| //===- subzero/src/IceOperand.h - High-level operands -----------*- C++ -*-===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// \brief Declares the Operand class and its target-independent subclasses. |
| /// |
| /// The main classes are Variable, which represents an LLVM variable that is |
| /// either register- or stack-allocated, and the Constant hierarchy, which |
| /// represents integer, floating-point, and/or symbolic constants. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef SUBZERO_SRC_ICEOPERAND_H |
| #define SUBZERO_SRC_ICEOPERAND_H |
| |
| #include "IceCfg.h" |
| #include "IceDefs.h" |
| #include "IceGlobalContext.h" |
| #include "IceTypes.h" |
| |
| #include "llvm/Support/Format.h" |
| |
| #include <limits> |
| |
| namespace Ice { |
| |
| class Operand { |
| Operand() = delete; |
| Operand(const Operand &) = delete; |
| Operand &operator=(const Operand &) = delete; |
| |
| public: |
| static constexpr size_t MaxTargetKinds = 10; |
| enum OperandKind { |
| kConst_Base, |
| kConstInteger32, |
| kConstInteger64, |
| kConstFloat, |
| kConstDouble, |
| kConstRelocatable, |
| kConstUndef, |
| kConst_Target, // leave space for target-specific constant kinds |
| kConst_Max = kConst_Target + MaxTargetKinds, |
| kVariable, |
| kVariable64On32, |
| kVariable_Target, // leave space for target-specific variable kinds |
| kVariable_Max = kVariable_Target + MaxTargetKinds, |
| // Target-specific operand classes use kTarget as the starting point for |
| // their Kind enum space. Note that the value-spaces are shared across |
| // targets. To avoid confusion over the definition of shared values, an |
| // object specific to one target should never be passed to a different |
| // target. |
| kTarget, |
| kTarget_Max = std::numeric_limits<uint8_t>::max(), |
| }; |
| static_assert(kTarget <= kTarget_Max, "Must not be above max."); |
| OperandKind getKind() const { return Kind; } |
| Type getType() const { return Ty; } |
| |
| /// Every Operand keeps an array of the Variables referenced in the operand. |
| /// This is so that the liveness operations can get quick access to the |
| /// variables of interest, without having to dig so far into the operand. |
| SizeT getNumVars() const { return NumVars; } |
| Variable *getVar(SizeT I) const { |
| assert(I < getNumVars()); |
| return Vars[I]; |
| } |
| virtual void emit(const Cfg *Func) const = 0; |
| |
| /// \name Dumping functions. |
| /// @{ |
| |
| /// The dump(Func,Str) implementation must be sure to handle the situation |
| /// where Func==nullptr. |
| virtual void dump(const Cfg *Func, Ostream &Str) const = 0; |
| void dump(const Cfg *Func) const { |
| if (!BuildDefs::dump()) |
| return; |
| assert(Func); |
| dump(Func, Func->getContext()->getStrDump()); |
| } |
| void dump(Ostream &Str) const { |
| if (BuildDefs::dump()) |
| dump(nullptr, Str); |
| } |
| /// @} |
| |
| ~Operand() = default; |
| |
| protected: |
| Operand(OperandKind Kind, Type Ty) : Ty(Ty), Kind(Kind) { |
| // It is undefined behavior to have a larger value in the enum |
| assert(Kind <= kTarget_Max); |
| } |
| |
| const Type Ty; |
| const OperandKind Kind; |
| /// Vars and NumVars are initialized by the derived class. |
| SizeT NumVars = 0; |
| Variable **Vars = nullptr; |
| }; |
| |
| template <class StreamType> |
| inline StreamType &operator<<(StreamType &Str, const Operand &Op) { |
| Op.dump(Str); |
| return Str; |
| } |
| |
| /// Constant is the abstract base class for constants. All constants are |
| /// allocated from a global arena and are pooled. |
| class Constant : public Operand { |
| Constant() = delete; |
| Constant(const Constant &) = delete; |
| Constant &operator=(const Constant &) = delete; |
| |
| public: |
| virtual void emitPoolLabel(Ostream &Str, const GlobalContext *Ctx) const { |
| (void)Str; |
| (void)Ctx; |
