| //===-- APInt.cpp - Implement APInt class ---------------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements a class to represent arbitrary precision integer | 
 | // constant values and provide a variety of arithmetic operations on them. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/ADT/APInt.h" | 
 | #include "llvm/ADT/ArrayRef.h" | 
 | #include "llvm/ADT/FoldingSet.h" | 
 | #include "llvm/ADT/Hashing.h" | 
 | #include "llvm/ADT/SmallString.h" | 
 | #include "llvm/ADT/StringRef.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <climits> | 
 | #include <cmath> | 
 | #include <cstdlib> | 
 | #include <cstring> | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "apint" | 
 |  | 
 | /// A utility function for allocating memory, checking for allocation failures, | 
 | /// and ensuring the contents are zeroed. | 
 | inline static uint64_t* getClearedMemory(unsigned numWords) { | 
 |   uint64_t * result = new uint64_t[numWords]; | 
 |   assert(result && "APInt memory allocation fails!"); | 
 |   memset(result, 0, numWords * sizeof(uint64_t)); | 
 |   return result; | 
 | } | 
 |  | 
 | /// A utility function for allocating memory and checking for allocation | 
 | /// failure.  The content is not zeroed. | 
 | inline static uint64_t* getMemory(unsigned numWords) { | 
 |   uint64_t * result = new uint64_t[numWords]; | 
 |   assert(result && "APInt memory allocation fails!"); | 
 |   return result; | 
 | } | 
 |  | 
 | /// A utility function that converts a character to a digit. | 
 | inline static unsigned getDigit(char cdigit, uint8_t radix) { | 
 |   unsigned r; | 
 |  | 
 |   if (radix == 16 || radix == 36) { | 
 |     r = cdigit - '0'; | 
 |     if (r <= 9) | 
 |       return r; | 
 |  | 
 |     r = cdigit - 'A'; | 
 |     if (r <= radix - 11U) | 
 |       return r + 10; | 
 |  | 
 |     r = cdigit - 'a'; | 
 |     if (r <= radix - 11U) | 
 |       return r + 10; | 
 |      | 
 |     radix = 10; | 
 |   } | 
 |  | 
 |   r = cdigit - '0'; | 
 |   if (r < radix) | 
 |     return r; | 
 |  | 
 |   return -1U; | 
 | } | 
 |  | 
 |  | 
 | void APInt::initSlowCase(uint64_t val, bool isSigned) { | 
 |   pVal = getClearedMemory(getNumWords()); | 
 |   pVal[0] = val; | 
 |   if (isSigned && int64_t(val) < 0) | 
 |     for (unsigned i = 1; i < getNumWords(); ++i) | 
 |       pVal[i] = -1ULL; | 
 | } | 
 |  | 
 | void APInt::initSlowCase(const APInt& that) { | 
 |   pVal = getMemory(getNumWords()); | 
 |   memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); | 
 | } | 
 |  | 
 | void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { | 
 |   assert(BitWidth && "Bitwidth too small"); | 
 |   assert(bigVal.data() && "Null pointer detected!"); | 
 |   if (isSingleWord()) | 
 |     VAL = bigVal[0]; | 
 |   else { | 
 |     // Get memory, cleared to 0 | 
 |     pVal = getClearedMemory(getNumWords()); | 
 |     // Calculate the number of words to copy | 
 |     unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); | 
 |     // Copy the words from bigVal to pVal | 
 |     memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE); | 
 |   } | 
 |   // Make sure unused high bits are cleared | 
 |   clearUnusedBits(); | 
 | } | 
 |  | 
 | APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) | 
 |   : BitWidth(numBits), VAL(0) { | 
 |   initFromArray(bigVal); | 
 | } | 
 |  | 
 | APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) | 
 |   : BitWidth(numBits), VAL(0) { | 
 |   initFromArray(makeArrayRef(bigVal, numWords)); | 
 | } | 
 |  | 
 | APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) | 
 |   : BitWidth(numbits), VAL(0) { | 
 |   assert(BitWidth && "Bitwidth too small"); | 
 |   fromString(numbits, Str, radix); | 
 | } | 
 |  | 
 | APInt& APInt::AssignSlowCase(const APInt& RHS) { | 
 |   // Don't do anything for X = X | 
 |   if (this == &RHS) | 
 |     return *this; | 
 |  | 
 |   if (BitWidth == RHS.getBitWidth()) { | 
 |     // assume same bit-width single-word case is already handled | 
 |     assert(!isSingleWord()); | 
 |     memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   if (isSingleWord()) { | 
 |     // assume case where both are single words is already handled | 
 |     assert(!RHS.isSingleWord()); | 
 |     VAL = 0; | 
 |     pVal = getMemory(RHS.getNumWords()); | 
 |     memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); | 
 |   } else if (getNumWords() == RHS.getNumWords()) | 
 |     memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); | 
 |   else if (RHS.isSingleWord()) { | 
 |     delete [] pVal; | 
 |     VAL = RHS.VAL; | 
 |   } else { | 
 |     delete [] pVal; | 
 |     pVal = getMemory(RHS.getNumWords()); | 
 |     memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); | 
 |   } | 
 |   BitWidth = RHS.BitWidth; | 
 |   return clearUnusedBits(); | 
 | } | 
 |  | 
 | APInt& APInt::operator=(uint64_t RHS) { | 
 |   if (isSingleWord()) | 
 |     VAL = RHS; | 
 |   else { | 
 |     pVal[0] = RHS; | 
 |     memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); | 
 |   } | 
 |   return clearUnusedBits(); | 
 | } | 
 |  | 
 | /// This method 'profiles' an APInt for use with FoldingSet. | 
 | void APInt::Profile(FoldingSetNodeID& ID) const { | 
 |   ID.AddInteger(BitWidth); | 
 |  | 
 |   if (isSingleWord()) { | 
 |     ID.AddInteger(VAL); | 
 |     return; | 
 |   } | 
 |  | 
 |   unsigned NumWords = getNumWords(); | 
 |   for (unsigned i = 0; i < NumWords; ++i) | 
 |     ID.AddInteger(pVal[i]); | 
 | } | 
 |  | 
 | /// This function adds a single "digit" integer, y, to the multiple | 
 | /// "digit" integer array,  x[]. x[] is modified to reflect the addition and | 
 | /// 1 is returned if there is a carry out, otherwise 0 is returned. | 
 | /// @returns the carry of the addition. | 
 | static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { | 
 |   for (unsigned i = 0; i < len; ++i) { | 
 |     dest[i] = y + x[i]; | 
 |     if (dest[i] < y) | 
 |       y = 1; // Carry one to next digit. | 
 |     else { | 
 |       y = 0; // No need to carry so exit early | 
 |       break; | 
 |     } | 
 |   } | 
 |   return y; | 
 | } | 
 |  | 
 | /// @brief Prefix increment operator. Increments the APInt by one. | 
 | APInt& APInt::operator++() { | 
 |   if (isSingleWord()) | 
 |     ++VAL; | 
 |   else | 
 |     add_1(pVal, pVal, getNumWords(), 1); | 
 |   return clearUnusedBits(); | 
 | } | 
 |  | 
 | /// This function subtracts a single "digit" (64-bit word), y, from | 
 | /// the multi-digit integer array, x[], propagating the borrowed 1 value until | 
 | /// no further borrowing is neeeded or it runs out of "digits" in x.  The result | 
 | /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. | 
 | /// In other words, if y > x then this function returns 1, otherwise 0. | 
 | /// @returns the borrow out of the subtraction | 
 | static bool sub_1(uint64_t x[], unsigned len, uint64_t y) { | 
 |   for (unsigned i = 0; i < len; ++i) { | 
 |     uint64_t X = x[i]; | 
 |     x[i] -= y; | 
 |     if (y > X) | 
 |       y = 1;  // We have to "borrow 1" from next "digit" | 
 |     else { | 
 |       y = 0;  // No need to borrow | 
 |       break;  // Remaining digits are unchanged so exit early | 
 |     } | 
 |   } | 
 |   return bool(y); | 
 | } | 
 |  | 
 | /// @brief Prefix decrement operator. Decrements the APInt by one. | 
 | APInt& APInt::operator--() { | 
 |   if (isSingleWord()) | 
 |     --VAL; | 
 |   else | 
 |     sub_1(pVal, getNumWords(), 1); | 
 |   return clearUnusedBits(); | 
 | } | 
 |  | 
 | /// This function adds the integer array x to the integer array Y and | 
 | /// places the result in dest. | 
 | /// @returns the carry out from the addition | 
 | /// @brief General addition of 64-bit integer arrays | 
 | static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, | 
 |                 unsigned len) { | 
 |   bool carry = false; | 
 |   for (unsigned i = 0; i< len; ++i) { | 
 |     uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x | 
 |     dest[i] = x[i] + y[i] + carry; | 
 |     carry = dest[i] < limit || (carry && dest[i] == limit); | 
 |   } | 
 |   return carry; | 
 | } | 
 |  | 
 | /// Adds the RHS APint to this APInt. | 
 | /// @returns this, after addition of RHS. | 
 | /// @brief Addition assignment operator. | 
 | APInt& APInt::operator+=(const APInt& RHS) { | 
 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
 |   if (isSingleWord()) | 
 |     VAL += RHS.VAL; | 
 |   else { | 
 |     add(pVal, pVal, RHS.pVal, getNumWords()); | 
 |   } | 
 |   return clearUnusedBits(); | 
 | } | 
 |  | 
 | APInt& APInt::operator+=(uint64_t RHS) { | 
 |   if (isSingleWord()) | 
 |     VAL += RHS; | 
 |   else | 
 |     add_1(pVal, pVal, getNumWords(), RHS); | 
 |   return clearUnusedBits(); | 
 | } | 
 |  | 
 | /// Subtracts the integer array y from the integer array x | 
 | /// @returns returns the borrow out. | 
 | /// @brief Generalized subtraction of 64-bit integer arrays. | 
 | static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, | 
 |                 unsigned len) { | 
 |   bool borrow = false; | 
 |   for (unsigned i = 0; i < len; ++i) { | 
 |     uint64_t x_tmp = borrow ? x[i] - 1 : x[i]; | 
 |     borrow = y[i] > x_tmp || (borrow && x[i] == 0); | 
 |     dest[i] = x_tmp - y[i]; | 
 |   } | 
 |   return borrow; | 
 | } | 
 |  | 
 | /// Subtracts the RHS APInt from this APInt | 
 | /// @returns this, after subtraction | 
 | /// @brief Subtraction assignment operator. | 
 | APInt& APInt::operator-=(const APInt& RHS) { | 
 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
 |   if (isSingleWord()) | 
 |     VAL -= RHS.VAL; | 
 |   else | 
 |     sub(pVal, pVal, RHS.pVal, getNumWords()); | 
 |   return clearUnusedBits(); | 
 | } | 
 |  | 
 | APInt& APInt::operator-=(uint64_t RHS) { | 
 |   if (isSingleWord()) | 
 |     VAL -= RHS; | 
 |   else | 
 |     sub_1(pVal, getNumWords(), RHS); | 
 |   return clearUnusedBits(); | 
 | } | 
 |  | 
 | /// Multiplies an integer array, x, by a uint64_t integer and places the result | 
 | /// into dest. | 
 | /// @returns the carry out of the multiplication. | 
 | /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer. | 
 | static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { | 
 |   // Split y into high 32-bit part (hy)  and low 32-bit part (ly) | 
 |   uint64_t ly = y & 0xffffffffULL, hy = y >> 32; | 
 |   uint64_t carry = 0; | 
 |  | 
 |   // For each digit of x. | 
 |   for (unsigned i = 0; i < len; ++i) { | 
 |     // Split x into high and low words | 
 |     uint64_t lx = x[i] & 0xffffffffULL; | 
 |     uint64_t hx = x[i] >> 32; | 
 |     // hasCarry - A flag to indicate if there is a carry to the next digit. | 
 |     // hasCarry == 0, no carry | 
 |     // hasCarry == 1, has carry | 
 |     // hasCarry == 2, no carry and the calculation result == 0. | 
 |     uint8_t hasCarry = 0; | 
 |     dest[i] = carry + lx * ly; | 
 |     // Determine if the add above introduces carry. | 
 |     hasCarry = (dest[i] < carry) ? 1 : 0; | 
 |     carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); | 
 |     // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + | 
 |     // (2^32 - 1) + 2^32 = 2^64. | 
 |     hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); | 
 |  | 
 |     carry += (lx * hy) & 0xffffffffULL; | 
 |     dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); | 
 |     carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + | 
 |             (carry >> 32) + ((lx * hy) >> 32) + hx * hy; | 
 |   } | 
 |   return carry; | 
 | } | 
 |  | 
 | /// Multiplies integer array x by integer array y and stores the result into | 
 | /// the integer array dest. Note that dest's size must be >= xlen + ylen. | 
 | /// @brief Generalized multiplicate of integer arrays. | 
 | static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[], | 
 |                 unsigned ylen) { | 
 |   dest[xlen] = mul_1(dest, x, xlen, y[0]); | 
 |   for (unsigned i = 1; i < ylen; ++i) { | 
 |     uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; | 
 |     uint64_t carry = 0, lx = 0, hx = 0; | 
 |     for (unsigned j = 0; j < xlen; ++j) { | 
 |       lx = x[j] & 0xffffffffULL; | 
 |       hx = x[j] >> 32; | 
 |       // hasCarry - A flag to indicate if has carry. | 
 |       // hasCarry == 0, no carry | 
 |       // hasCarry == 1, has carry | 
 |       // hasCarry == 2, no carry and the calculation result == 0. | 
 |       uint8_t hasCarry = 0; | 
 |       uint64_t resul = carry + lx * ly; | 
 |       hasCarry = (resul < carry) ? 1 : 0; | 
 |       carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); | 
 |       hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); | 
 |  | 
 |       carry += (lx * hy) & 0xffffffffULL; | 
 |       resul = (carry << 32) | (resul & 0xffffffffULL); | 
 |       dest[i+j] += resul; | 
 |       carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ | 
 |               (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + | 
 |               ((lx * hy) >> 32) + hx * hy; | 
