.SectionIndex && "Invalid section index!"); |
| LocalSymbolData.push_back(MSD); |
| } |
| } |
| |
| // External and undefined symbols are required to be in lexicographic order. |
| std::sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); |
| std::sort(UndefinedSymbolData.begin(), UndefinedSymbolData.end()); |
| |
| // Set the symbol indices. |
| Index = 0; |
| for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i) |
| LocalSymbolData[i].SymbolData->setIndex(Index++); |
| for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i) |
| ExternalSymbolData[i].SymbolData->setIndex(Index++); |
| for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i) |
| UndefinedSymbolData[i].SymbolData->setIndex(Index++); |
| |
| // The string table is padded to a multiple of 4. |
| while (StringTable.size() % 4) |
| StringTable += '\x00'; |
| } |
| |
| void MachObjectWriter::computeSectionAddresses(const MCAssembler &Asm, |
| const MCAsmLayout &Layout) { |
| uint64_t StartAddress = 0; |
| const SmallVectorImpl<MCSectionData*> &Order = Layout.getSectionOrder(); |
| for (int i = 0, n = Order.size(); i != n ; ++i) { |
| const MCSectionData *SD = Order[i]; |
| StartAddress = RoundUpToAlignment(StartAddress, SD->getAlignment()); |
| SectionAddress[SD] = StartAddress; |
| StartAddress += Layout.getSectionAddressSize(SD); |
| |
| // Explicitly pad the section to match the alignment requirements of the |
| // following one. This is for 'gas' compatibility, it shouldn't |
| /// strictly be necessary. |
| StartAddress += getPaddingSize(SD, Layout); |
| } |
| } |
| |
| void MachObjectWriter::ExecutePostLayoutBinding(MCAssembler &Asm, |
| const MCAsmLayout &Layout) { |
| computeSectionAddresses(Asm, Layout); |
| |
| // Create symbol data for any indirect symbols. |
| BindIndirectSymbols(Asm); |
| |
| // Compute symbol table information and bind symbol indices. |
| ComputeSymbolTable(Asm, StringTable, LocalSymbolData, ExternalSymbolData, |
| UndefinedSymbolData); |
| } |
| |
| bool MachObjectWriter:: |
| IsSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, |
| const MCSymbolData &DataA, |
| const MCFragment &FB, |
| bool InSet, |
| bool IsPCRel) const { |
| if (InSet) |
| return true; |
| |
| // The effective address is |
| // addr(atom(A)) + offset(A) |
| // - addr(atom(B)) - offset(B) |
| // and the offsets are not relocatable, so the fixup is fully resolved when |
| // addr(atom(A)) - addr(atom(B)) == 0. |
| const MCSymbolData *A_Base = 0, *B_Base = 0; |
| |
| const MCSymbol &SA = DataA.getSymbol().AliasedSymbol(); |
| const MCSection &SecA = SA.getSection(); |
| const MCSection &SecB = FB.getParent()->getSection(); |
| |
| if (IsPCRel) { |
| // The simple (Darwin, except on x86_64) way of dealing with this was to |
| // assume that any reference to a temporary symbol *must* be a temporary |
| // symbol in the same atom, unless the sections differ. Therefore, any PCrel |
| // relocation to a temporary symbol (in the same section) is fully |
| // resolved. This also works in conjunction with absolutized .set, which |
| // requires the compiler to use .set to absolutize the differences between |
| // symbols which the compiler knows to be assembly time constants, so we |
| // don't need to worry about considering symbol differences fully resolved. |
| |
| if (!Asm.getBackend().hasReliableSymbolDifference()) { |
| if (!SA.isTemporary() || !SA.isInSection() || &SecA != &SecB) |
| return false; |
| return true; |
| } |
| // For Darwin x86_64, there is one special case when the reference IsPCRel. |
| // If the fragment with the reference does not have a base symbol but meets |
| // the simple way of dealing with this, in that it is a temporary symbol in |
| // the same atom then it is assumed to be fully resolved. This is needed so |