| llvm::report_fatal_error("emitPoolLabel not defined for type"); |
| }; |
| void emit(const Cfg *Func) const override { emit(Func->getTarget()); } |
| virtual void emit(TargetLowering *Target) const = 0; |
| |
| static bool classof(const Operand *Operand) { |
| OperandKind Kind = Operand->getKind(); |
| return Kind >= kConst_Base && Kind <= kConst_Max; |
| } |
| |
| /// Judge if this given immediate should be randomized or pooled By default |
| /// should return false, only constant integers should truly go through this |
| /// method. |
| virtual bool shouldBeRandomizedOrPooled(const GlobalContext *Ctx) { |
| (void)Ctx; |
| return false; |
| } |
| |
| void setShouldBePooled(bool R) { shouldBePooled = R; } |
| |
| bool getShouldBePooled() const { return shouldBePooled; } |
| |
| protected: |
| Constant(OperandKind Kind, Type Ty) |
| : Operand(Kind, Ty), shouldBePooled(false) { |
| Vars = nullptr; |
| NumVars = 0; |
| } |
| /// Whether we should pool this constant. Usually Float/Double and pooled |
| /// Integers should be flagged true. |
| bool shouldBePooled; |
| }; |
| |
| /// ConstantPrimitive<> wraps a primitive type. |
| template <typename T, Operand::OperandKind K> |
| class ConstantPrimitive : public Constant { |
| ConstantPrimitive() = delete; |
| ConstantPrimitive(const ConstantPrimitive &) = delete; |
| ConstantPrimitive &operator=(const ConstantPrimitive &) = delete; |
| |
| public: |
| using PrimType = T; |
| |
| static ConstantPrimitive *create(GlobalContext *Ctx, Type Ty, |
| PrimType Value) { |
| return new (Ctx->allocate<ConstantPrimitive>()) |
| ConstantPrimitive(Ty, Value); |
| } |
| PrimType getValue() const { return Value; } |
| void emitPoolLabel(Ostream &Str, const GlobalContext *Ctx) const final { |
| Str << ".L$" << getType() << "$"; |
| // Print hex characters byte by byte, starting from the most significant |
| // byte. NOTE: This ordering assumes Subzero runs on a little-endian |
| // platform. That means the possibility of different label names depending |
| // on the endian-ness of the platform where Subzero runs. |
| for (unsigned i = 0; i < sizeof(Value); ++i) { |
| constexpr unsigned HexWidthChars = 2; |
| unsigned Offset = sizeof(Value) - 1 - i; |
| Str << llvm::format_hex_no_prefix( |
| *(Offset + (const unsigned char *)&Value), HexWidthChars); |
| } |
| // For a floating-point value in DecorateAsm mode, also append the value in |
| // human-readable sprintf form, changing '+' to 'p' and '-' to 'm' to |
| // maintain valid asm labels. |
| if (std::is_floating_point<PrimType>::value && !BuildDefs::minimal() && |
| Ctx->getFlags().getDecorateAsm()) { |
| char Buf[30]; |
| snprintf(Buf, llvm::array_lengthof(Buf), "$%g", (double)Value); |
| for (unsigned i = 0; i < llvm::array_lengthof(Buf) && Buf[i]; ++i) { |
| if (Buf[i] == '-') |
| Buf[i] = 'm'; |
| else if (Buf[i] == '+') |
| Buf[i] = 'p'; |
| } |
| Str << Buf; |
| } |
| } |
| using Constant::emit; |
| void emit(TargetLowering *Target) const final; |
| using Constant::dump; |
| void dump(const Cfg *, Ostream &Str) const override { |
| if (BuildDefs::dump()) |
| Str << getValue(); |
| } |
| |
| static bool classof(const Operand *Operand) { |
| return Operand->getKind() == K; |
| } |
| |
| virtual bool shouldBeRandomizedOrPooled(const GlobalContext *Ctx) override { |
| (void)Ctx; |
| return false; |
| } |
| |
| private: |
| ConstantPrimitive(Type Ty, PrimType Value) : Constant(K, Ty), Value(Value) {} |
| const PrimType Value; |
| }; |
| |
| using ConstantInteger32 = ConstantPrimitive<int32_t, Operand::kConstInteger32>; |
| using ConstantInteger64 = ConstantPrimitive<int64_t, Operand::kConstInteger64>; |
| using ConstantFloat = ConstantPrimitive<float, Operand::kConstFloat>; |
| using ConstantDouble = ConstantPrimitive<double, Operand::kConstDouble>; |
| |
| template <> |
| inline void ConstantInteger32::dump(const Cfg *, Ostream &Str) const { |