 |     } | 
 |     dest[i+xlen] = carry; | 
 |   } | 
 | } | 
 |  | 
 | APInt& APInt::operator*=(const APInt& RHS) { | 
 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
 |   if (isSingleWord()) { | 
 |     VAL *= RHS.VAL; | 
 |     clearUnusedBits(); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Get some bit facts about LHS and check for zero | 
 |   unsigned lhsBits = getActiveBits(); | 
 |   unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; | 
 |   if (!lhsWords) | 
 |     // 0 * X ===> 0 | 
 |     return *this; | 
 |  | 
 |   // Get some bit facts about RHS and check for zero | 
 |   unsigned rhsBits = RHS.getActiveBits(); | 
 |   unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; | 
 |   if (!rhsWords) { | 
 |     // X * 0 ===> 0 | 
 |     clearAllBits(); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Allocate space for the result | 
 |   unsigned destWords = rhsWords + lhsWords; | 
 |   uint64_t *dest = getMemory(destWords); | 
 |  | 
 |   // Perform the long multiply | 
 |   mul(dest, pVal, lhsWords, RHS.pVal, rhsWords); | 
 |  | 
 |   // Copy result back into *this | 
 |   clearAllBits(); | 
 |   unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; | 
 |   memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE); | 
 |   clearUnusedBits(); | 
 |  | 
 |   // delete dest array and return | 
 |   delete[] dest; | 
 |   return *this; | 
 | } | 
 |  | 
 | APInt& APInt::operator&=(const APInt& RHS) { | 
 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
 |   if (isSingleWord()) { | 
 |     VAL &= RHS.VAL; | 
 |     return *this; | 
 |   } | 
 |   unsigned numWords = getNumWords(); | 
 |   for (unsigned i = 0; i < numWords; ++i) | 
 |     pVal[i] &= RHS.pVal[i]; | 
 |   return *this; | 
 | } | 
 |  | 
 | APInt& APInt::operator|=(const APInt& RHS) { | 
 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
 |   if (isSingleWord()) { | 
 |     VAL |= RHS.VAL; | 
 |     return *this; | 
 |   } | 
 |   unsigned numWords = getNumWords(); | 
 |   for (unsigned i = 0; i < numWords; ++i) | 
 |     pVal[i] |= RHS.pVal[i]; | 
 |   return *this; | 
 | } | 
 |  | 
 | APInt& APInt::operator^=(const APInt& RHS) { | 
 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
 |   if (isSingleWord()) { | 
 |     VAL ^= RHS.VAL; | 
 |     this->clearUnusedBits(); | 
 |     return *this; | 
 |   } | 
 |   unsigned numWords = getNumWords(); | 
 |   for (unsigned i = 0; i < numWords; ++i) | 
 |     pVal[i] ^= RHS.pVal[i]; | 
 |   return clearUnusedBits(); | 
 | } | 
 |  | 
 | APInt APInt::AndSlowCase(const APInt& RHS) const { | 
 |   unsigned numWords = getNumWords(); | 
 |   uint64_t* val = getMemory(numWords); | 
 |   for (unsigned i = 0; i < numWords; ++i) | 
 |     val[i] = pVal[i] & RHS.pVal[i]; | 
 |   return APInt(val, getBitWidth()); | 
 | } | 
 |  | 
 | APInt APInt::OrSlowCase(const APInt& RHS) const { | 
 |   unsigned numWords = getNumWords(); | 
 |   uint64_t *val = getMemory(numWords); | 
 |   for (unsigned i = 0; i < numWords; ++i) | 
 |     val[i] = pVal[i] | RHS.pVal[i]; | 
 |   return APInt(val, getBitWidth()); | 
 | } | 
 |  | 
 | APInt APInt::XorSlowCase(const APInt& RHS) const { | 
 |   unsigned numWords = getNumWords(); | 
 |   uint64_t *val = getMemory(numWords); | 
 |   for (unsigned i = 0; i < numWords; ++i) | 
 |     val[i] = pVal[i] ^ RHS.pVal[i]; | 
 |  | 
 |   APInt Result(val, getBitWidth()); | 
 |   // 0^0==1 so clear the high bits in case they got set. | 
 |   Result.clearUnusedBits(); | 
 |   return Result; | 
 | } | 
 |  | 
 | APInt APInt::operator*(const APInt& RHS) const { | 
 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
 |   if (isSingleWord()) | 
 |     return APInt(BitWidth, VAL * RHS.VAL); | 
 |   APInt Result(*this); | 
 |   Result *= RHS; | 
 |   return Result; | 
 | } | 
 |  | 
 | bool APInt::EqualSlowCase(const APInt& RHS) const { | 
 |   return std::equal(pVal, pVal + getNumWords(), RHS.pVal); | 
 | } | 
 |  | 
 | bool APInt::EqualSlowCase(uint64_t Val) const { | 
 |   unsigned n = getActiveBits(); | 
 |   if (n <= APINT_BITS_PER_WORD) | 
 |     return pVal[0] == Val; | 
 |   else | 
 |     return false; | 
 | } | 
 |  | 
 | bool APInt::ult(const APInt& RHS) const { | 
 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); | 
 |   if (isSingleWord()) | 
 |     return VAL < RHS.VAL; | 
 |  | 
 |   // Get active bit length of both operands | 
 |   unsigned n1 = getActiveBits(); | 
 |   unsigned n2 = RHS.getActiveBits(); | 
 |  | 
 |   // If magnitude of LHS is less than RHS, return true. | 
 |   if (n1 < n2) | 
 |     return true; | 
 |  | 
 |   // If magnitude of RHS is greather than LHS, return false. | 
 |   if (n2 < n1) | 
 |     return false; | 
 |  | 
 |   // If they bot fit in a word, just compare the low order word | 
 |   if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD) | 
 |     return pVal[0] < RHS.pVal[0]; | 
 |  | 
 |   // Otherwise, compare all words | 
 |   unsigned topWord = whichWord(std::max(n1,n2)-1); | 
 |   for (int i = topWord; i >= 0; --i) { | 
 |     if (pVal[i] > RHS.pVal[i]) | 
 |       return false; | 
 |     if (pVal[i] < RHS.pVal[i]) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool APInt::slt(const APInt& RHS) const { | 
 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); | 
 |   if (isSingleWord()) { | 
 |     int64_t lhsSext = SignExtend64(VAL, BitWidth); | 
 |     int64_t rhsSext = SignExtend64(RHS.VAL, BitWidth); | 
 |     return lhsSext < rhsSext; | 
 |   } | 
 |  | 
 |   bool lhsNeg = isNegative(); | 
 |   bool rhsNeg = RHS.isNegative(); | 
 |  | 
 |   // If the sign bits don't match, then (LHS < RHS) if LHS is negative | 
 |   if (lhsNeg != rhsNeg) | 
 |     return lhsNeg; | 
 |  | 
 |   // Otherwise we can just use an unsigned comparision, because even negative | 
 |   // numbers compare correctly this way if both have the same signed-ness. | 
 |   return ult(RHS); | 
 | } | 
 |  | 
 | void APInt::setBit(unsigned bitPosition) { | 
 |   if (isSingleWord()) | 
 |     VAL |= maskBit(bitPosition); | 
 |   else | 
 |     pVal[whichWord(bitPosition)] |= maskBit(bitPosition); | 
 | } | 
 |  | 
 | /// Set the given bit to 0 whose position is given as "bitPosition". | 
 | /// @brief Set a given bit to 0. | 
 | void APInt::clearBit(unsigned bitPosition) { | 
 |   if (isSingleWord()) | 
 |     VAL &= ~maskBit(bitPosition); | 
 |   else | 
 |     pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); | 
 | } | 
 |  | 
 | /// @brief Toggle every bit to its opposite value. | 
 |  | 
 | /// Toggle a given bit to its opposite value whose position is given | 
 | /// as "bitPosition". | 
 | /// @brief Toggles a given bit to its opposite value. | 
 | void APInt::flipBit(unsigned bitPosition) { | 
 |   assert(bitPosition < BitWidth && "Out of the bit-width range!"); | 
 |   if ((*this)[bitPosition]) clearBit(bitPosition); | 
 |   else setBit(bitPosition); | 
 | } | 
 |  | 
 | unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { | 
 |   assert(!str.empty() && "Invalid string length"); | 
 |   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||  | 
 |           radix == 36) && | 
 |          "Radix should be 2, 8, 10, 16, or 36!"); | 
 |  | 
 |   size_t slen = str.size(); | 
 |  | 
 |   // Each computation below needs to know if it's negative. | 
 |   StringRef::iterator p = str.begin(); | 
 |   unsigned isNegative = *p == '-'; | 
 |   if (*p == '-' || *p == '+') { | 
 |     p++; | 
 |     slen--; | 
 |     assert(slen && "String is only a sign, needs a value."); | 
 |   } | 
 |  | 
 |   // For radixes of power-of-two values, the bits required is accurately and | 
 |   // easily computed | 
 |   if (radix == 2) | 
 |     return slen + isNegative; | 
 |   if (radix == 8) | 
 |     return slen * 3 + isNegative; | 
 |   if (radix == 16) | 
 |     return slen * 4 + isNegative; | 
 |  | 
 |   // FIXME: base 36 | 
 |    | 
 |   // This is grossly inefficient but accurate. We could probably do something | 
 |   // with a computation of roughly slen*64/20 and then adjust by the value of | 
 |   // the first few digits. But, I'm not sure how accurate that could be. | 
 |  | 
 |   // Compute a sufficient number of bits that is always large enough but might | 
 |   // be too large. This avoids the assertion in the constructor. This | 
 |   // calculation doesn't work appropriately for the numbers 0-9, so just use 4 | 
 |   // bits in that case. | 
 |   unsigned sufficient  | 
 |     = radix == 10? (slen == 1 ? 4 : slen * 64/18) | 
 |                  : (slen == 1 ? 7 : slen * 16/3); | 
 |  | 
 |   // Convert to the actual binary value. | 
 |   APInt tmp(sufficient, StringRef(p, slen), radix); | 
 |  | 
 |   // Compute how many bits are required. If the log is infinite, assume we need | 
 |   // just bit. | 
 |   unsigned log = tmp.logBase2(); | 
 |   if (log == (unsigned)-1) { | 
 |     return isNegative + 1; | 
 |   } else { | 
 |     return isNegative + log + 1; | 
 |   } | 
 | } | 
 |  | 
 | hash_code llvm::hash_value(const APInt &Arg) { | 
 |   if (Arg.isSingleWord()) | 
 |     return hash_combine(Arg.VAL); | 
 |  | 
 |   return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords()); | 
 | } | 
 |  | 
 | bool APInt::isSplat(unsigned SplatSizeInBits) const { | 
 |   assert(getBitWidth() % SplatSizeInBits == 0 && | 
 |          "SplatSizeInBits must divide width!"); | 
 |   // We can check that all parts of an integer are equal by making use of a | 
 |   // little trick: rotate and check if it's still the same value. | 
 |   return *this == rotl(SplatSizeInBits); | 
 | } | 
 |  | 
 | /// This function returns the high "numBits" bits of this APInt. | 
 | APInt APInt::getHiBits(unsigned numBits) const { | 
 |   return APIntOps::lshr(*this, BitWidth - numBits); | 
 | } | 
 |  | 
 | /// This function returns the low "numBits" bits of this APInt. | 
 | APInt APInt::getLoBits(unsigned numBits) const { | 
 |   return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), | 
 |                         BitWidth - numBits); | 
 | } | 
 |  | 
 | unsigned APInt::countLeadingZerosSlowCase() const { | 
 |   unsigned Count = 0; | 
 |   for (int i = getNumWords()-1; i >= 0; --i) { | 
 |     integerPart V = pVal[i]; | 
 |     if (V == 0) | 
 |       Count += APINT_BITS_PER_WORD; | 
 |     else { | 
 |       Count += llvm::countLeadingZeros(V); | 
 |       break; | 
 |     } | 
 |   } | 
 |   // Adjust for unused bits in the most significant word (they are zero). | 
 |   unsigned Mod = BitWidth % APINT_BITS_PER_WORD; | 
 |   Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; | 
 |   return Count; | 
 | } | 
 |  | 
 | unsigned APInt::countLeadingOnes() const { | 
 |   if (isSingleWord()) | 
 |     return llvm::countLeadingOnes(VAL << (APINT_BITS_PER_WORD - BitWidth)); | 
 |  | 
 |   unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; | 
 |   unsigned shift; | 
 |   if (!highWordBits) { | 
 |     highWordBits = APINT_BITS_PER_WORD; | 
 |     shift = 0; | 
 |   } else { | 
 |     shift = APINT_BITS_PER_WORD - highWordBits; | 
 |   } | 
 |   int i = getNumWords() - 1; | 
 |   unsigned Count = llvm::countLeadingOnes(pVal[i] << shift); | 
 |   if (Count == highWordBits) { | 
 |     for (i--; i >= 0; --i) { | 
 |       if (pVal[i] == -1ULL) | 
 |         Count += APINT_BITS_PER_WORD; | 
 |       else { | 
 |         Count += llvm::countLeadingOnes(pVal[i]); | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |   return Count; | 
 | } | 
 |  | 
 | unsigned APInt::countTrailingZeros() const { | 
 |   if (isSingleWord()) | 
 |     return std::min(unsigned(llvm::countTrailingZeros(VAL)), BitWidth); | 
 |   unsigned Count = 0; | 
 |   unsigned i = 0; | 
 |   for (; i < getNumWords() && pVal[i] == 0; ++i) | 
 |     Count += APINT_BITS_PER_WORD; | 
 |   if (i < getNumWords()) | 
 |     Count += llvm::countTrailingZeros(pVal[i]); | 
 |   return std::min(Count, BitWidth); | 
 | } | 
 |  | 
 | unsigned APInt::countTrailingOnesSlowCase() const { | 
 |   unsigned Count = 0; | 
 |   unsigned i = 0; | 
 |   for (; i < getNumWords() && pVal[i] == -1ULL; ++i) | 
 |     Count += APINT_BITS_PER_WORD; | 
 |   if (i < getNumWords()) | 
 |     Count += llvm::countTrailingOnes(pVal[i]); | 
 |   return std::min(Count, BitWidth); | 
 | } | 
 |  | 
 | unsigned APInt::countPopulationSlowCase() const { | 
 |   unsigned Count = 0; | 
 |   for (unsigned i = 0; i < getNumWords(); ++i) | 
 |     Count += llvm::countPopulation(pVal[i]); | 
 |   return Count; | 
 | } | 
 |  | 
 | /// Perform a logical right-shift from Src to Dst, which must be equal or | 
 | /// non-overlapping, of Words words, by Shift, which must be less than 64. | 
 | static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words, | 
 |                      unsigned Shift) { | 
 |   uint64_t Carry = 0; | 
 |   for (int I = Words - 1; I >= 0; --I) { | 
 |     uint64_t Tmp = Src[I]; | 
 |     Dst[I] = (Tmp >> Shift) | Carry; | 
 |     Carry = Tmp << (64 - Shift); | 
 |   } | 
 | } | 
 |  | 