| // a relocation entry is not created and so the static linker does not |
| // mess up the reference later. |
| else if(!FB.getAtom() && |
| SA.isTemporary() && SA.isInSection() && &SecA == &SecB){ |
| return true; |
| } |
| } else { |
| if (!TargetObjectWriter->useAggressiveSymbolFolding()) |
| return false; |
| } |
| |
| const MCFragment *FA = Asm.getSymbolData(SA).getFragment(); |
| |
| // Bail if the symbol has no fragment. |
| if (!FA) |
| return false; |
| |
| A_Base = FA->getAtom(); |
| if (!A_Base) |
| return false; |
| |
| B_Base = FB.getAtom(); |
| if (!B_Base) |
| return false; |
| |
| // If the atoms are the same, they are guaranteed to have the same address. |
| if (A_Base == B_Base) |
| return true; |
| |
| // Otherwise, we can't prove this is fully resolved. |
| return false; |
| } |
| |
| void MachObjectWriter::WriteObject(MCAssembler &Asm, |
| const MCAsmLayout &Layout) { |
| unsigned NumSections = Asm.size(); |
| |
| // The section data starts after the header, the segment load command (and |
| // section headers) and the symbol table. |
| unsigned NumLoadCommands = 1; |
| uint64_t LoadCommandsSize = is64Bit() ? |
| macho::SegmentLoadCommand64Size + NumSections * macho::Section64Size : |
| macho::SegmentLoadCommand32Size + NumSections * macho::Section32Size; |
| |
| // Add the symbol table load command sizes, if used. |
| unsigned NumSymbols = LocalSymbolData.size() + ExternalSymbolData.size() + |
| UndefinedSymbolData.size(); |
| if (NumSymbols) { |
| NumLoadCommands += 2; |
| LoadCommandsSize += (macho::SymtabLoadCommandSize + |
| macho::DysymtabLoadCommandSize); |
| } |
| |
| // Compute the total size of the section data, as well as its file size and vm |
| // size. |
| uint64_t SectionDataStart = (is64Bit() ? macho::Header64Size : |
| macho::Header32Size) + LoadCommandsSize; |
| uint64_t SectionDataSize = 0; |
| uint64_t SectionDataFileSize = 0; |
| uint64_t VMSize = 0; |
| for (MCAssembler::const_iterator it = Asm.begin(), |
| ie = Asm.end(); it != ie; ++it) { |
| const MCSectionData &SD = *it; |
| uint64_t Address = getSectionAddress(&SD); |
| uint64_t Size = Layout.getSectionAddressSize(&SD); |
| uint64_t FileSize = Layout.getSectionFileSize(&SD); |
| FileSize += getPaddingSize(&SD, Layout); |
| |
| VMSize = std::max(VMSize, Address + Size); |
| |
| if (SD.getSection().isVirtualSection()) |
| continue; |
| |
| SectionDataSize = std::max(SectionDataSize, Address + Size); |
| SectionDataFileSize = std::max(SectionDataFileSize, Address + FileSize); |
| } |
| |
| // The section data is padded to 4 bytes. |
| // |
| // FIXME: Is this machine dependent? |
| unsigned SectionDataPadding = OffsetToAlignment(SectionDataFileSize, 4); |
| SectionDataFileSize += SectionDataPadding; |
| |
| // Write the prolog, starting with the header and load command... |
| WriteHeader(NumLoadCommands, LoadCommandsSize, |
| Asm.getSubsectionsViaSymbols()); |
| WriteSegmentLoadCommand(NumSections, VMSize, |
| SectionDataStart, SectionDataSize); |
| |
| // ... and then the section headers. |
| uint64_t RelocTableEnd = SectionDataStart + SectionDataFileSize; |
| for (MCAssembler::const_iterator it = Asm.begin(), |
| ie = Asm.end(); it != ie; ++it) { |
| std::vector<macho::RelocationEntry> &Relocs = Relocations[it]; |
| unsigned NumRelocs = Relocs.size(); |
| uint64_t SectionStart = SectionDataStart + getSectionAddress(it); |
| WriteSection(Asm, Layout, *it, SectionStart, RelocTableEnd, NumRelocs); |
| RelocTableEnd += NumRelocs * macho::RelocationInfoSize; |
| } |
| |
| // Write the symbol table load command, if used. |
| if (NumSymbols) { |
| unsigned FirstLocalSymbol = 0; |
| unsigned NumLocalSymbols = LocalSymbolData.size(); |
| unsigned FirstExternalSymbol = FirstLocalSymbol + NumLocalSymbols; |