| if (!BuildDefs::dump()) |
| return; |
| if (getType() == IceType_i1) |
| Str << (getValue() ? "true" : "false"); |
| else |
| Str << static_cast<int32_t>(getValue()); |
| } |
| |
| /// Specialization of the template member function for ConstantInteger32 |
| template <> |
| bool ConstantInteger32::shouldBeRandomizedOrPooled(const GlobalContext *Ctx); |
| |
| template <> |
| inline void ConstantInteger64::dump(const Cfg *, Ostream &Str) const { |
| if (!BuildDefs::dump()) |
| return; |
| assert(getType() == IceType_i64); |
| Str << static_cast<int64_t>(getValue()); |
| } |
| |
| /// RelocOffset allows symbolic references in ConstantRelocatables' offsets, |
| /// e.g., 8 + LabelOffset, where label offset is the location (code or data) |
| /// of a Label that is only determinable during ELF emission. |
| class RelocOffset final { |
| RelocOffset(const RelocOffset &) = delete; |
| RelocOffset &operator=(const RelocOffset &) = delete; |
| |
| public: |
| static RelocOffset *create(GlobalContext *Ctx) { |
| return new (Ctx->allocate<RelocOffset>()) RelocOffset(); |
| } |
| |
| static RelocOffset *create(GlobalContext *Ctx, RelocOffsetT Value) { |
| return new (Ctx->allocate<RelocOffset>()) RelocOffset(Value); |
| } |
| |
| void setSubtract(bool Value) { Subtract = Value; } |
| bool hasOffset() const { return HasOffset; } |
| |
| RelocOffsetT getOffset() const { |
| assert(HasOffset); |
| return Offset; |
| } |
| |
| void setOffset(const RelocOffsetT Value) { |
| assert(!HasOffset); |
| if (Subtract) { |
| assert(Value != std::numeric_limits<RelocOffsetT>::lowest()); |
| Offset = -Value; |
| } else { |
| Offset = Value; |
| } |
| HasOffset = true; |
| } |
| |
| private: |
| RelocOffset() = default; |
| explicit RelocOffset(RelocOffsetT Offset) { setOffset(Offset); } |
| |
| bool Subtract = false; |
| bool HasOffset = false; |
| RelocOffsetT Offset; |
| }; |
| |
| /// RelocatableTuple bundles the parameters that are used to construct an |
| /// ConstantRelocatable. It is done this way so that ConstantRelocatable can fit |
| /// into the global constant pool template mechanism. |
| class RelocatableTuple { |
| RelocatableTuple() = delete; |
| RelocatableTuple &operator=(const RelocatableTuple &) = delete; |
| |
| public: |
| RelocatableTuple(const RelocOffsetArray &OffsetExpr, const IceString &Name, |
| bool SuppressMangling) |
| : OffsetExpr(OffsetExpr), Name(Name), SuppressMangling(SuppressMangling) { |
| } |
| |
| RelocatableTuple(const RelocOffsetArray &OffsetExpr, const IceString &Name, |
| const IceString &EmitString, bool SuppressMangling) |
| : OffsetExpr(OffsetExpr), Name(Name), EmitString(EmitString), |
| SuppressMangling(SuppressMangling) {} |
| |
| RelocatableTuple(const RelocatableTuple &) = default; |
| |
| const RelocOffsetArray OffsetExpr; |
| const IceString Name; |
| const IceString EmitString; |
| const bool SuppressMangling; |
| }; |
| |
| bool operator==(const RelocatableTuple &A, const RelocatableTuple &B); |
| |
| /// ConstantRelocatable represents a symbolic constant combined with a fixed |
| /// offset. |
| class ConstantRelocatable : public Constant { |
| ConstantRelocatable() = delete; |
| ConstantRelocatable(const ConstantRelocatable &) = delete; |
| ConstantRelocatable &operator=(const ConstantRelocatable &) = delete; |
| |
| public: |
| static ConstantRelocatable *create(GlobalContext *Ctx, Type Ty, |
| const RelocatableTuple &Tuple) { |
| return new (Ctx->allocate<ConstantRelocatable>()) |
| ConstantRelocatable(Ty, Tuple.OffsetExpr, Tuple.Name, Tuple.EmitString, |
| Tuple.SuppressMangling); |
| } |
| |
| RelocOffsetT getOffset() const { |
| RelocOffsetT Offset = 0; |
| for (const auto *const OffsetReloc : OffsetExpr) { |
| Offset += OffsetReloc->getOffset(); |
| } |
| return Offset; |
| } |
| |
| const IceString &getEmitString() const { return EmitString; } |