 | APInt APInt::byteSwap() const { | 
 |   assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); | 
 |   if (BitWidth == 16) | 
 |     return APInt(BitWidth, ByteSwap_16(uint16_t(VAL))); | 
 |   if (BitWidth == 32) | 
 |     return APInt(BitWidth, ByteSwap_32(unsigned(VAL))); | 
 |   if (BitWidth == 48) { | 
 |     unsigned Tmp1 = unsigned(VAL >> 16); | 
 |     Tmp1 = ByteSwap_32(Tmp1); | 
 |     uint16_t Tmp2 = uint16_t(VAL); | 
 |     Tmp2 = ByteSwap_16(Tmp2); | 
 |     return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1); | 
 |   } | 
 |   if (BitWidth == 64) | 
 |     return APInt(BitWidth, ByteSwap_64(VAL)); | 
 |  | 
 |   APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); | 
 |   for (unsigned I = 0, N = getNumWords(); I != N; ++I) | 
 |     Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]); | 
 |   if (Result.BitWidth != BitWidth) { | 
 |     lshrNear(Result.pVal, Result.pVal, getNumWords(), | 
 |              Result.BitWidth - BitWidth); | 
 |     Result.BitWidth = BitWidth; | 
 |   } | 
 |   return Result; | 
 | } | 
 |  | 
 | APInt APInt::reverseBits() const { | 
 |   switch (BitWidth) { | 
 |   case 64: | 
 |     return APInt(BitWidth, llvm::reverseBits<uint64_t>(VAL)); | 
 |   case 32: | 
 |     return APInt(BitWidth, llvm::reverseBits<uint32_t>(VAL)); | 
 |   case 16: | 
 |     return APInt(BitWidth, llvm::reverseBits<uint16_t>(VAL)); | 
 |   case 8: | 
 |     return APInt(BitWidth, llvm::reverseBits<uint8_t>(VAL)); | 
 |   default: | 
 |     break; | 
 |   } | 
 |  | 
 |   APInt Val(*this); | 
 |   APInt Reversed(*this); | 
 |   int S = BitWidth - 1; | 
 |  | 
 |   const APInt One(BitWidth, 1); | 
 |  | 
 |   for ((Val = Val.lshr(1)); Val != 0; (Val = Val.lshr(1))) { | 
 |     Reversed <<= 1; | 
 |     Reversed |= (Val & One); | 
 |     --S; | 
 |   } | 
 |  | 
 |   Reversed <<= S; | 
 |   return Reversed; | 
 | } | 
 |  | 
 | APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, | 
 |                                             const APInt& API2) { | 
 |   APInt A = API1, B = API2; | 
 |   while (!!B) { | 
 |     APInt T = B; | 
 |     B = APIntOps::urem(A, B); | 
 |     A = T; | 
 |   } | 
 |   return A; | 
 | } | 
 |  | 
 | APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { | 
 |   union { | 
 |     double D; | 
 |     uint64_t I; | 
 |   } T; | 
 |   T.D = Double; | 
 |  | 
 |   // Get the sign bit from the highest order bit | 
 |   bool isNeg = T.I >> 63; | 
 |  | 
 |   // Get the 11-bit exponent and adjust for the 1023 bit bias | 
 |   int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; | 
 |  | 
 |   // If the exponent is negative, the value is < 0 so just return 0. | 
 |   if (exp < 0) | 
 |     return APInt(width, 0u); | 
 |  | 
 |   // Extract the mantissa by clearing the top 12 bits (sign + exponent). | 
 |   uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52; | 
 |  | 
 |   // If the exponent doesn't shift all bits out of the mantissa | 
 |   if (exp < 52) | 
 |     return isNeg ? -APInt(width, mantissa >> (52 - exp)) : | 
 |                     APInt(width, mantissa >> (52 - exp)); | 
 |  | 
 |   // If the client didn't provide enough bits for us to shift the mantissa into | 
 |   // then the result is undefined, just return 0 | 
 |   if (width <= exp - 52) | 
 |     return APInt(width, 0); | 
 |  | 
 |   // Otherwise, we have to shift the mantissa bits up to the right location | 
 |   APInt Tmp(width, mantissa); | 
 |   Tmp = Tmp.shl((unsigned)exp - 52); | 
 |   return isNeg ? -Tmp : Tmp; | 
 | } | 
 |  | 
 | /// This function converts this APInt to a double. | 
 | /// The layout for double is as following (IEEE Standard 754): | 
 | ///  -------------------------------------- | 
 | /// |  Sign    Exponent    Fraction    Bias | | 
 | /// |-------------------------------------- | | 
 | /// |  1[63]   11[62-52]   52[51-00]   1023 | | 
 | ///  -------------------------------------- | 
 | double APInt::roundToDouble(bool isSigned) const { | 
 |  | 
 |   // Handle the simple case where the value is contained in one uint64_t. | 
 |   // It is wrong to optimize getWord(0) to VAL; there might be more than one word. | 
 |   if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { | 
 |     if (isSigned) { | 
 |       int64_t sext = SignExtend64(getWord(0), BitWidth); | 
 |       return double(sext); | 
 |     } else | 
 |       return double(getWord(0)); | 
 |   } | 
 |  | 
 |   // Determine if the value is negative. | 
 |   bool isNeg = isSigned ? (*this)[BitWidth-1] : false; | 
 |  | 
 |   // Construct the absolute value if we're negative. | 
 |   APInt Tmp(isNeg ? -(*this) : (*this)); | 
 |  | 
 |   // Figure out how many bits we're using. | 
 |   unsigned n = Tmp.getActiveBits(); | 
 |  | 
 |   // The exponent (without bias normalization) is just the number of bits | 
 |   // we are using. Note that the sign bit is gone since we constructed the | 
 |   // absolute value. | 
 |   uint64_t exp = n; | 
 |  | 
 |   // Return infinity for exponent overflow | 
 |   if (exp > 1023) { | 
 |     if (!isSigned || !isNeg) | 
 |       return std::numeric_limits<double>::infinity(); | 
 |     else | 
 |       return -std::numeric_limits<double>::infinity(); | 
 |   } | 
 |   exp += 1023; // Increment for 1023 bias | 
 |  | 
 |   // Number of bits in mantissa is 52. To obtain the mantissa value, we must | 
 |   // extract the high 52 bits from the correct words in pVal. | 
 |   uint64_t mantissa; | 
 |   unsigned hiWord = whichWord(n-1); | 
 |   if (hiWord == 0) { | 
 |     mantissa = Tmp.pVal[0]; | 
 |     if (n > 52) | 
 |       mantissa >>= n - 52; // shift down, we want the top 52 bits. | 
 |   } else { | 
 |     assert(hiWord > 0 && "huh?"); | 
 |     uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); | 
 |     uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); | 
 |     mantissa = hibits | lobits; | 
 |   } | 
 |  | 
 |   // The leading bit of mantissa is implicit, so get rid of it. | 
 |   uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; | 
 |   union { | 
 |     double D; | 
 |     uint64_t I; | 
 |   } T; | 
 |   T.I = sign | (exp << 52) | mantissa; | 
 |   return T.D; | 
 | } | 
 |  | 
 | // Truncate to new width. | 
 | APInt APInt::trunc(unsigned width) const { | 
 |   assert(width < BitWidth && "Invalid APInt Truncate request"); | 
 |   assert(width && "Can't truncate to 0 bits"); | 
 |  | 
 |   if (width <= APINT_BITS_PER_WORD) | 
 |     return APInt(width, getRawData()[0]); | 
 |  | 
 |   APInt Result(getMemory(getNumWords(width)), width); | 
 |  | 
 |   // Copy full words. | 
 |   unsigned i; | 
 |   for (i = 0; i != width / APINT_BITS_PER_WORD; i++) | 
 |     Result.pVal[i] = pVal[i]; | 
 |  | 
 |   // Truncate and copy any partial word. | 
 |   unsigned bits = (0 - width) % APINT_BITS_PER_WORD; | 
 |   if (bits != 0) | 
 |     Result.pVal[i] = pVal[i] << bits >> bits; | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | // Sign extend to a new width. | 
 | APInt APInt::sext(unsigned width) const { | 
 |   assert(width > BitWidth && "Invalid APInt SignExtend request"); | 
 |  | 
 |   if (width <= APINT_BITS_PER_WORD) { | 
 |     uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth); | 
 |     val = (int64_t)val >> (width - BitWidth); | 
 |     return APInt(width, val >> (APINT_BITS_PER_WORD - width)); | 
 |   } | 
 |  | 
 |   APInt Result(getMemory(getNumWords(width)), width); | 
 |  | 
 |   // Copy full words. | 
 |   unsigned i; | 
 |   uint64_t word = 0; | 
 |   for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) { | 
 |     word = getRawData()[i]; | 
 |     Result.pVal[i] = word; | 
 |   } | 
 |  | 
 |   // Read and sign-extend any partial word. | 
 |   unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD; | 
 |   if (bits != 0) | 
 |     word = (int64_t)getRawData()[i] << bits >> bits; | 
 |   else | 
 |     word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); | 
 |  | 
 |   // Write remaining full words. | 
 |   for (; i != width / APINT_BITS_PER_WORD; i++) { | 
 |     Result.pVal[i] = word; | 
 |     word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); | 
 |   } | 
 |  | 
 |   // Write any partial word. | 
 |   bits = (0 - width) % APINT_BITS_PER_WORD; | 
 |   if (bits != 0) | 
 |     Result.pVal[i] = word << bits >> bits; | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | //  Zero extend to a new width. | 
 | APInt APInt::zext(unsigned width) const { | 
 |   assert(width > BitWidth && "Invalid APInt ZeroExtend request"); | 
 |  | 
 |   if (width <= APINT_BITS_PER_WORD) | 
 |     return APInt(width, VAL); | 
 |  | 
 |   APInt Result(getMemory(getNumWords(width)), width); | 
 |  | 
 |   // Copy words. | 
 |   unsigned i; | 
 |   for (i = 0; i != getNumWords(); i++) | 
 |     Result.pVal[i] = getRawData()[i]; | 
 |  | 
 |   // Zero remaining words. | 
 |   memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE); | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | APInt APInt::zextOrTrunc(unsigned width) const { | 
 |   if (BitWidth < width) | 
 |     return zext(width); | 
 |   if (BitWidth > width) | 
 |     return trunc(width); | 
 |   return *this; | 
 | } | 
 |  | 
 | APInt APInt::sextOrTrunc(unsigned width) const { | 
 |   if (BitWidth < width) | 
 |     return sext(width); | 
 |   if (BitWidth > width) | 
 |     return trunc(width); | 
 |   return *this; | 
 | } | 
 |  | 
 | APInt APInt::zextOrSelf(unsigned width) const { | 
 |   if (BitWidth < width) | 
 |     return zext(width); | 
 |   return *this; | 
 | } | 
 |  | 
 | APInt APInt::sextOrSelf(unsigned width) const { | 
 |   if (BitWidth < width) | 
 |     return sext(width); | 
 |   return *this; | 
 | } | 
 |  | 
 | /// Arithmetic right-shift this APInt by shiftAmt. | 
 | /// @brief Arithmetic right-shift function. | 
 | APInt APInt::ashr(const APInt &shiftAmt) const { | 
 |   return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth)); | 
 | } | 
 |  | 
 | /// Arithmetic right-shift this APInt by shiftAmt. | 
 | /// @brief Arithmetic right-shift function. | 
 | APInt APInt::ashr(unsigned shiftAmt) const { | 
 |   assert(shiftAmt <= BitWidth && "Invalid shift amount"); | 
 |   // Handle a degenerate case | 
 |   if (shiftAmt == 0) | 
 |     return *this; | 
 |  | 
 |   // Handle single word shifts with built-in ashr | 
 |   if (isSingleWord()) { | 
 |     if (shiftAmt == BitWidth) | 
 |       return APInt(BitWidth, 0); // undefined | 
 |     return APInt(BitWidth, SignExtend64(VAL, BitWidth) >> shiftAmt); | 
 |   } | 
 |  | 
 |   // If all the bits were shifted out, the result is, technically, undefined. | 
 |   // We return -1 if it was negative, 0 otherwise. We check this early to avoid | 
 |   // issues in the algorithm below. | 
 |   if (shiftAmt == BitWidth) { | 
 |     if (isNegative()) | 
 |       return APInt(BitWidth, -1ULL, true); | 
 |     else | 
 |       return APInt(BitWidth, 0); | 
 |   } | 
 |  | 
 |   // Create some space for the result. | 
 |   uint64_t * val = new uint64_t[getNumWords()]; | 
 |  | 
 |   // Compute some values needed by the following shift algorithms | 
 |   unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word | 
 |   unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift | 
 |   unsigned breakWord = getNumWords() - 1 - offset; // last word affected | 
 |   unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word? | 
 |   if (bitsInWord == 0) | 
 |     bitsInWord = APINT_BITS_PER_WORD; | 
 |  | 
 |   // If we are shifting whole words, just move whole words | 
 |   if (wordShift == 0) { | 
 |     // Move the words containing significant bits | 
 |     for (unsigned i = 0; i <= breakWord; ++i) | 
 |       val[i] = pVal[i+offset]; // move whole word | 
 |  | 
 |     // Adjust the top significant word for sign bit fill, if negative | 
 |     if (isNegative()) | 
 |       if (bitsInWord < APINT_BITS_PER_WORD) | 
 |         val[breakWord] |= ~0ULL << bitsInWord; // set high bits | 
 |   } else { | 
 |     // Shift the low order words | 
 |     for (unsigned i = 0; i < breakWord; ++i) { | 
 |       // This combines the shifted corresponding word with the low bits from | 
 |       // the next word (shifted into this word's high bits). | 
 |       val[i] = (pVal[i+offset] >> wordShift) | | 
 |                (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); | 
 |     } | 
 |  | 
 |     // Shift the break word. In this case there are no bits from the next word | 
 |     // to include in this word. | 
 |     val[breakWord] = pVal[breakWord+offset] >> wordShift; | 
 |  | 
 |     // Deal with sign extension in the break word, and possibly the word before | 
 |     // it. | 
 |     if (isNegative()) { | 
 |       if (wordShift > bitsInWord) { | 
 |         if (breakWord > 0) | 
 |           val[breakWord-1] |= | 
 |             ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord)); | 
 |         val[breakWord] |= ~0ULL; | 
 |       } else | 
 |         val[breakWord] |= (~0ULL << (bitsInWord - wordShift)); | 
 |     } | 
