| //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LLVM module linker. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Linker.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Module.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/ValueMapper.h" |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // TypeMap implementation. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class TypeMapTy : public ValueMapTypeRemapper { |
| /// MappedTypes - This is a mapping from a source type to a destination type |
| /// to use. |
| DenseMap<Type*, Type*> MappedTypes; |
| |
| /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic, |
| /// we speculatively add types to MappedTypes, but keep track of them here in |
| /// case we need to roll back. |
| SmallVector<Type*, 16> SpeculativeTypes; |
| |
| /// DefinitionsToResolve - This is a list of non-opaque structs in the source |
| /// module that are mapped to an opaque struct in the destination module. |
| SmallVector<StructType*, 16> DefinitionsToResolve; |
| public: |
| |
| /// addTypeMapping - Indicate that the specified type in the destination |
| /// module is conceptually equivalent to the specified type in the source |
| /// module. |
| void addTypeMapping(Type *DstTy, Type *SrcTy); |
| |
| /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest |
| /// module from a type definition in the source module. |
| void linkDefinedTypeBodies(); |
| |
| /// get - Return the mapped type to use for the specified input type from the |
| /// source module. |
| Type *get(Type *SrcTy); |
| |
| FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));} |
| |
| private: |
| Type *getImpl(Type *T); |
| /// remapType - Implement the ValueMapTypeRemapper interface. |
| Type *remapType(Type *SrcTy) { |
| return get(SrcTy); |
| } |
| |
| bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); |
| }; |
| } |
| |
| void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { |
| Type *&Entry = MappedTypes[SrcTy]; |
| if (Entry) return; |
| |
| if (DstTy == SrcTy) { |
| Entry = DstTy; |
| return; |
| } |
| |
| // Check to see if these types are recursively isomorphic and establish a |
| // mapping between them if so. |
| if (!areTypesIsomorphic(DstTy, SrcTy)) { |
| // Oops, they aren't isomorphic. Just discard this request by rolling out |
| // any speculative mappings we've established. |
| for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i) |
| MappedTypes.erase(SpeculativeTypes[i]); |
| } |
| SpeculativeTypes.clear(); |
| } |
| |
| /// areTypesIsomorphic - Recursively walk this pair of types, returning true |
| /// if they are isomorphic, false if they are not. |
| bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { |
| // Two types with differing kinds are clearly not isomorphic. |
| if (DstTy->getTypeID() != SrcTy->getTypeID()) return false; |
| |
| // If we have an entry in the MappedTypes table, then we have our answer. |
| Type *&Entry = MappedTypes[SrcTy]; |
| if (Entry) |
| return Entry == DstTy; |
| |
| // Two identical types are clearly isomorphic. Remember this |
| // non-speculatively. |
| if (DstTy == SrcTy) { |
| Entry = DstTy; |
| return true; |
| } |
| |
| // Okay, we have two types with identical kinds that we haven't seen before. |
| |
| // If this is an opaque struct type, special case it. |
| if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) { |
| // Mapping an opaque type to any struct, just keep the dest struct. |
| if (SSTy->isOpaque()) { |
| Entry = DstTy; |
| SpeculativeTypes.push_back(SrcTy); |
| return true; |
| } |
| |
| // Mapping a non-opaque source type to an opaque dest. Keep the dest, but |
| // fill it in later. This doesn't need to be speculative. |
| if (cast<StructType>(DstTy)->isOpaque()) { |
| Entry = DstTy; |
| DefinitionsToResolve.push_back(SSTy); |
| return true; |
| } |
| } |
| |
| // If the number of subtypes disagree between the two types, then we fail. |
| if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes()) |
| return false; |
| |
| // Fail if any of the extra properties (e.g. array size) of the type disagree. |
| if (isa<IntegerType>(DstTy)) |
| return false; // bitwidth disagrees. |
| if (PointerType *PT = dyn_cast<PointerType>(DstTy)) { |
| if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace()) |
| return false; |
| } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) { |
| if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg()) |
| return false; |
| } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) { |