| |
| const IceString &getName() const { return Name; } |
| bool getSuppressMangling() const { return SuppressMangling; } |
| using Constant::emit; |
| void emit(TargetLowering *Target) const final; |
| void emitWithoutPrefix(const TargetLowering *Target, |
| const char *Suffix = "") const; |
| using Constant::dump; |
| void dump(const Cfg *Func, Ostream &Str) const override; |
| |
| static bool classof(const Operand *Operand) { |
| OperandKind Kind = Operand->getKind(); |
| return Kind == kConstRelocatable; |
| } |
| |
| private: |
| ConstantRelocatable(Type Ty, const RelocOffsetArray &OffsetExpr, |
| const IceString &Name, const IceString &EmitString, |
| bool SuppressMangling) |
| : Constant(kConstRelocatable, Ty), OffsetExpr(OffsetExpr), Name(Name), |
| EmitString(EmitString), SuppressMangling(SuppressMangling) {} |
| |
| const RelocOffsetArray OffsetExpr; /// fixed offset to add |
| const IceString Name; /// optional for debug/dump |
| const IceString EmitString; /// optional for textual emission |
| const bool SuppressMangling; |
| }; |
| |
| /// ConstantUndef represents an unspecified bit pattern. Although it is legal to |
| /// lower ConstantUndef to any value, backends should try to make code |
| /// generation deterministic by lowering ConstantUndefs to 0. |
| class ConstantUndef : public Constant { |
| ConstantUndef() = delete; |
| ConstantUndef(const ConstantUndef &) = delete; |
| ConstantUndef &operator=(const ConstantUndef &) = delete; |
| |
| public: |
| static ConstantUndef *create(GlobalContext *Ctx, Type Ty) { |
| return new (Ctx->allocate<ConstantUndef>()) ConstantUndef(Ty); |
| } |
| |
| using Constant::emit; |
| void emit(TargetLowering *Target) const final; |
| using Constant::dump; |
| void dump(const Cfg *, Ostream &Str) const override { |
| if (BuildDefs::dump()) |
| Str << "undef"; |
| } |
| |
| static bool classof(const Operand *Operand) { |
| return Operand->getKind() == kConstUndef; |
| } |
| |
| private: |
| ConstantUndef(Type Ty) : Constant(kConstUndef, Ty) {} |
| }; |
| |
| /// RegWeight is a wrapper for a uint32_t weight value, with a special value |
| /// that represents infinite weight, and an addWeight() method that ensures that |
| /// W+infinity=infinity. |
| class RegWeight { |
| public: |
| RegWeight() = default; |
| explicit RegWeight(uint32_t Weight) : Weight(Weight) {} |
| RegWeight(const RegWeight &) = default; |
| RegWeight &operator=(const RegWeight &) = default; |
| constexpr static uint32_t Inf = ~0; /// Force regalloc to give a register |
| constexpr static uint32_t Zero = 0; /// Force regalloc NOT to give a register |
| constexpr static uint32_t Max = Inf - 1; /// Max natural weight. |
| void addWeight(uint32_t Delta) { |
| if (Delta == Inf) |
| Weight = Inf; |
| else if (Weight != Inf) |
| if (Utils::add_overflow(Weight, Delta, &Weight) || Weight == Inf) |
| Weight = Max; |
| } |
| void addWeight(const RegWeight &Other) { addWeight(Other.Weight); } |
| void setWeight(uint32_t Val) { Weight = Val; } |
| uint32_t getWeight() const { return Weight; } |
| |
| private: |
| uint32_t Weight = 0; |
| }; |
| Ostream &operator<<(Ostream &Str, const RegWeight &W); |
| bool operator<(const RegWeight &A, const RegWeight &B); |
| bool operator<=(const RegWeight &A, const RegWeight &B); |
| bool operator==(const RegWeight &A, const RegWeight &B); |
| |
| /// LiveRange is a set of instruction number intervals representing a variable's |
| /// live range. Generally there is one interval per basic block where the |
| /// variable is live, but adjacent intervals get coalesced into a single |
| /// interval. |
| class LiveRange { |
| public: |
| LiveRange() = default; |
| /// Special constructor for building a kill set. The advantage is that we can |
| /// reserve the right amount of space in advance. |
| explicit LiveRange(const CfgVector<InstNumberT> &Kills) { |