 |   } | 
 |  | 
 |   // Remaining words are 0 or -1, just assign them. | 
 |   uint64_t fillValue = (isNegative() ? -1ULL : 0); | 
 |   for (unsigned i = breakWord+1; i < getNumWords(); ++i) | 
 |     val[i] = fillValue; | 
 |   APInt Result(val, BitWidth); | 
 |   Result.clearUnusedBits(); | 
 |   return Result; | 
 | } | 
 |  | 
 | /// Logical right-shift this APInt by shiftAmt. | 
 | /// @brief Logical right-shift function. | 
 | APInt APInt::lshr(const APInt &shiftAmt) const { | 
 |   return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth)); | 
 | } | 
 |  | 
 | /// Logical right-shift this APInt by shiftAmt. | 
 | /// @brief Logical right-shift function. | 
 | APInt APInt::lshr(unsigned shiftAmt) const { | 
 |   if (isSingleWord()) { | 
 |     if (shiftAmt >= BitWidth) | 
 |       return APInt(BitWidth, 0); | 
 |     else | 
 |       return APInt(BitWidth, this->VAL >> shiftAmt); | 
 |   } | 
 |  | 
 |   // If all the bits were shifted out, the result is 0. This avoids issues | 
 |   // with shifting by the size of the integer type, which produces undefined | 
 |   // results. We define these "undefined results" to always be 0. | 
 |   if (shiftAmt >= BitWidth) | 
 |     return APInt(BitWidth, 0); | 
 |  | 
 |   // If none of the bits are shifted out, the result is *this. This avoids | 
 |   // issues with shifting by the size of the integer type, which produces | 
 |   // undefined results in the code below. This is also an optimization. | 
 |   if (shiftAmt == 0) | 
 |     return *this; | 
 |  | 
 |   // Create some space for the result. | 
 |   uint64_t * val = new uint64_t[getNumWords()]; | 
 |  | 
 |   // If we are shifting less than a word, compute the shift with a simple carry | 
 |   if (shiftAmt < APINT_BITS_PER_WORD) { | 
 |     lshrNear(val, pVal, getNumWords(), shiftAmt); | 
 |     APInt Result(val, BitWidth); | 
 |     Result.clearUnusedBits(); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   // Compute some values needed by the remaining shift algorithms | 
 |   unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; | 
 |   unsigned offset = shiftAmt / APINT_BITS_PER_WORD; | 
 |  | 
 |   // If we are shifting whole words, just move whole words | 
 |   if (wordShift == 0) { | 
 |     for (unsigned i = 0; i < getNumWords() - offset; ++i) | 
 |       val[i] = pVal[i+offset]; | 
 |     for (unsigned i = getNumWords()-offset; i < getNumWords(); i++) | 
 |       val[i] = 0; | 
 |     APInt Result(val, BitWidth); | 
 |     Result.clearUnusedBits(); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   // Shift the low order words | 
 |   unsigned breakWord = getNumWords() - offset -1; | 
 |   for (unsigned i = 0; i < breakWord; ++i) | 
 |     val[i] = (pVal[i+offset] >> wordShift) | | 
 |              (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); | 
 |   // Shift the break word. | 
 |   val[breakWord] = pVal[breakWord+offset] >> wordShift; | 
 |  | 
 |   // Remaining words are 0 | 
 |   for (unsigned i = breakWord+1; i < getNumWords(); ++i) | 
 |     val[i] = 0; | 
 |   APInt Result(val, BitWidth); | 
 |   Result.clearUnusedBits(); | 
 |   return Result; | 
 | } | 
 |  | 
 | /// Left-shift this APInt by shiftAmt. | 
 | /// @brief Left-shift function. | 
 | APInt APInt::shl(const APInt &shiftAmt) const { | 
 |   // It's undefined behavior in C to shift by BitWidth or greater. | 
 |   return shl((unsigned)shiftAmt.getLimitedValue(BitWidth)); | 
 | } | 
 |  | 
 | APInt APInt::shlSlowCase(unsigned shiftAmt) const { | 
 |   // If all the bits were shifted out, the result is 0. This avoids issues | 
 |   // with shifting by the size of the integer type, which produces undefined | 
 |   // results. We define these "undefined results" to always be 0. | 
 |   if (shiftAmt == BitWidth) | 
 |     return APInt(BitWidth, 0); | 
 |  | 
 |   // If none of the bits are shifted out, the result is *this. This avoids a | 
 |   // lshr by the words size in the loop below which can produce incorrect | 
 |   // results. It also avoids the expensive computation below for a common case. | 
 |   if (shiftAmt == 0) | 
 |     return *this; | 
 |  | 
 |   // Create some space for the result. | 
 |   uint64_t * val = new uint64_t[getNumWords()]; | 
 |  | 
 |   // If we are shifting less than a word, do it the easy way | 
 |   if (shiftAmt < APINT_BITS_PER_WORD) { | 
 |     uint64_t carry = 0; | 
 |     for (unsigned i = 0; i < getNumWords(); i++) { | 
 |       val[i] = pVal[i] << shiftAmt | carry; | 
 |       carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt); | 
 |     } | 
 |     APInt Result(val, BitWidth); | 
 |     Result.clearUnusedBits(); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   // Compute some values needed by the remaining shift algorithms | 
 |   unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; | 
 |   unsigned offset = shiftAmt / APINT_BITS_PER_WORD; | 
 |  | 
 |   // If we are shifting whole words, just move whole words | 
 |   if (wordShift == 0) { | 
 |     for (unsigned i = 0; i < offset; i++) | 
 |       val[i] = 0; | 
 |     for (unsigned i = offset; i < getNumWords(); i++) | 
 |       val[i] = pVal[i-offset]; | 
 |     APInt Result(val, BitWidth); | 
 |     Result.clearUnusedBits(); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   // Copy whole words from this to Result. | 
 |   unsigned i = getNumWords() - 1; | 
 |   for (; i > offset; --i) | 
 |     val[i] = pVal[i-offset] << wordShift | | 
 |              pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift); | 
 |   val[offset] = pVal[0] << wordShift; | 
 |   for (i = 0; i < offset; ++i) | 
 |     val[i] = 0; | 
 |   APInt Result(val, BitWidth); | 
 |   Result.clearUnusedBits(); | 
 |   return Result; | 
 | } | 
 |  | 
 | APInt APInt::rotl(const APInt &rotateAmt) const { | 
 |   return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth)); | 
 | } | 
 |  | 
 | APInt APInt::rotl(unsigned rotateAmt) const { | 
 |   rotateAmt %= BitWidth; | 
 |   if (rotateAmt == 0) | 
 |     return *this; | 
 |   return shl(rotateAmt) | lshr(BitWidth - rotateAmt); | 
 | } | 
 |  | 
 | APInt APInt::rotr(const APInt &rotateAmt) const { | 
 |   return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth)); | 
 | } | 
 |  | 
 | APInt APInt::rotr(unsigned rotateAmt) const { | 
 |   rotateAmt %= BitWidth; | 
 |   if (rotateAmt == 0) | 
 |     return *this; | 
 |   return lshr(rotateAmt) | shl(BitWidth - rotateAmt); | 
 | } | 
 |  | 
 | // Square Root - this method computes and returns the square root of "this". | 
 | // Three mechanisms are used for computation. For small values (<= 5 bits), | 
 | // a table lookup is done. This gets some performance for common cases. For | 
 | // values using less than 52 bits, the value is converted to double and then | 
 | // the libc sqrt function is called. The result is rounded and then converted | 
 | // back to a uint64_t which is then used to construct the result. Finally, | 
 | // the Babylonian method for computing square roots is used. | 
 | APInt APInt::sqrt() const { | 
 |  | 
 |   // Determine the magnitude of the value. | 
 |   unsigned magnitude = getActiveBits(); | 
 |  | 
 |   // Use a fast table for some small values. This also gets rid of some | 
 |   // rounding errors in libc sqrt for small values. | 
 |   if (magnitude <= 5) { | 
 |     static const uint8_t results[32] = { | 
 |       /*     0 */ 0, | 
 |       /*  1- 2 */ 1, 1, | 
 |       /*  3- 6 */ 2, 2, 2, 2, | 
 |       /*  7-12 */ 3, 3, 3, 3, 3, 3, | 
 |       /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, | 
 |       /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | 
 |       /*    31 */ 6 | 
 |     }; | 
 |     return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]); | 
 |   } | 
 |  | 
 |   // If the magnitude of the value fits in less than 52 bits (the precision of | 
 |   // an IEEE double precision floating point value), then we can use the | 
 |   // libc sqrt function which will probably use a hardware sqrt computation. | 
 |   // This should be faster than the algorithm below. | 
 |   if (magnitude < 52) { | 
 |     return APInt(BitWidth, | 
 |                  uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0]))))); | 
 |   } | 
 |  | 
 |   // Okay, all the short cuts are exhausted. We must compute it. The following | 
 |   // is a classical Babylonian method for computing the square root. This code | 
 |   // was adapted to APInt from a wikipedia article on such computations. | 
 |   // See http://www.wikipedia.org/ and go to the page named | 
 |   // Calculate_an_integer_square_root. | 
 |   unsigned nbits = BitWidth, i = 4; | 
 |   APInt testy(BitWidth, 16); | 
 |   APInt x_old(BitWidth, 1); | 
 |   APInt x_new(BitWidth, 0); | 
 |   APInt two(BitWidth, 2); | 
 |  | 
 |   // Select a good starting value using binary logarithms. | 
 |   for (;; i += 2, testy = testy.shl(2)) | 
 |     if (i >= nbits || this->ule(testy)) { | 
 |       x_old = x_old.shl(i / 2); | 
 |       break; | 
 |     } | 
 |  | 
 |   // Use the Babylonian method to arrive at the integer square root: | 
 |   for (;;) { | 
 |     x_new = (this->udiv(x_old) + x_old).udiv(two); | 
 |     if (x_old.ule(x_new)) | 
 |       break; | 
 |     x_old = x_new; | 
 |   } | 
 |  | 
 |   // Make sure we return the closest approximation | 
 |   // NOTE: The rounding calculation below is correct. It will produce an | 
 |   // off-by-one discrepancy with results from pari/gp. That discrepancy has been | 
 |   // determined to be a rounding issue with pari/gp as it begins to use a | 
 |   // floating point representation after 192 bits. There are no discrepancies | 
 |   // between this algorithm and pari/gp for bit widths < 192 bits. | 
 |   APInt square(x_old * x_old); | 
 |   APInt nextSquare((x_old + 1) * (x_old +1)); | 
 |   if (this->ult(square)) | 
 |     return x_old; | 
 |   assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); | 
 |   APInt midpoint((nextSquare - square).udiv(two)); | 
 |   APInt offset(*this - square); | 
 |   if (offset.ult(midpoint)) | 
 |     return x_old; | 
 |   return x_old + 1; | 
 | } | 
 |  | 
 | /// Computes the multiplicative inverse of this APInt for a given modulo. The | 
 | /// iterative extended Euclidean algorithm is used to solve for this value, | 
 | /// however we simplify it to speed up calculating only the inverse, and take | 
 | /// advantage of div+rem calculations. We also use some tricks to avoid copying | 
 | /// (potentially large) APInts around. | 
 | APInt APInt::multiplicativeInverse(const APInt& modulo) const { | 
 |   assert(ult(modulo) && "This APInt must be smaller than the modulo"); | 
 |  | 
 |   // Using the properties listed at the following web page (accessed 06/21/08): | 
 |   //   http://www.numbertheory.org/php/euclid.html | 
 |   // (especially the properties numbered 3, 4 and 9) it can be proved that | 
 |   // BitWidth bits suffice for all the computations in the algorithm implemented | 
 |   // below. More precisely, this number of bits suffice if the multiplicative | 
 |   // inverse exists, but may not suffice for the general extended Euclidean | 
 |   // algorithm. | 
 |  | 
 |   APInt r[2] = { modulo, *this }; | 
 |   APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; | 
 |   APInt q(BitWidth, 0); | 
 |  | 
 |   unsigned i; | 
 |   for (i = 0; r[i^1] != 0; i ^= 1) { | 
 |     // An overview of the math without the confusing bit-flipping: | 
 |     // q = r[i-2] / r[i-1] | 
 |     // r[i] = r[i-2] % r[i-1] | 
 |     // t[i] = t[i-2] - t[i-1] * q | 
 |     udivrem(r[i], r[i^1], q, r[i]); | 
 |     t[i] -= t[i^1] * q; | 
 |   } | 
 |  | 
 |   // If this APInt and the modulo are not coprime, there is no multiplicative | 
 |   // inverse, so return 0. We check this by looking at the next-to-last | 
 |   // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean | 
 |   // algorithm. | 
 |   if (r[i] != 1) | 
 |     return APInt(BitWidth, 0); | 
 |  | 
 |   // The next-to-last t is the multiplicative inverse.  However, we are | 
 |   // interested in a positive inverse. Calcuate a positive one from a negative | 
 |   // one if necessary. A simple addition of the modulo suffices because | 
 |   // abs(t[i]) is known to be less than *this/2 (see the link above). | 
 |   return t[i].isNegative() ? t[i] + modulo : t[i]; | 
 | } | 
 |  | 
 | /// Calculate the magic numbers required to implement a signed integer division | 
 | /// by a constant as a sequence of multiplies, adds and shifts.  Requires that | 
 | /// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S. | 
 | /// Warren, Jr., chapter 10. | 
 | APInt::ms APInt::magic() const { | 
 |   const APInt& d = *this; | 
 |   unsigned p; | 
 |   APInt ad, anc, delta, q1, r1, q2, r2, t; | 
 |   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); | 
 |   struct ms mag; | 
 |  | 
 |   ad = d.abs(); | 
 |   t = signedMin + (d.lshr(d.getBitWidth() - 1)); | 
 |   anc = t - 1 - t.urem(ad);   // absolute value of nc | 