| unsigned NumExternalSymbols = ExternalSymbolData.size(); |
| unsigned FirstUndefinedSymbol = FirstExternalSymbol + NumExternalSymbols; |
| unsigned NumUndefinedSymbols = UndefinedSymbolData.size(); |
| unsigned NumIndirectSymbols = Asm.indirect_symbol_size(); |
| unsigned NumSymTabSymbols = |
| NumLocalSymbols + NumExternalSymbols + NumUndefinedSymbols; |
| uint64_t IndirectSymbolSize = NumIndirectSymbols * 4; |
| uint64_t IndirectSymbolOffset = 0; |
| |
| // If used, the indirect symbols are written after the section data. |
| if (NumIndirectSymbols) |
| IndirectSymbolOffset = RelocTableEnd; |
| |
| // The symbol table is written after the indirect symbol data. |
| uint64_t SymbolTableOffset = RelocTableEnd + IndirectSymbolSize; |
| |
| // The string table is written after symbol table. |
| uint64_t StringTableOffset = |
| SymbolTableOffset + NumSymTabSymbols * (is64Bit() ? macho::Nlist64Size : |
| macho::Nlist32Size); |
| WriteSymtabLoadCommand(SymbolTableOffset, NumSymTabSymbols, |
| StringTableOffset, StringTable.size()); |
| |
| WriteDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols, |
| FirstExternalSymbol, NumExternalSymbols, |
| FirstUndefinedSymbol, NumUndefinedSymbols, |
| IndirectSymbolOffset, NumIndirectSymbols); |
| } |
| |
| // Write the actual section data. |
| for (MCAssembler::const_iterator it = Asm.begin(), |
| ie = Asm.end(); it != ie; ++it) { |
| Asm.WriteSectionData(it, Layout); |
| |
| uint64_t Pad = getPaddingSize(it, Layout); |
| for (unsigned int i = 0; i < Pad; ++i) |
| Write8(0); |
| } |
| |
| // Write the extra padding. |
| WriteZeros(SectionDataPadding); |
| |
| // Write the relocation entries. |
| for (MCAssembler::const_iterator it = Asm.begin(), |
| ie = Asm.end(); it != ie; ++it) { |
| // Write the section relocation entries, in reverse order to match 'as' |
| // (approximately, the exact algorithm is more complicated than this). |
| std::vector<macho::RelocationEntry> &Relocs = Relocations[it]; |
| for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { |
| Write32(Relocs[e - i - 1].Word0); |
| Write32(Relocs[e - i - 1].Word1); |
| } |
| } |
| |
| // Write the symbol table data, if used. |
| if (NumSymbols) { |
| // Write the indirect symbol entries. |
| for (MCAssembler::const_indirect_symbol_iterator |
| it = Asm.indirect_symbol_begin(), |
| ie = Asm.indirect_symbol_end(); it != ie; ++it) { |
| // Indirect symbols in the non lazy symbol pointer section have some |
| // special handling. |
| const MCSectionMachO &Section = |
| static_cast<const MCSectionMachO&>(it->SectionData->getSection()); |
| if (Section.getType() == MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) { |
| // If this symbol is defined and internal, mark it as such. |
| if (it->Symbol->isDefined() && |
| !Asm.getSymbolData(*it->Symbol).isExternal()) { |
| uint32_t Flags = macho::ISF_Local; |
| if (it->Symbol->isAbsolute()) |
| Flags |= macho::ISF_Absolute; |
| Write32(Flags); |
| continue; |
| } |
| } |
| |
| Write32(Asm.getSymbolData(*it->Symbol).getIndex()); |
| } |
| |
| // FIXME: Check that offsets match computed ones. |
| |
| // Write the symbol table entries. |
| for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i) |
| WriteNlist(LocalSymbolData[i], Layout); |
| for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i) |
| WriteNlist(ExternalSymbolData[i], Layout); |
| for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i) |
| WriteNlist(UndefinedSymbolData[i], Layout); |
| |
| // Write the string table. |
| OS << StringTable.str(); |
| } |
| } |
| |
| MCObjectWriter *llvm::createMachObjectWriter(MCMachObjectTargetWriter *MOTW, |
| raw_ostream &OS, |
| bool IsLittleEndian) { |
| return new MachObjectWriter(MOTW, OS, IsLittleEndian); |
| } |