| Range.reserve(Kills.size()); |
| for (InstNumberT I : Kills) |
| addSegment(I, I); |
| } |
| LiveRange(const LiveRange &) = default; |
| LiveRange &operator=(const LiveRange &) = default; |
| |
| void reset() { |
| Range.clear(); |
| untrim(); |
| } |
| void addSegment(InstNumberT Start, InstNumberT End); |
| |
| bool endsBefore(const LiveRange &Other) const; |
| bool overlaps(const LiveRange &Other, bool UseTrimmed = false) const; |
| bool overlapsInst(InstNumberT OtherBegin, bool UseTrimmed = false) const; |
| bool containsValue(InstNumberT Value, bool IsDest) const; |
| bool isEmpty() const { return Range.empty(); } |
| InstNumberT getStart() const { |
| return Range.empty() ? -1 : Range.begin()->first; |
| } |
| InstNumberT getEnd() const { |
| return Range.empty() ? -1 : Range.rbegin()->second; |
| } |
| |
| void untrim() { TrimmedBegin = Range.begin(); } |
| void trim(InstNumberT Lower); |
| |
| void dump(Ostream &Str) const; |
| |
| private: |
| using RangeElementType = std::pair<InstNumberT, InstNumberT>; |
| /// RangeType is arena-allocated from the Cfg's allocator. |
| using RangeType = CfgVector<RangeElementType>; |
| RangeType Range; |
| /// TrimmedBegin is an optimization for the overlaps() computation. Since the |
| /// linear-scan algorithm always calls it as overlaps(Cur) and Cur advances |
| /// monotonically according to live range start, we can optimize overlaps() by |
| /// ignoring all segments that end before the start of Cur's range. The |
| /// linear-scan code enables this by calling trim() on the ranges of interest |
| /// as Cur advances. Note that linear-scan also has to initialize TrimmedBegin |
| /// at the beginning by calling untrim(). |
| RangeType::const_iterator TrimmedBegin; |
| }; |
| |
| Ostream &operator<<(Ostream &Str, const LiveRange &L); |
| |
| /// Variable represents an operand that is register-allocated or |
| /// stack-allocated. If it is register-allocated, it will ultimately have a |
| /// non-negative RegNum field. |
| class Variable : public Operand { |
| Variable() = delete; |
| Variable(const Variable &) = delete; |
| Variable &operator=(const Variable &) = delete; |
| |
| enum RegRequirement : uint8_t { |
| RR_MayHaveRegister, |
| RR_MustHaveRegister, |
| RR_MustNotHaveRegister, |
| }; |
| |
| public: |
| static Variable *create(Cfg *Func, Type Ty, SizeT Index) { |
| return new (Func->allocate<Variable>()) Variable(kVariable, Ty, Index); |
| } |
| |
| SizeT getIndex() const { return Number; } |
| IceString getName(const Cfg *Func) const; |
| virtual void setName(Cfg *Func, const IceString &NewName) { |
| // Make sure that the name can only be set once. |
| assert(NameIndex == Cfg::IdentifierIndexInvalid); |
| if (!NewName.empty()) |
| NameIndex = Func->addIdentifierName(NewName); |
| } |
| |
| bool getIsArg() const { return IsArgument; } |
| virtual void setIsArg(bool Val = true) { IsArgument = Val; } |
| bool getIsImplicitArg() const { return IsImplicitArgument; } |
| void setIsImplicitArg(bool Val = true) { IsImplicitArgument = Val; } |
| |
| void setIgnoreLiveness() { IgnoreLiveness = true; } |
| bool getIgnoreLiveness() const { return IgnoreLiveness; } |
| |
| int32_t getStackOffset() const { return StackOffset; } |
| void setStackOffset(int32_t Offset) { StackOffset = Offset; } |
| /// Returns the variable's stack offset in symbolic form, to improve |
| /// readability in DecorateAsm mode. |
| IceString getSymbolicStackOffset(const Cfg *Func) const { |
| return "lv$" + getName(Func); |
| } |
| |
| static constexpr int32_t NoRegister = -1; |
| bool hasReg() const { return getRegNum() != NoRegister; } |
| int32_t getRegNum() const { return RegNum; } |
| void setRegNum(int32_t NewRegNum) { |
| // Regnum shouldn't be set more than once. |
| assert(!hasReg() || RegNum == NewRegNum); |
| RegNum = NewRegNum; |
| } |