 |   p = d.getBitWidth() - 1;    // initialize p | 
 |   q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc) | 
 |   r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc)) | 
 |   q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d) | 
 |   r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d)) | 
 |   do { | 
 |     p = p + 1; | 
 |     q1 = q1<<1;          // update q1 = 2p/abs(nc) | 
 |     r1 = r1<<1;          // update r1 = rem(2p/abs(nc)) | 
 |     if (r1.uge(anc)) {  // must be unsigned comparison | 
 |       q1 = q1 + 1; | 
 |       r1 = r1 - anc; | 
 |     } | 
 |     q2 = q2<<1;          // update q2 = 2p/abs(d) | 
 |     r2 = r2<<1;          // update r2 = rem(2p/abs(d)) | 
 |     if (r2.uge(ad)) {   // must be unsigned comparison | 
 |       q2 = q2 + 1; | 
 |       r2 = r2 - ad; | 
 |     } | 
 |     delta = ad - r2; | 
 |   } while (q1.ult(delta) || (q1 == delta && r1 == 0)); | 
 |  | 
 |   mag.m = q2 + 1; | 
 |   if (d.isNegative()) mag.m = -mag.m;   // resulting magic number | 
 |   mag.s = p - d.getBitWidth();          // resulting shift | 
 |   return mag; | 
 | } | 
 |  | 
 | /// Calculate the magic numbers required to implement an unsigned integer | 
 | /// division by a constant as a sequence of multiplies, adds and shifts. | 
 | /// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry | 
 | /// S. Warren, Jr., chapter 10. | 
 | /// LeadingZeros can be used to simplify the calculation if the upper bits | 
 | /// of the divided value are known zero. | 
 | APInt::mu APInt::magicu(unsigned LeadingZeros) const { | 
 |   const APInt& d = *this; | 
 |   unsigned p; | 
 |   APInt nc, delta, q1, r1, q2, r2; | 
 |   struct mu magu; | 
 |   magu.a = 0;               // initialize "add" indicator | 
 |   APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); | 
 |   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); | 
 |   APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); | 
 |  | 
 |   nc = allOnes - (allOnes - d).urem(d); | 
 |   p = d.getBitWidth() - 1;  // initialize p | 
 |   q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc | 
 |   r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc) | 
 |   q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d | 
 |   r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d) | 
 |   do { | 
 |     p = p + 1; | 
 |     if (r1.uge(nc - r1)) { | 
 |       q1 = q1 + q1 + 1;  // update q1 | 
 |       r1 = r1 + r1 - nc; // update r1 | 
 |     } | 
 |     else { | 
 |       q1 = q1+q1; // update q1 | 
 |       r1 = r1+r1; // update r1 | 
 |     } | 
 |     if ((r2 + 1).uge(d - r2)) { | 
 |       if (q2.uge(signedMax)) magu.a = 1; | 
 |       q2 = q2+q2 + 1;     // update q2 | 
 |       r2 = r2+r2 + 1 - d; // update r2 | 
 |     } | 
 |     else { | 
 |       if (q2.uge(signedMin)) magu.a = 1; | 
 |       q2 = q2+q2;     // update q2 | 
 |       r2 = r2+r2 + 1; // update r2 | 
 |     } | 
 |     delta = d - 1 - r2; | 
 |   } while (p < d.getBitWidth()*2 && | 
 |            (q1.ult(delta) || (q1 == delta && r1 == 0))); | 
 |   magu.m = q2 + 1; // resulting magic number | 
 |   magu.s = p - d.getBitWidth();  // resulting shift | 
 |   return magu; | 
 | } | 
 |  | 
 | /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) | 
 | /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The | 
 | /// variables here have the same names as in the algorithm. Comments explain | 
 | /// the algorithm and any deviation from it. | 
 | static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, | 
 |                      unsigned m, unsigned n) { | 
 |   assert(u && "Must provide dividend"); | 
 |   assert(v && "Must provide divisor"); | 
 |   assert(q && "Must provide quotient"); | 
 |   assert(u != v && u != q && v != q && "Must use different memory"); | 
 |   assert(n>1 && "n must be > 1"); | 
 |  | 
 |   // b denotes the base of the number system. In our case b is 2^32. | 
 |   const uint64_t b = uint64_t(1) << 32; | 
 |  | 
 |   DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); | 
 |   DEBUG(dbgs() << "KnuthDiv: original:"); | 
 |   DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); | 
 |   DEBUG(dbgs() << " by"); | 
 |   DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); | 
 |   DEBUG(dbgs() << '\n'); | 
 |   // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of | 
 |   // u and v by d. Note that we have taken Knuth's advice here to use a power | 
 |   // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of | 
 |   // 2 allows us to shift instead of multiply and it is easy to determine the | 
 |   // shift amount from the leading zeros.  We are basically normalizing the u | 
 |   // and v so that its high bits are shifted to the top of v's range without | 
 |   // overflow. Note that this can require an extra word in u so that u must | 
 |   // be of length m+n+1. | 
 |   unsigned shift = countLeadingZeros(v[n-1]); | 
 |   unsigned v_carry = 0; | 
 |   unsigned u_carry = 0; | 
 |   if (shift) { | 
 |     for (unsigned i = 0; i < m+n; ++i) { | 
 |       unsigned u_tmp = u[i] >> (32 - shift); | 
 |       u[i] = (u[i] << shift) | u_carry; | 
 |       u_carry = u_tmp; | 
 |     } | 
 |     for (unsigned i = 0; i < n; ++i) { | 
 |       unsigned v_tmp = v[i] >> (32 - shift); | 
 |       v[i] = (v[i] << shift) | v_carry; | 
 |       v_carry = v_tmp; | 
 |     } | 
 |   } | 
 |   u[m+n] = u_carry; | 
 |  | 
 |   DEBUG(dbgs() << "KnuthDiv:   normal:"); | 
 |   DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); | 
 |   DEBUG(dbgs() << " by"); | 
 |   DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); | 
 |   DEBUG(dbgs() << '\n'); | 
 |  | 
 |   // D2. [Initialize j.]  Set j to m. This is the loop counter over the places. | 
 |   int j = m; | 
 |   do { | 
 |     DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); | 
 |     // D3. [Calculate q'.]. | 
 |     //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') | 
 |     //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') | 
 |     // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease | 
 |     // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test | 
 |     // on v[n-2] determines at high speed most of the cases in which the trial | 
 |     // value qp is one too large, and it eliminates all cases where qp is two | 
 |     // too large. | 
 |     uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]); | 
 |     DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); | 
 |     uint64_t qp = dividend / v[n-1]; | 
 |     uint64_t rp = dividend % v[n-1]; | 
 |     if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { | 
 |       qp--; | 
 |       rp += v[n-1]; | 
 |       if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) | 
 |         qp--; | 
 |     } | 
 |     DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); | 
 |  | 
 |     // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with | 
 |     // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation | 
 |     // consists of a simple multiplication by a one-place number, combined with | 
 |     // a subtraction. | 
 |     // The digits (u[j+n]...u[j]) should be kept positive; if the result of | 
 |     // this step is actually negative, (u[j+n]...u[j]) should be left as the | 
 |     // true value plus b**(n+1), namely as the b's complement of | 
 |     // the true value, and a "borrow" to the left should be remembered. | 
 |     int64_t borrow = 0; | 
 |     for (unsigned i = 0; i < n; ++i) { | 
 |       uint64_t p = uint64_t(qp) * uint64_t(v[i]); | 
 |       int64_t subres = int64_t(u[j+i]) - borrow - (unsigned)p; | 
 |       u[j+i] = (unsigned)subres; | 
 |       borrow = (p >> 32) - (subres >> 32); | 
 |       DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i] | 
 |                    << ", borrow = " << borrow << '\n'); | 
 |     } | 
 |     bool isNeg = u[j+n] < borrow; | 
 |     u[j+n] -= (unsigned)borrow; | 
 |  | 
 |     DEBUG(dbgs() << "KnuthDiv: after subtraction:"); | 
 |     DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); | 
 |     DEBUG(dbgs() << '\n'); | 
 |  | 
 |     // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was | 
 |     // negative, go to step D6; otherwise go on to step D7. | 
 |     q[j] = (unsigned)qp; | 
 |     if (isNeg) { | 
 |       // D6. [Add back]. The probability that this step is necessary is very | 
 |       // small, on the order of only 2/b. Make sure that test data accounts for | 
 |       // this possibility. Decrease q[j] by 1 | 
 |       q[j]--; | 
 |       // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). | 
 |       // A carry will occur to the left of u[j+n], and it should be ignored | 
 |       // since it cancels with the borrow that occurred in D4. | 
 |       bool carry = false; | 
 |       for (unsigned i = 0; i < n; i++) { | 
 |         unsigned limit = std::min(u[j+i],v[i]); | 
 |         u[j+i] += v[i] + carry; | 
 |         carry = u[j+i] < limit || (carry && u[j+i] == limit); | 
 |       } | 
 |       u[j+n] += carry; | 
 |     } | 
 |     DEBUG(dbgs() << "KnuthDiv: after correction:"); | 
 |     DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); | 
 |     DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); | 
 |  | 
 |   // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3. | 
 |   } while (--j >= 0); | 
 |  | 
 |   DEBUG(dbgs() << "KnuthDiv: quotient:"); | 
 |   DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]); | 
 |   DEBUG(dbgs() << '\n'); | 
 |  | 
 |   // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired | 
 |   // remainder may be obtained by dividing u[...] by d. If r is non-null we | 
 |   // compute the remainder (urem uses this). | 
 |   if (r) { | 
 |     // The value d is expressed by the "shift" value above since we avoided | 
 |     // multiplication by d by using a shift left. So, all we have to do is | 
 |     // shift right here. In order to mak | 
 |     if (shift) { | 
 |       unsigned carry = 0; | 
 |       DEBUG(dbgs() << "KnuthDiv: remainder:"); | 
 |       for (int i = n-1; i >= 0; i--) { | 
 |         r[i] = (u[i] >> shift) | carry; | 
 |         carry = u[i] << (32 - shift); | 
 |         DEBUG(dbgs() << " " << r[i]); | 
 |       } | 
 |     } else { | 
 |       for (int i = n-1; i >= 0; i--) { | 
 |         r[i] = u[i]; | 
 |         DEBUG(dbgs() << " " << r[i]); | 
 |       } | 
 |     } | 
 |     DEBUG(dbgs() << '\n'); | 
 |   } | 
 |   DEBUG(dbgs() << '\n'); | 
 | } | 
 |  | 
 | void APInt::divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS, | 
 |                    unsigned rhsWords, APInt *Quotient, APInt *Remainder) { | 
 |   assert(lhsWords >= rhsWords && "Fractional result"); | 
 |  | 
 |   // First, compose the values into an array of 32-bit words instead of | 
 |   // 64-bit words. This is a necessity of both the "short division" algorithm | 
 |   // and the Knuth "classical algorithm" which requires there to be native | 
 |   // operations for +, -, and * on an m bit value with an m*2 bit result. We | 
 |   // can't use 64-bit operands here because we don't have native results of | 
 |   // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't | 
 |   // work on large-endian machines. | 
 |   uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT); | 
 |   unsigned n = rhsWords * 2; | 
 |   unsigned m = (lhsWords * 2) - n; | 
 |  | 
 |   // Allocate space for the temporary values we need either on the stack, if | 
 |   // it will fit, or on the heap if it won't. | 
 |   unsigned SPACE[128]; | 
 |   unsigned *U = nullptr; | 
 |   unsigned *V = nullptr; | 
 |   unsigned *Q = nullptr; | 
 |   unsigned *R = nullptr; | 
 |   if ((Remainder?4:3)*n+2*m+1 <= 128) { | 
 |     U = &SPACE[0]; | 
 |     V = &SPACE[m+n+1]; | 
 |     Q = &SPACE[(m+n+1) + n]; | 
 |     if (Remainder) | 
 |       R = &SPACE[(m+n+1) + n + (m+n)]; | 
 |   } else { | 
 |     U = new unsigned[m + n + 1]; | 
 |     V = new unsigned[n]; | 
 |     Q = new unsigned[m+n]; | 
 |     if (Remainder) | 
 |       R = new unsigned[n]; | 
 |   } | 
 |  | 
 |   // Initialize the dividend | 
 |   memset(U, 0, (m+n+1)*sizeof(unsigned)); | 
 |   for (unsigned i = 0; i < lhsWords; ++i) { | 
 |     uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]); | 
 |     U[i * 2] = (unsigned)(tmp & mask); | 
 |     U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); | 
 |   } | 
 |   U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. | 
 |  | 
 |   // Initialize the divisor | 
 |   memset(V, 0, (n)*sizeof(unsigned)); | 
 |   for (unsigned i = 0; i < rhsWords; ++i) { | 
 |     uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]); | 
 |     V[i * 2] = (unsigned)(tmp & mask); | 
 |     V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); | 
 |   } | 
 |  | 
 |   // initialize the quotient and remainder | 
 |   memset(Q, 0, (m+n) * sizeof(unsigned)); | 
 |   if (Remainder) | 
 |     memset(R, 0, n * sizeof(unsigned)); | 
 |  | 
 |   // Now, adjust m and n for the Knuth division. n is the number of words in | 
 |   // the divisor. m is the number of words by which the dividend exceeds the | 
 |   // divisor (i.e. m+n is the length of the dividend). These sizes must not | 
 |   // contain any zero words or the Knuth algorithm fails. | 
 |   for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { | 
 |     n--; | 
 |     m++; | 
 |   } | 
 |   for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) | 
 |     m--; | 
 |  | 
 |   // If we're left with only a single word for the divisor, Knuth doesn't work | 
 |   // so we implement the short division algorithm here. This is much simpler | 
 |   // and faster because we are certain that we can divide a 64-bit quantity | 
 |   // by a 32-bit quantity at hardware speed and short division is simply a | 
 |   // series of such operations. This is just like doing short division but we | 
 |   // are using base 2^32 instead of base 10. | 
 |   assert(n != 0 && "Divide by zero?"); | 
 |   if (n == 1) { | 
 |     unsigned divisor = V[0]; | 
 |     unsigned remainder = 0; | 
 |     for (int i = m+n-1; i >= 0; i--) { | 
 |       uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; | 
 |       if (partial_dividend == 0) { | 
 |         Q[i] = 0; | 
 |         remainder = 0; | 
 |       } else if (partial_dividend < divisor) { | 
 |         Q[i] = 0; | 
 |         remainder = (unsigned)partial_dividend; | 
 |       } else if (partial_dividend == divisor) { | 
 |         Q[i] = 1; | 
 |         remainder = 0; | 
 |       } else { | 
 |         Q[i] = (unsigned)(partial_dividend / divisor); | 
 |         remainder = (unsigned)(partial_dividend - (Q[i] * divisor)); | 
 |       } | 
 |     } | 
 |     if (R) | 
 |       R[0] = remainder; | 
 |   } else { | 
 |     // Now we're ready to invoke the Knuth classical divide algorithm. In this | 
 |     // case n > 1. | 
 |     KnuthDiv(U, V, Q, R, m, n); | 
 |   } | 
 |  | 
 |   // If the caller wants the quotient | 
 |   if (Quotient) { | 
 |     // Set up the Quotient value's memory. | 
 |     if (Quotient->BitWidth != LHS.BitWidth) { | 
 |       if (Quotient->isSingleWord()) | 
 |         Quotient->VAL = 0; | 
 |       else | 
 |         delete [] Quotient->pVal; | 
 |       Quotient->BitWidth = LHS.BitWidth; | 
 |       if (!Quotient->isSingleWord()) | 
 |         Quotient->pVal = getClearedMemory(Quotient->getNumWords()); | 
 |     } else | 
 |       Quotient->clearAllBits(); | 
 |  | 
 |     // The quotient is in Q. Reconstitute the quotient into Quotient's low | 
 |     // order words. | 
 |     // This case is currently dead as all users of divide() handle trivial cases | 
 |     // earlier. | 
 |     if (lhsWords == 1) { | 
 |       uint64_t tmp = | 
 |         uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); | 
 |       if (Quotient->isSingleWord()) | 
 |         Quotient->VAL = tmp; | 
 |       else | 
 |         Quotient->pVal[0] = tmp; | 
 |     } else { | 
 |       assert(!Quotient->isSingleWord() && "Quotient APInt not large enough"); | 
 |       for (unsigned i = 0; i < lhsWords; ++i) | 
 |         Quotient->pVal[i] = | 
 |           uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2)); | 
 |     } | 
 |   } | 
 |  | 
 |   // If the caller wants the remainder | 
 |   if (Remainder) { | 
 |     // Set up the Remainder value's memory. | 
 |     if (Remainder->BitWidth != RHS.BitWidth) { | 
 |       if (Remainder->isSingleWord()) | 
 |         Remainder->VAL = 0; | 
 |       else | 
 |         delete [] Remainder->pVal; | 
 |       Remainder->BitWidth = RHS.BitWidth; | 
 |       if (!Remainder->isSingleWord()) | 
 |         Remainder->pVal = getClearedMemory(Remainder->getNumWords()); | 
 |     } else | 
 |       Remainder->clearAllBits(); | 
 |  | 
 |     // The remainder is in R. Reconstitute the remainder into Remainder's low | 
 |     // order words. | 
 |     if (rhsWords == 1) { | 
 |       uint64_t tmp = | 
 |         uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2)); | 
 |       if (Remainder->isSingleWord()) | 
 |         Remainder->VAL = tmp; | 
 |       else | 
 |         Remainder->pVal[0] = tmp; | 
 |     } else { | 
 |       assert(!Remainder->isSingleWord() && "Remainder APInt not large enough"); | 
 |       for (unsigned i = 0; i < rhsWords; ++i) | 
 |         Remainder->pVal[i] = | 
 |           uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2)); | 
 |     } | 
 |   } | 
 |  | 
 |   // Clean up the memory we allocated. | 
 |   if (U != &SPACE[0]) { | 
 |     delete [] U; | 
 |     delete [] V; | 
 |     delete [] Q; | 
 |     delete [] R; | 
 |   } | 
 | } | 
 |  | 
 | APInt APInt::udiv(const APInt& RHS) const { | 
 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
 |  | 
 |   // First, deal with the easy case | 
 |   if (isSingleWord()) { | 
 |     assert(RHS.VAL != 0 && "Divide by zero?"); | 
 |     return APInt(BitWidth, VAL / RHS.VAL); | 
 |   } | 
 |  | 
 |   // Get some facts about the LHS and RHS number of bits and words | 
 |   unsigned rhsBits = RHS.getActiveBits(); | 
 |   unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); | 
 |   assert(rhsWords && "Divided by zero???"); | 
 |   unsigned lhsBits = this->getActiveBits(); | 
 |   unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); | 
 |  | 
 |   // Deal with some degenerate cases | 
 |   if (!lhsWords) | 
 |     // 0 / X ===> 0 | 
 |     return APInt(BitWidth, 0); | 
 |   else if (lhsWords < rhsWords || this->ult(RHS)) { | 
 |     // X / Y ===> 0, iff X < Y | 
 |     return APInt(BitWidth, 0); | 
 |   } else if (*this == RHS) { | 
 |     // X / X ===> 1 | 
 |     return APInt(BitWidth, 1); | 
 |   } else if (lhsWords == 1 && rhsWords == 1) { | 
 |     // All high words are zero, just use native divide | 
 |     return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]); | 
 |   } | 
 |  | 
 |   // We have to compute it the hard way. Invoke the Knuth divide algorithm. | 
 |   APInt Quotient(1,0); // to hold result. | 
 |   divide(*this, lhsWords, RHS, rhsWords, &Quotient, nullptr); | 
 |   return Quotient; | 
 | } | 
 |  | 
 | APInt APInt::sdiv(const APInt &RHS) const { | 
 |   if (isNegative()) { | 
 |     if (RHS.isNegative()) | 
 |       return (-(*this)).udiv(-RHS); | 
 |     return -((-(*this)).udiv(RHS)); | 
 |   } | 
 |   if (RHS.isNegative()) | 
 |     return -(this->udiv(-RHS)); | 
 |   return this->udiv(RHS); | 
 | } | 
 |  | 
 | APInt APInt::urem(const APInt& RHS) const { | 
 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
 |   if (isSingleWord()) { | 
 |     assert(RHS.VAL != 0 && "Remainder by zero?"); | 
 |     return APInt(BitWidth, VAL % RHS.VAL); | 
 |   } | 
 |  | 
 |   // Get some facts about the LHS | 
 |   unsigned lhsBits = getActiveBits(); | 
 |   unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); | 
 |  | 
 |   // Get some facts about the RHS | 
 |   unsigned rhsBits = RHS.getActiveBits(); | 
 |   unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); | 
 |   assert(rhsWords && "Performing remainder operation by zero ???"); | 
 |  | 
 |   // Check the degenerate cases | 
 |   if (lhsWords == 0) { | 
 |     // 0 % Y ===> 0 | 
 |     return APInt(BitWidth, 0); | 
 |   } else if (lhsWords < rhsWords || this->ult(RHS)) { | 
 |     // X % Y ===> X, iff X < Y | 
 |     return *this; | 
 |   } else if (*this == RHS) { | 
 |     // X % X == 0; | 
 |     return APInt(BitWidth, 0); | 
 |   } else if (lhsWords == 1) { | 
 |     // All high words are zero, just use native remainder | 
 |     return APInt(BitWidth, pVal[0] % RHS.pVal[0]); | 
 |   } | 
 |  | 
 |   // We have to compute it the hard way. Invoke the Knuth divide algorithm. | 
 |   APInt Remainder(1,0); | 
 |   divide(*this, lhsWords, RHS, rhsWords, nullptr, &Remainder); | 
 |   return Remainder; | 
 | } | 
 |  | 
 | APInt APInt::srem(const APInt &RHS) const { | 
 |   if (isNegative()) { | 
 |     if (RHS.isNegative()) | 
 |       return -((-(*this)).urem(-RHS)); | 
 |     return -((-(*this)).urem(RHS)); | 
 |   } | 
 |   if (RHS.isNegative()) | 
 |     return this->urem(-RHS); | 
 |   return this->urem(RHS); | 
 | } | 
 |  | 
 | void APInt::udivrem(const APInt &LHS, const APInt &RHS, | 
 |                     APInt &Quotient, APInt &Remainder) { | 
 |   assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
 |  | 
 |   // First, deal with the easy case | 
 |   if (LHS.isSingleWord()) { | 
 |     assert(RHS.VAL != 0 && "Divide by zero?"); | 
 |     uint64_t QuotVal = LHS.VAL / RHS.VAL; | 
 |     uint64_t RemVal = LHS.VAL % RHS.VAL; | 
 |     Quotient = APInt(LHS.BitWidth, QuotVal); | 
 |     Remainder = APInt(LHS.BitWidth, RemVal); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Get some size facts about the dividend and divisor | 
 |   unsigned lhsBits  = LHS.getActiveBits(); | 
 |   unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); | 
 |   unsigned rhsBits  = RHS.getActiveBits(); | 
 |   unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); | 
 |  | 
 |   // Check the degenerate cases | 
 |   if (lhsWords == 0) { | 
 |     Quotient = 0;                // 0 / Y ===> 0 | 
 |     Remainder = 0;               // 0 % Y ===> 0 | 
 |     return; | 
 |   } | 
 |  | 
 |   if (lhsWords < rhsWords || LHS.ult(RHS)) { | 
 |     Remainder = LHS;            // X % Y ===> X, iff X < Y | 
 |     Quotient = 0;               // X / Y ===> 0, iff X < Y | 
 |     return; | 
 |   } | 
 |  | 
 |   if (LHS == RHS) { | 
 |     Quotient  = 1;              // X / X ===> 1 | 
 |     Remainder = 0;              // X % X ===> 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (lhsWords == 1 && rhsWords == 1) { | 
 |     // There is only one word to consider so use the native versions. | 
 |     uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0]; | 
 |     uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; | 
 |     Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue); | 
 |     Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Okay, lets do it the long way | 
 |   divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder); | 
 | } | 
 |  | 
 | void APInt::sdivrem(const APInt &LHS, const APInt &RHS, | 
 |                     APInt &Quotient, APInt &Remainder) { | 
 |   if (LHS.isNegative()) { | 
 |     if (RHS.isNegative()) | 
 |       APInt::udivrem(-LHS, -RHS, Quotient, Remainder); | 
 |     else { | 
 |       APInt::udivrem(-LHS, RHS, Quotient, Remainder); | 
 |       Quotient = -Quotient; | 
 |     } | 
 |     Remainder = -Remainder; | 
 |   } else if (RHS.isNegative()) { | 
 |     APInt::udivrem(LHS, -RHS, Quotient, Remainder); | 
 |     Quotient = -Quotient; | 
 |   } else { | 
 |     APInt::udivrem(LHS, RHS, Quotient, Remainder); | 
 |   } | 
 | } | 
 |  | 
 | APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { | 
 |   APInt Res = *this+RHS; | 
 |   Overflow = isNonNegative() == RHS.isNonNegative() && | 
 |              Res.isNonNegative() != isNonNegative(); | 
 |   return Res; | 
 | } | 
 |  | 
 | APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { | 
 |   APInt Res = *this+RHS; | 
 |   Overflow = Res.ult(RHS); | 
 |   return Res; | 
 | } | 
 |  | 
 | APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { | 
 |   APInt Res = *this - RHS; | 
 |   Overflow = isNonNegative() != RHS.isNonNegative() && | 
 |              Res.isNonNegative() != isNonNegative(); | 
 |   return Res; | 
 | } | 
 |  | 
 | APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { | 
 |   APInt Res = *this-RHS; | 
 |   Overflow = Res.ugt(*this); | 
 |   return Res; | 
 | } | 
 |  | 
 | APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { | 
 |   // MININT/-1  -->  overflow. | 
 |   Overflow = isMinSignedValue() && RHS.isAllOnesValue(); | 
 |   return sdiv(RHS); | 
 | } | 
 |  | 
 | APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { | 
 |   APInt Res = *this * RHS; | 
 |    | 
 |   if (*this != 0 && RHS != 0) | 
 |     Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; | 
 |   else | 
 |     Overflow = false; | 
 |   return Res; | 
 | } | 
 |  | 
 | APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { | 
 |   APInt Res = *this * RHS; | 
 |  | 
 |   if (*this != 0 && RHS != 0) | 
 |     Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS; | 
 |   else | 
 |     Overflow = false; | 
 |   return Res; | 
 | } | 
 |  | 
 | APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { | 
 |   Overflow = ShAmt.uge(getBitWidth()); | 
 |   if (Overflow) | 
 |     return APInt(BitWidth, 0); | 
 |  | 
 |   if (isNonNegative()) // Don't allow sign change. | 
 |     Overflow = ShAmt.uge(countLeadingZeros()); | 
 |   else | 
 |     Overflow = ShAmt.uge(countLeadingOnes()); | 
 |    | 
 |   return *this << ShAmt; | 
 | } | 
 |  | 
 | APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { | 
 |   Overflow = ShAmt.uge(getBitWidth()); | 
 |   if (Overflow) | 
 |     return APInt(BitWidth, 0); | 
 |  | 
 |   Overflow = ShAmt.ugt(countLeadingZeros()); | 
 |  | 
 |   return *this << ShAmt; | 
 | } | 
 |  | 
 |  | 
 |  | 
 |  | 