| bool hasRegTmp() const { return getRegNumTmp() != NoRegister; } |
| int32_t getRegNumTmp() const { return RegNumTmp; } |
| void setRegNumTmp(int32_t NewRegNum) { RegNumTmp = NewRegNum; } |
| |
| RegWeight getWeight(const Cfg *Func) const; |
| |
| void setMustHaveReg() { RegRequirement = RR_MustHaveRegister; } |
| bool mustHaveReg() const { return RegRequirement == RR_MustHaveRegister; } |
| void setMustNotHaveReg() { RegRequirement = RR_MustNotHaveRegister; } |
| bool mustNotHaveReg() const { |
| return RegRequirement == RR_MustNotHaveRegister; |
| } |
| void setRematerializable(int32_t NewRegNum, int32_t NewOffset) { |
| IsRematerializable = true; |
| setRegNum(NewRegNum); |
| setStackOffset(NewOffset); |
| setMustHaveReg(); |
| } |
| bool isRematerializable() const { return IsRematerializable; } |
| |
| void setRegClass(uint8_t RC) { RegisterClass = static_cast<RegClass>(RC); } |
| RegClass getRegClass() const { return RegisterClass; } |
| |
| LiveRange &getLiveRange() { return Live; } |
| const LiveRange &getLiveRange() const { return Live; } |
| void setLiveRange(const LiveRange &Range) { Live = Range; } |
| void resetLiveRange() { Live.reset(); } |
| void addLiveRange(InstNumberT Start, InstNumberT End) { |
| assert(!getIgnoreLiveness()); |
| Live.addSegment(Start, End); |
| } |
| void trimLiveRange(InstNumberT Start) { Live.trim(Start); } |
| void untrimLiveRange() { Live.untrim(); } |
| bool rangeEndsBefore(const Variable *Other) const { |
| return Live.endsBefore(Other->Live); |
| } |
| bool rangeOverlaps(const Variable *Other) const { |
| constexpr bool UseTrimmed = true; |
| return Live.overlaps(Other->Live, UseTrimmed); |
| } |
| bool rangeOverlapsStart(const Variable *Other) const { |
| constexpr bool UseTrimmed = true; |
| return Live.overlapsInst(Other->Live.getStart(), UseTrimmed); |
| } |
| |
| /// Creates a temporary copy of the variable with a different type. Used |
| /// primarily for syntactic correctness of textual assembly emission. Note |
| /// that only basic information is copied, in particular not IsArgument, |
| /// IsImplicitArgument, IgnoreLiveness, RegNumTmp, Live, LoVar, HiVar, |
| /// VarsReal. If NewRegNum!=NoRegister, then that register assignment is made |
| /// instead of copying the existing assignment. |
| const Variable *asType(Type Ty, int32_t NewRegNum) const; |
| |
| void emit(const Cfg *Func) const override; |
| using Operand::dump; |
| void dump(const Cfg *Func, Ostream &Str) const override; |
| |
| /// Return reg num of base register, if different from stack/frame register. |
| virtual int32_t getBaseRegNum() const { return NoRegister; } |
| |
| static bool classof(const Operand *Operand) { |
| OperandKind Kind = Operand->getKind(); |
| return Kind >= kVariable && Kind <= kVariable_Max; |
| } |
| |
| protected: |
| Variable(OperandKind K, Type Ty, SizeT Index) |
| : Operand(K, Ty), Number(Index), |
| RegisterClass(static_cast<RegClass>(Ty)) { |
| Vars = VarsReal; |
| Vars[0] = this; |
| NumVars = 1; |
| } |
| /// Number is unique across all variables, and is used as a (bit)vector index |
| /// for liveness analysis. |
| const SizeT Number; |
| Cfg::IdentifierIndexType NameIndex = Cfg::IdentifierIndexInvalid; |
| bool IsArgument = false; |
| bool IsImplicitArgument = false; |
| /// IgnoreLiveness means that the variable should be ignored when constructing |
| /// and validating live ranges. This is usually reserved for the stack |
| /// pointer and other physical registers specifically referenced by name. |
| bool IgnoreLiveness = false; |
| // If IsRematerializable, RegNum keeps track of which register (stack or frame |
| // pointer), and StackOffset is the known offset from that register. |
| bool IsRematerializable = false; |
| RegRequirement RegRequirement = RR_MayHaveRegister; |
| RegClass RegisterClass; |
| /// RegNum is the allocated register, or NoRegister if it isn't |
| /// register-allocated. |
| int32_t RegNum = NoRegister; |
| /// RegNumTmp is the tentative assignment during register allocation. |
| int32_t RegNumTmp = NoRegister; |
| /// StackOffset is the canonical location on stack (only if |
| /// RegNum==NoRegister || IsArgument). |
| int32_t StackOffset = 0; |
| LiveRange Live; |
| /// VarsReal (and Operand::Vars) are set up such that Vars[0] == this. |
| Variable *VarsReal[1]; |
| }; |
| |
| // Variable64On32 represents a 64-bit variable on a 32-bit architecture. In |
| // this situation the variable must be split into a low and a high word. |
| class Variable64On32 : public Variable { |
| Variable64On32() = delete; |
| Variable64On32(const Variable64On32 &) = delete; |
| Variable64On32 &operator=(const Variable64On32 &) = delete; |
| |
| public: |
| static Variable64On32 *create(Cfg *Func, Type Ty, SizeT Index) { |
| return new (Func->allocate<Variable64On32>()) |
| Variable64On32(kVariable64On32, Ty, Index); |
| } |
| |
| void setName(Cfg *Func, const IceString &NewName) override { |
| Variable::setName(Func, NewName); |
| if (LoVar && HiVar) { |
| LoVar->setName(Func, getName(Func) + "__lo"); |
| HiVar->setName(Func, getName(Func) + "__hi"); |
| } |
| } |
| |
| void setIsArg(bool Val = true) override { |
| Variable::setIsArg(Val); |
| if (LoVar && HiVar) { |
| LoVar->setIsArg(Val); |
| HiVar->setIsArg(Val); |
| } |
| } |
| |
| Variable *getLo() const { |
| assert(LoVar != nullptr); |
| return LoVar; |
| } |
| Variable *getHi() const { |
| assert(HiVar != nullptr); |
| return HiVar; |
| } |
| |
| void initHiLo(Cfg *Func) { |
| assert(LoVar == nullptr); |
| assert(HiVar == nullptr); |
| LoVar = Func->makeVariable(IceType_i32); |
| HiVar = Func->makeVariable(IceType_i32); |
| LoVar->setIsArg(getIsArg()); |
| HiVar->setIsArg(getIsArg()); |
| LoVar->setName(Func, getName(Func) + "__lo"); |
| HiVar->setName(Func, getName(Func) + "__hi"); |
| } |
| |
| static bool classof(const Operand *Operand) { |
| OperandKind Kind = Operand->getKind(); |
| return Kind == kVariable64On32; |
| } |
| |
| protected: |
| Variable64On32(OperandKind K, Type Ty, SizeT Index) : Variable(K, Ty, Index) { |
| assert(typeWidthInBytes(Ty) == 8); |
| } |
| |
| Variable *LoVar = nullptr; |
| Variable *HiVar = nullptr; |
| }; |
| |
| enum MetadataKind { |
| VMK_Uses, /// Track only uses, not defs |
| VMK_SingleDefs, /// Track uses+defs, but only record single def |
| VMK_All /// Track uses+defs, including full def list |
| }; |
| using InstDefList = CfgVector<const Inst *>; |
| |
| /// VariableTracking tracks the metadata for a single variable. It is |
| /// only meant to be used internally by VariablesMetadata. |
| class VariableTracking { |
| VariableTracking &operator=(const VariableTracking &) = delete; |
| |
| public: |
| enum MultiDefState { |
| // TODO(stichnot): Consider using just a simple counter. |
| MDS_Unknown, |
| MDS_SingleDef, |
| MDS_MultiDefSingleBlock, |
| MDS_MultiDefMultiBlock |
| }; |
| enum MultiBlockState { MBS_Unknown, MBS_SingleBlock, MBS_MultiBlock }; |
| VariableTracking() = default; |
| VariableTracking(const VariableTracking &) = default; |
| MultiDefState getMultiDef() const { return MultiDef; } |
| MultiBlockState getMultiBlock() const { return MultiBlock; } |
| const Inst *getFirstDefinitionSingleBlock() const; |
| const Inst *getSingleDefinition() const; |
| const Inst *getFirstDefinition() const; |
| const InstDefList &getLatterDefinitions() const { return Definitions; } |
| CfgNode *getNode() const { return SingleUseNode; } |
| RegWeight getUseWeight() const { return UseWeight; } |
| void markUse(MetadataKind TrackingKind, const Inst *Instr, CfgNode *Node, |
| bool IsImplicit); |
| void markDef(MetadataKind TrackingKind, const Inst *Instr, CfgNode *Node); |
| |
| private: |
| MultiDefState MultiDef = MDS_Unknown; |