 | void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { | 
 |   // Check our assumptions here | 
 |   assert(!str.empty() && "Invalid string length"); | 
 |   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||  | 
 |           radix == 36) && | 
 |          "Radix should be 2, 8, 10, 16, or 36!"); | 
 |  | 
 |   StringRef::iterator p = str.begin(); | 
 |   size_t slen = str.size(); | 
 |   bool isNeg = *p == '-'; | 
 |   if (*p == '-' || *p == '+') { | 
 |     p++; | 
 |     slen--; | 
 |     assert(slen && "String is only a sign, needs a value."); | 
 |   } | 
 |   assert((slen <= numbits || radix != 2) && "Insufficient bit width"); | 
 |   assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); | 
 |   assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); | 
 |   assert((((slen-1)*64)/22 <= numbits || radix != 10) && | 
 |          "Insufficient bit width"); | 
 |  | 
 |   // Allocate memory | 
 |   if (!isSingleWord()) | 
 |     pVal = getClearedMemory(getNumWords()); | 
 |  | 
 |   // Figure out if we can shift instead of multiply | 
 |   unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); | 
 |  | 
 |   // Set up an APInt for the digit to add outside the loop so we don't | 
 |   // constantly construct/destruct it. | 
 |   APInt apdigit(getBitWidth(), 0); | 
 |   APInt apradix(getBitWidth(), radix); | 
 |  | 
 |   // Enter digit traversal loop | 
 |   for (StringRef::iterator e = str.end(); p != e; ++p) { | 
 |     unsigned digit = getDigit(*p, radix); | 
 |     assert(digit < radix && "Invalid character in digit string"); | 
 |  | 
 |     // Shift or multiply the value by the radix | 
 |     if (slen > 1) { | 
 |       if (shift) | 
 |         *this <<= shift; | 
 |       else | 
 |         *this *= apradix; | 
 |     } | 
 |  | 
 |     // Add in the digit we just interpreted | 
 |     if (apdigit.isSingleWord()) | 
 |       apdigit.VAL = digit; | 
 |     else | 
 |       apdigit.pVal[0] = digit; | 
 |     *this += apdigit; | 
 |   } | 
 |   // If its negative, put it in two's complement form | 
 |   if (isNeg) { | 
 |     --(*this); | 
 |     this->flipAllBits(); | 
 |   } | 
 | } | 
 |  | 
 | void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, | 
 |                      bool Signed, bool formatAsCLiteral) const { | 
 |   assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||  | 
 |           Radix == 36) && | 
 |          "Radix should be 2, 8, 10, 16, or 36!"); | 
 |  | 
 |   const char *Prefix = ""; | 
 |   if (formatAsCLiteral) { | 
 |     switch (Radix) { | 
 |       case 2: | 
 |         // Binary literals are a non-standard extension added in gcc 4.3: | 
 |         // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html | 
 |         Prefix = "0b"; | 
 |         break; | 
 |       case 8: | 
 |         Prefix = "0"; | 
 |         break; | 
 |       case 10: | 
 |         break; // No prefix | 
 |       case 16: | 
 |         Prefix = "0x"; | 
 |         break; | 
 |       default: | 
 |         llvm_unreachable("Invalid radix!"); | 
 |     } | 
 |   } | 
 |  | 
 |   // First, check for a zero value and just short circuit the logic below. | 
 |   if (*this == 0) { | 
 |     while (*Prefix) { | 
 |       Str.push_back(*Prefix); | 
 |       ++Prefix; | 
 |     }; | 
 |     Str.push_back('0'); | 
 |     return; | 
 |   } | 
 |  | 
 |   static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; | 
 |  | 
 |   if (isSingleWord()) { | 
 |     char Buffer[65]; | 
 |     char *BufPtr = Buffer+65; | 
 |  | 
 |     uint64_t N; | 
 |     if (!Signed) { | 
 |       N = getZExtValue(); | 
 |     } else { | 
 |       int64_t I = getSExtValue(); | 
 |       if (I >= 0) { | 
 |         N = I; | 
 |       } else { | 
 |         Str.push_back('-'); | 
 |         N = -(uint64_t)I; | 
 |       } | 
 |     } | 
 |  | 
 |     while (*Prefix) { | 
 |       Str.push_back(*Prefix); | 
 |       ++Prefix; | 
 |     }; | 
 |  | 
 |     while (N) { | 
 |       *--BufPtr = Digits[N % Radix]; | 
 |       N /= Radix; | 
 |     } | 
 |     Str.append(BufPtr, Buffer+65); | 
 |     return; | 
 |   } | 
 |  | 
 |   APInt Tmp(*this); | 
 |  | 
 |   if (Signed && isNegative()) { | 
 |     // They want to print the signed version and it is a negative value | 
 |     // Flip the bits and add one to turn it into the equivalent positive | 
 |     // value and put a '-' in the result. | 
 |     Tmp.flipAllBits(); | 
 |     ++Tmp; | 
 |     Str.push_back('-'); | 
 |   } | 
 |  | 
 |   while (*Prefix) { | 
 |     Str.push_back(*Prefix); | 
 |     ++Prefix; | 
 |   }; | 
 |  | 
 |   // We insert the digits backward, then reverse them to get the right order. | 
 |   unsigned StartDig = Str.size(); | 
 |  | 
 |   // For the 2, 8 and 16 bit cases, we can just shift instead of divide | 
 |   // because the number of bits per digit (1, 3 and 4 respectively) divides | 
 |   // equaly.  We just shift until the value is zero. | 
 |   if (Radix == 2 || Radix == 8 || Radix == 16) { | 
 |     // Just shift tmp right for each digit width until it becomes zero | 
 |     unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); | 
 |     unsigned MaskAmt = Radix - 1; | 
 |  | 
 |     while (Tmp != 0) { | 
 |       unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; | 
 |       Str.push_back(Digits[Digit]); | 
 |       Tmp = Tmp.lshr(ShiftAmt); | 
 |     } | 
 |   } else { | 
 |     APInt divisor(Radix == 10? 4 : 8, Radix); | 
 |     while (Tmp != 0) { | 
 |       APInt APdigit(1, 0); | 
 |       APInt tmp2(Tmp.getBitWidth(), 0); | 
 |       divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, | 
 |              &APdigit); | 
 |       unsigned Digit = (unsigned)APdigit.getZExtValue(); | 
 |       assert(Digit < Radix && "divide failed"); | 
 |       Str.push_back(Digits[Digit]); | 
 |       Tmp = tmp2; | 
 |     } | 
 |   } | 
 |  | 
 |   // Reverse the digits before returning. | 
 |   std::reverse(Str.begin()+StartDig, Str.end()); | 
 | } | 
 |  | 
 | /// Returns the APInt as a std::string. Note that this is an inefficient method. | 
 | /// It is better to pass in a SmallVector/SmallString to the methods above. | 
 | std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { | 
 |   SmallString<40> S; | 
 |   toString(S, Radix, Signed, /* formatAsCLiteral = */false); | 
 |   return S.str(); | 
 | } | 
 |  | 
 |  | 
 | LLVM_DUMP_METHOD void APInt::dump() const { | 
 |   SmallString<40> S, U; | 
 |   this->toStringUnsigned(U); | 
 |   this->toStringSigned(S); | 
 |   dbgs() << "APInt(" << BitWidth << "b, " | 
 |          << U << "u " << S << "s)"; | 
 | } | 
 |  | 
 | void APInt::print(raw_ostream &OS, bool isSigned) const { | 
 |   SmallString<40> S; | 
 |   this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); | 
 |   OS << S; | 
 | } | 
 |  | 
 | // This implements a variety of operations on a representation of | 
 | // arbitrary precision, two's-complement, bignum integer values. | 
 |  | 
 | // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe | 
 | // and unrestricting assumption. | 
 | static_assert(integerPartWidth % 2 == 0, "Part width must be divisible by 2!"); | 
 |  | 
 | /* Some handy functions local to this file.  */ | 
 | namespace { | 
 |  | 
 |   /* Returns the integer part with the least significant BITS set. | 
 |      BITS cannot be zero.  */ | 
 |   static inline integerPart | 
 |   lowBitMask(unsigned int bits) | 
 |   { | 
 |     assert(bits != 0 && bits <= integerPartWidth); | 
 |  | 
 |     return ~(integerPart) 0 >> (integerPartWidth - bits); | 
 |   } | 
 |  | 
 |   /* Returns the value of the lower half of PART.  */ | 
 |   static inline integerPart | 
 |   lowHalf(integerPart part) | 
 |   { | 
 |     return part & lowBitMask(integerPartWidth / 2); | 
 |   } | 
 |  | 
 |   /* Returns the value of the upper half of PART.  */ | 
 |   static inline integerPart | 
 |   highHalf(integerPart part) | 
 |   { | 
 |     return part >> (integerPartWidth / 2); | 
 |   } | 
 |  | 
 |   /* Returns the bit number of the most significant set bit of a part. | 
 |      If the input number has no bits set -1U is returned.  */ | 
 |   static unsigned int | 
 |   partMSB(integerPart value) | 
 |   { | 
 |     return findLastSet(value, ZB_Max); | 
 |   } | 
 |  | 
 |   /* Returns the bit number of the least significant set bit of a | 
 |      part.  If the input number has no bits set -1U is returned.  */ | 
 |   static unsigned int | 
 |   partLSB(integerPart value) | 
 |   { | 
 |     return findFirstSet(value, ZB_Max); | 
 |   } | 
 | } | 
 |  | 
 | /* Sets the least significant part of a bignum to the input value, and | 
 |    zeroes out higher parts.  */ | 
 | void | 
 | APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts) | 
 | { | 
 |   unsigned int i; | 
 |  | 
 |   assert(parts > 0); | 
 |  | 
 |   dst[0] = part; | 
 |   for (i = 1; i < parts; i++) | 
 |     dst[i] = 0; | 
 | } | 
 |  | 
 | /* Assign one bignum to another.  */ | 
 | void | 
 | APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts) | 
 | { | 
 |   unsigned int i; | 
 |  | 
 |   for (i = 0; i < parts; i++) | 
 |     dst[i] = src[i]; | 
 | } | 
 |  | 
 | /* Returns true if a bignum is zero, false otherwise.  */ | 
 | bool | 
 | APInt::tcIsZero(const integerPart *src, unsigned int parts) | 
 | { | 
 |   unsigned int i; | 
 |  | 
 |   for (i = 0; i < parts; i++) | 
 |     if (src[i]) | 
 |       return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Extract the given bit of a bignum; returns 0 or 1.  */ | 
 | int | 
 | APInt::tcExtractBit(const integerPart *parts, unsigned int bit) | 
 | { | 
 |   return (parts[bit / integerPartWidth] & | 
 |           ((integerPart) 1 << bit % integerPartWidth)) != 0; | 
 | } | 
 |  | 
 | /* Set the given bit of a bignum. */ | 
 | void | 
 | APInt::tcSetBit(integerPart *parts, unsigned int bit) | 
 | { | 
 |   parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth); | 
 | } | 
 |  | 
 | /* Clears the given bit of a bignum. */ | 
 | void | 
 | APInt::tcClearBit(integerPart *parts, unsigned int bit) | 
 | { | 
 |   parts[bit / integerPartWidth] &= | 
 |     ~((integerPart) 1 << (bit % integerPartWidth)); | 
 | } | 
 |  | 
 | /* Returns the bit number of the least significant set bit of a | 
 |    number.  If the input number has no bits set -1U is returned.  */ | 
 | unsigned int | 
 | APInt::tcLSB(const integerPart *parts, unsigned int n) | 
 | { | 
 |   unsigned int i, lsb; | 
 |  | 
 |   for (i = 0; i < n; i++) { | 
 |       if (parts[i] != 0) { | 
 |           lsb = partLSB(parts[i]); | 
 |  | 
 |           return lsb + i * integerPartWidth; | 
 |       } | 
 |   } | 
 |  | 
 |   return -1U; | 
 | } | 
 |  | 
 | /* Returns the bit number of the most significant set bit of a number. | 
 |    If the input number has no bits set -1U is returned.  */ | 
 | unsigned int | 
 | APInt::tcMSB(const integerPart *parts, unsigned int n) | 
 | { | 
 |   unsigned int msb; | 
 |  | 
 |   do { | 
 |     --n; | 
 |  | 
 |     if (parts[n] != 0) { | 
 |       msb = partMSB(parts[n]); | 
 |  | 
 |       return msb + n * integerPartWidth; | 
 |     } | 
 |   } while (n); | 
 |  | 
 |   return -1U; | 
 | } | 
 |  | 
 | /* Copy the bit vector of width srcBITS from SRC, starting at bit | 
 |    srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes | 
 |    the least significant bit of DST.  All high bits above srcBITS in | 
 |    DST are zero-filled.  */ | 
 | void | 
 | APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src, | 
 |                  unsigned int srcBits, unsigned int srcLSB) | 
 | { | 
 |   unsigned int firstSrcPart, dstParts, shift, n; | 
 |  | 
 |   dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth; | 
 |   assert(dstParts <= dstCount); | 
 |  | 
 |   firstSrcPart = srcLSB / integerPartWidth; | 
 |   tcAssign (dst, src + firstSrcPart, dstParts); | 
 |  | 
 |   shift = srcLSB % integerPartWidth; | 
 |   tcShiftRight (dst, dstParts, shift); | 
 |  | 
 |   /* We now have (dstParts * integerPartWidth - shift) bits from SRC | 
 |      in DST.  If this is less that srcBits, append the rest, else | 
 |      clear the high bits.  */ | 
 |   n = dstParts * integerPartWidth - shift; | 
 |   if (n < srcBits) { | 
 |     integerPart mask = lowBitMask (srcBits - n); | 
 |     dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) | 
 |                           << n % integerPartWidth); | 
 |   } else if (n > srcBits) { | 
 |     if (srcBits % integerPartWidth) | 
 |       dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth); | 
 |   } | 
 |  | 
 |   /* Clear high parts.  */ | 
 |   while (dstParts < dstCount) | 
 |     dst[dstParts++] = 0; | 
 | } | 
 |  | 
 | /* DST += RHS + C where C is zero or one.  Returns the carry flag.  */ | 
 | integerPart | 
 | APInt::tcAdd(integerPart *dst, const integerPart *rhs, | 
 |              integerPart c, unsigned int parts) | 
 | { | 
 |   unsigned int i; | 
 |  | 
 |   assert(c <= 1); | 
 |  | 
 |   for (i = 0; i < parts; i++) { | 
 |     integerPart l; | 
 |  | 
 |     l = dst[i]; | 
 |     if (c) { | 
 |       dst[i] += rhs[i] + 1; | 
 |       c = (dst[i] <= l); | 
 |     } else { | 
 |       dst[i] += rhs[i]; | 
 |       c = (dst[i] < l); | 
 |     } | 
 |   } | 
 |  | 
 |   return c; | 
 | } | 
 |  | 
 | /* DST -= RHS + C where C is zero or one.  Returns the carry flag.  */ | 
 | integerPart | 
 | APInt::tcSubtract(integerPart *dst, const integerPart *rhs, | 
 |                   integerPart c, unsigned int parts) | 
 | { | 
 |   unsigned int i; | 
 |  | 
 |   assert(c <= 1); | 
 |  | 
 |   for (i = 0; i < parts; i++) { | 
 |     integerPart l; | 
 |  | 
 |     l = dst[i]; | 
 |     if (c) { | 
 |       dst[i] -= rhs[i] + 1; | 
 |       c = (dst[i] >= l); | 
 |     } else { | 
 |       dst[i] -= rhs[i]; | 
 |       c = (dst[i] > l); | 
 |     } | 
 |   } | 
 |  | 
 |   return c; | 
 | } | 
 |  | 
 | /* Negate a bignum in-place.  */ | 
 | void | 
 | APInt::tcNegate(integerPart *dst, unsigned int parts) | 
 | { | 
 |   tcComplement(dst, parts); | 
 |   tcIncrement(dst, parts); | 
 | } | 
 |  | 
 | /*  DST += SRC * MULTIPLIER + CARRY   if add is true | 
 |     DST  = SRC * MULTIPLIER + CARRY   if add is false | 
 |  | 
 |     Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC | 
 |     they must start at the same point, i.e. DST == SRC. | 
 |  | 
 |     If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is | 
 |     returned.  Otherwise DST is filled with the least significant | 
 |     DSTPARTS parts of the result, and if all of the omitted higher | 
 |     parts were zero return zero, otherwise overflow occurred and | 
 |     return one.  */ | 
 | int | 
 | APInt::tcMultiplyPart(integerPart *dst, const integerPart *src, | 
 |                       integerPart multiplier, integerPart carry, | 
 |                       unsigned int srcParts, unsigned int dstParts, | 
 |                       bool add) | 
 | { | 
 |   unsigned int i, n; | 
 |  | 
 |   /* Otherwise our writes of DST kill our later reads of SRC.  */ | 
 |   assert(dst <= src || dst >= src + srcParts); | 
 |   assert(dstParts <= srcParts + 1); | 
 |  | 
 |   /* N loops; minimum of dstParts and srcParts.  */ | 
 |   n = dstParts < srcParts ? dstParts: srcParts; | 
 |  | 
 |   for (i = 0; i < n; i++) { | 
 |     integerPart low, mid, high, srcPart; | 
 |  | 
 |       /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. | 
 |  | 
 |          This cannot overflow, because | 
 |  | 
 |          (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) | 
 |  | 
 |          which is less than n^2.  */ | 
 |  | 
 |     srcPart = src[i]; | 
 |  | 
 |     if (multiplier == 0 || srcPart == 0)        { | 
 |       low = carry; | 
 |       high = 0; | 
 |     } else { | 
 |       low = lowHalf(srcPart) * lowHalf(multiplier); | 
 |       high = highHalf(srcPart) * highHalf(multiplier); | 
 |  | 
 |       mid = lowHalf(srcPart) * highHalf(multiplier); | 
 |       high += highHalf(mid); | 
 |       mid <<= integerPartWidth / 2; | 
 |       if (low + mid < low) | 
 |         high++; | 
 |       low += mid; | 
 |  | 
 |       mid = highHalf(srcPart) * lowHalf(multiplier); | 
 |       high += highHalf(mid); | 
 |       mid <<= integerPartWidth / 2; | 
 |       if (low + mid < low) | 
 |         high++; | 
 |       low += mid; | 
 |  | 
 |       /* Now add carry.  */ | 
 |       if (low + carry < low) | 
 |         high++; | 
 |       low += carry; | 
 |     } | 
 |  | 
 |     if (add) { | 
 |       /* And now DST[i], and store the new low part there.  */ | 
 |       if (low + dst[i] < low) | 
 |         high++; | 
 |       dst[i] += low; | 
 |     } else | 
 |       dst[i] = low; | 
 |  | 
 |     carry = high; | 
 |   } | 
 |  | 
 |   if (i < dstParts) { | 
 |     /* Full multiplication, there is no overflow.  */ | 
 |     assert(i + 1 == dstParts); | 
 |     dst[i] = carry; | 
 |     return 0; | 
 |   } else { | 
 |     /* We overflowed if there is carry.  */ | 
 |     if (carry) | 
 |       return 1; | 
 |  | 
 |     /* We would overflow if any significant unwritten parts would be | 
 |        non-zero.  This is true if any remaining src parts are non-zero | 
 |        and the multiplier is non-zero.  */ | 
 |     if (multiplier) | 
 |       for (; i < srcParts; i++) | 
 |         if (src[i]) | 
 |           return 1; | 
 |  | 
 |     /* We fitted in the narrow destination.  */ | 
 |     return 0; | 
 |   } | 
 | } | 
 |  | 
 | /* DST = LHS * RHS, where DST has the same width as the operands and | 
 |    is filled with the least significant parts of the result.  Returns | 
 |    one if overflow occurred, otherwise zero.  DST must be disjoint | 
 |    from both operands.  */ | 
 | int | 
 | APInt::tcMultiply(integerPart *dst, const integerPart *lhs, | 
 |                   const integerPart *rhs, unsigned int parts) | 
 | { | 
 |   unsigned int i; | 
 |   int overflow; | 
 |  | 
 |   assert(dst != lhs && dst != rhs); | 
 |  | 
 |   overflow = 0; | 
 |   tcSet(dst, 0, parts); | 
 |  | 
 |   for (i = 0; i < parts; i++) | 
 |     overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, | 
 |                                parts - i, true); | 
 |  | 
 |   return overflow; | 
 | } | 
 |  | 
 | /* DST = LHS * RHS, where DST has width the sum of the widths of the | 
 |    operands.  No overflow occurs.  DST must be disjoint from both | 
 |    operands.  Returns the number of parts required to hold the | 
 |    result.  */ | 
 | unsigned int | 
 | APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs, | 
 |                       const integerPart *rhs, unsigned int lhsParts, | 
 |                       unsigned int rhsParts) | 
 | { | 
 |   /* Put the narrower number on the LHS for less loops below.  */ | 
 |   if (lhsParts > rhsParts) { | 
 |     return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); | 
 |   } else { | 
 |     unsigned int n; | 
 |  | 
 |     assert(dst != lhs && dst != rhs); | 
 |  | 
 |     tcSet(dst, 0, rhsParts); | 
 |  | 
 |     for (n = 0; n < lhsParts; n++) | 
 |       tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true); | 
 |  | 
 |     n = lhsParts + rhsParts; | 
 |  | 
 |     return n - (dst[n - 1] == 0); | 
 |   } | 
 | } | 
 |  | 
 | /* If RHS is zero LHS and REMAINDER are left unchanged, return one. | 
 |    Otherwise set LHS to LHS / RHS with the fractional part discarded, | 
 |    set REMAINDER to the remainder, return zero.  i.e. | 
 |  | 
 |    OLD_LHS = RHS * LHS + REMAINDER | 
 |  | 
 |    SCRATCH is a bignum of the same size as the operands and result for | 
 |    use by the routine; its contents need not be initialized and are | 
 |    destroyed.  LHS, REMAINDER and SCRATCH must be distinct. | 
 | */ | 
 | int | 
 | APInt::tcDivide(integerPart *lhs, const integerPart *rhs, | 
 |                 integerPart *remainder, integerPart *srhs, | 
 |                 unsigned int parts) | 
 | { | 
 |   unsigned int n, shiftCount; | 
 |   integerPart mask; | 
 |  | 
 |   assert(lhs != remainder && lhs != srhs && remainder != srhs); | 
 |  | 
 |   shiftCount = tcMSB(rhs, parts) + 1; | 
 |   if (shiftCount == 0) | 
 |     return true; | 
 |  | 
 |   shiftCount = parts * integerPartWidth - shiftCount; | 
 |   n = shiftCount / integerPartWidth; | 
 |   mask = (integerPart) 1 << (shiftCount % integerPartWidth); | 
 |  | 
 |   tcAssign(srhs, rhs, parts); | 
 |   tcShiftLeft(srhs, parts, shiftCount); | 
 |   tcAssign(remainder, lhs, parts); | 
 |   tcSet(lhs, 0, parts); | 
 |  | 
 |   /* Loop, subtracting SRHS if REMAINDER is greater and adding that to | 
 |      the total.  */ | 
 |   for (;;) { | 
 |       int compare; | 
 |  | 
 |       compare = tcCompare(remainder, srhs, parts); | 
 |       if (compare >= 0) { | 
 |         tcSubtract(remainder, srhs, 0, parts); | 
 |         lhs[n] |= mask; | 
 |       } | 
 |  | 
 |       if (shiftCount == 0) | 
 |         break; | 
 |       shiftCount--; | 
 |       tcShiftRight(srhs, parts, 1); | 
 |       if ((mask >>= 1) == 0) { | 
 |         mask = (integerPart) 1 << (integerPartWidth - 1); | 
 |         n--; | 
 |       } | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /* Shift a bignum left COUNT bits in-place.  Shifted in bits are zero. | 
 |    There are no restrictions on COUNT.  */ | 
 | void | 
 | APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count) | 
 | { | 
 |   if (count) { | 
 |     unsigned int jump, shift; | 
 |  | 
 |     /* Jump is the inter-part jump; shift is is intra-part shift.  */ | 
 |     jump = count / integerPartWidth; | 
 |     shift = count % integerPartWidth; | 
 |  | 
 |     while (parts > jump) { | 
 |       integerPart part; | 
 |  | 
 |       parts--; | 
 |  | 
 |       /* dst[i] comes from the two parts src[i - jump] and, if we have | 
 |          an intra-part shift, src[i - jump - 1].  */ | 
 |       part = dst[parts - jump]; | 
 |       if (shift) { | 
 |         part <<= shift; | 
 |         if (parts >= jump + 1) | 
 |           part |= dst[parts - jump - 1] >> (integerPartWidth - shift); | 
 |       } | 
 |  | 
 |       dst[parts] = part; | 
 |     } | 
 |  | 
 |     while (parts > 0) | 
 |       dst[--parts] = 0; | 
 |   } | 
 | } | 
 |  | 
 | /* Shift a bignum right COUNT bits in-place.  Shifted in bits are | 
 |    zero.  There are no restrictions on COUNT.  */ | 
 | void | 
 | APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count) | 
 | { | 
 |   if (count) { | 
 |     unsigned int i, jump, shift; | 
 |  | 
 |     /* Jump is the inter-part jump; shift is is intra-part shift.  */ | 
 |     jump = count / integerPartWidth; | 
 |     shift = count % integerPartWidth; | 
 |  | 
 |     /* Perform the shift.  This leaves the most significant COUNT bits | 
 |        of the result at zero.  */ | 
 |     for (i = 0; i < parts; i++) { | 
 |       integerPart part; | 
 |  | 
 |       if (i + jump >= parts) { | 
 |         part = 0; | 
 |       } else { | 
 |         part = dst[i + jump]; | 
 |         if (shift) { | 
 |           part >>= shift; | 
 |           if (i + jump + 1 < parts) | 
 |             part |= dst[i + jump + 1] << (integerPartWidth - shift); | 
 |         } | 
 |       } | 
 |  | 
 |       dst[i] = part; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /* Bitwise and of two bignums.  */ | 
 | void | 
 | APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts) | 
 | { | 
 |   unsigned int i; | 
 |  | 
 |   for (i = 0; i < parts; i++) | 
 |     dst[i] &= rhs[i]; | 
 | } | 
 |  | 
 | /* Bitwise inclusive or of two bignums.  */ | 
 | void | 
 | APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts) | 
 | { | 
 |   unsigned int i; | 
 |  | 
 |   for (i = 0; i < parts; i++) | 
 |     dst[i] |= rhs[i]; | 
 | } | 
 |  | 
 | /* Bitwise exclusive or of two bignums.  */ | 
 | void | 
 | APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts) | 
 | { | 
 |   unsigned int i; | 
 |  | 
 |   for (i = 0; i < parts; i++) | 
 |     dst[i] ^= rhs[i]; | 
 | } | 
 |  | 
 | /* Complement a bignum in-place.  */ | 
 | void | 
 | APInt::tcComplement(integerPart *dst, unsigned int parts) | 
 | { | 
 |   unsigned int i; | 
 |  | 
 |   for (i = 0; i < parts; i++) | 
 |     dst[i] = ~dst[i]; | 
 | } | 
 |  | 
 | /* Comparison (unsigned) of two bignums.  */ | 
 | int | 
 | APInt::tcCompare(const integerPart *lhs, const integerPart *rhs, | 
 |                  unsigned int parts) | 
 | { | 
 |   while (parts) { | 
 |       parts--; | 
 |       if (lhs[parts] == rhs[parts]) | 
 |         continue; | 
 |  | 
 |       if (lhs[parts] > rhs[parts]) | 
 |         return 1; | 
 |       else | 
 |         return -1; | 
 |     } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Increment a bignum in-place, return the carry flag.  */ | 
 | integerPart | 
 | APInt::tcIncrement(integerPart *dst, unsigned int parts) | 
 | { | 
 |   unsigned int i; | 
 |  | 
 |   for (i = 0; i < parts; i++) | 
 |     if (++dst[i] != 0) | 
 |       break; | 
 |  | 
 |   return i == parts; | 
 | } | 
 |  | 
 | /* Decrement a bignum in-place, return the borrow flag.  */ | 
 | integerPart | 
 | APInt::tcDecrement(integerPart *dst, unsigned int parts) { | 
 |   for (unsigned int i = 0; i < parts; i++) { | 
 |     // If the current word is non-zero, then the decrement has no effect on the | 
 |     // higher-order words of the integer and no borrow can occur. Exit early. | 
 |     if (dst[i]--) | 
 |       return 0; | 
 |   } | 
 |   // If every word was zero, then there is a borrow. | 
 |   return 1; | 
 | } | 
 |  | 
 |  | 
 | /* Set the least significant BITS bits of a bignum, clear the | 
 |    rest.  */ | 
 | void | 
 | APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts, | 
 |                                  unsigned int bits) | 
 | { | 
 |   unsigned int i; | 
 |  | 
 |   i = 0; | 
 |   while (bits > integerPartWidth) { | 
 |     dst[i++] = ~(integerPart) 0; | 
 |     bits -= integerPartWidth; | 
 |   } | 
 |  | 
 |   if (bits) | 
 |     dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits); | 
 |  | 
 |   while (i < parts) | 
 |     dst[i++] = 0; | 
 | } |