| MultiBlockState MultiBlock = MBS_Unknown; |
| CfgNode *SingleUseNode = nullptr; |
| CfgNode *SingleDefNode = nullptr; |
| /// All definitions of the variable are collected in Definitions[] (except for |
| /// the earliest definition), in increasing order of instruction number. |
| InstDefList Definitions; /// Only used if Kind==VMK_All |
| const Inst *FirstOrSingleDefinition = nullptr; |
| RegWeight UseWeight; |
| }; |
| |
| /// VariablesMetadata analyzes and summarizes the metadata for the complete set |
| /// of Variables. |
| class VariablesMetadata { |
| VariablesMetadata() = delete; |
| VariablesMetadata(const VariablesMetadata &) = delete; |
| VariablesMetadata &operator=(const VariablesMetadata &) = delete; |
| |
| public: |
| explicit VariablesMetadata(const Cfg *Func) : Func(Func) {} |
| /// Initialize the state by traversing all instructions/variables in the CFG. |
| void init(MetadataKind TrackingKind); |
| /// Add a single node. This is called by init(), and can be called |
| /// incrementally from elsewhere, e.g. after edge-splitting. |
| void addNode(CfgNode *Node); |
| MetadataKind getKind() const { return Kind; } |
| /// Returns whether the given Variable is tracked in this object. It should |
| /// only return false if changes were made to the CFG after running init(), in |
| /// which case the state is stale and the results shouldn't be trusted (but it |
| /// may be OK e.g. for dumping). |
| bool isTracked(const Variable *Var) const { |
| return Var->getIndex() < Metadata.size(); |
| } |
| |
| /// Returns whether the given Variable has multiple definitions. |
| bool isMultiDef(const Variable *Var) const; |
| /// Returns the first definition instruction of the given Variable. This is |
| /// only valid for variables whose definitions are all within the same block, |
| /// e.g. T after the lowered sequence "T=B; T+=C; A=T", for which |
| /// getFirstDefinitionSingleBlock(T) would return the "T=B" instruction. For |
| /// variables with definitions span multiple blocks, nullptr is returned. |
| const Inst *getFirstDefinitionSingleBlock(const Variable *Var) const; |
| /// Returns the definition instruction of the given Variable, when the |
| /// variable has exactly one definition. Otherwise, nullptr is returned. |
| const Inst *getSingleDefinition(const Variable *Var) const; |
| /// getFirstDefinition() and getLatterDefinitions() are used together to |
| /// return the complete set of instructions that define the given Variable, |
| /// regardless of whether the definitions are within the same block (in |
| /// contrast to getFirstDefinitionSingleBlock). |
| const Inst *getFirstDefinition(const Variable *Var) const; |
| const InstDefList &getLatterDefinitions(const Variable *Var) const; |
| |
| /// Returns whether the given Variable is live across multiple blocks. Mainly, |
| /// this is used to partition Variables into single-block versus multi-block |
| /// sets for leveraging sparsity in liveness analysis, and for implementing |
| /// simple stack slot coalescing. As a special case, function arguments are |
| /// always considered multi-block because they are live coming into the entry |
| /// block. |
| bool isMultiBlock(const Variable *Var) const; |
| /// Returns the node that the given Variable is used in, assuming |
| /// isMultiBlock() returns false. Otherwise, nullptr is returned. |
| CfgNode *getLocalUseNode(const Variable *Var) const; |
| |
| /// Returns the total use weight computed as the sum of uses multiplied by a |
| /// loop nest depth factor for each use. |
| RegWeight getUseWeight(const Variable *Var) const; |
| |
| private: |
| const Cfg *Func; |
| MetadataKind Kind; |
| CfgVector<VariableTracking> Metadata; |
| const static InstDefList NoDefinitions; |
| }; |
| |
| } // end of namespace Ice |
| |
| #endif // SUBZERO_SRC_ICEOPERAND_H |