| StructType *SSTy = cast<StructType>(SrcTy); |
| if (DSTy->isLiteral() != SSTy->isLiteral() || |
| DSTy->isPacked() != SSTy->isPacked()) |
| return false; |
| } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) { |
| if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements()) |
| return false; |
| } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) { |
| if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements()) |
| return false; |
| } |
| |
| // Otherwise, we speculate that these two types will line up and recursively |
| // check the subelements. |
| Entry = DstTy; |
| SpeculativeTypes.push_back(SrcTy); |
| |
| for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i) |
| if (!areTypesIsomorphic(DstTy->getContainedType(i), |
| SrcTy->getContainedType(i))) |
| return false; |
| |
| // If everything seems to have lined up, then everything is great. |
| return true; |
| } |
| |
| /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest |
| /// module from a type definition in the source module. |
| void TypeMapTy::linkDefinedTypeBodies() { |
| SmallVector<Type*, 16> Elements; |
| SmallString<16> TmpName; |
| |
| // Note that processing entries in this loop (calling 'get') can add new |
| // entries to the DefinitionsToResolve vector. |
| while (!DefinitionsToResolve.empty()) { |
| StructType *SrcSTy = DefinitionsToResolve.pop_back_val(); |
| StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]); |
| |
| // TypeMap is a many-to-one mapping, if there were multiple types that |
| // provide a body for DstSTy then previous iterations of this loop may have |
| // already handled it. Just ignore this case. |
| if (!DstSTy->isOpaque()) continue; |
| assert(!SrcSTy->isOpaque() && "Not resolving a definition?"); |
| |
| // Map the body of the source type over to a new body for the dest type. |
| Elements.resize(SrcSTy->getNumElements()); |
| for (unsigned i = 0, e = Elements.size(); i != e; ++i) |
| Elements[i] = getImpl(SrcSTy->getElementType(i)); |
| |
| DstSTy->setBody(Elements, SrcSTy->isPacked()); |
| |
| // If DstSTy has no name or has a longer name than STy, then viciously steal |
| // STy's name. |
| if (!SrcSTy->hasName()) continue; |
| StringRef SrcName = SrcSTy->getName(); |
| |
| if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) { |
| TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end()); |
| SrcSTy->setName(""); |
| DstSTy->setName(TmpName.str()); |
| TmpName.clear(); |
| } |
| } |
| } |
| |
| |
| /// get - Return the mapped type to use for the specified input type from the |
| /// source module. |
| Type *TypeMapTy::get(Type *Ty) { |
| Type *Result = getImpl(Ty); |
| |
| // If this caused a reference to any struct type, resolve it before returning. |
| if (!DefinitionsToResolve.empty()) |
| linkDefinedTypeBodies(); |
| return Result; |
| } |
| |
| /// getImpl - This is the recursive version of get(). |
| Type *TypeMapTy::getImpl(Type *Ty) { |
| // If we already have an entry for this type, return it. |
| Type **Entry = &MappedTypes[Ty]; |
| if (*Entry) return *Entry; |
| |
| // If this is not a named struct type, then just map all of the elements and |
| // then rebuild the type from inside out. |
| if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) { |
| // If there are no element types to map, then the type is itself. This is |
| // true for the anonymous {} struct, things like 'float', integers, etc. |
| if (Ty->getNumContainedTypes() == 0) |
| return *Entry = Ty; |
| |
| // Remap all of the elements, keeping track of whether any of them change. |
| bool AnyChange = false; |
| SmallVector<Type*, 4> ElementTypes; |
| ElementTypes.resize(Ty->getNumContainedTypes()); |
| for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) { |
| ElementTypes[i] = getImpl(Ty->getContainedType(i)); |
| AnyChange |= ElementTypes[i] != Ty->getContainedType(i); |
| } |
| |
| // If we found our type while recursively processing stuff, just use it. |
| Entry = &MappedTypes[Ty]; |
| if (*Entry) return *Entry; |
| |
| // If all of the element types mapped directly over, then the type is usable |
| // as-is. |
| if (!AnyChange) |
| return *Entry = Ty; |
| |
| // Otherwise, rebuild a modified type. |
| switch (Ty->getTypeID()) { |
| default: assert(0 && "unknown derived type to remap"); |
| case Type::ArrayTyID: |
| return *Entry = ArrayType::get(ElementTypes[0], |
| cast<ArrayType>(Ty)->getNumElements()); |
| case Type::VectorTyID: |
| return *Entry = VectorType::get(ElementTypes[0], |
| cast<VectorType>(Ty)->getNumElements()); |
| case Type::PointerTyID: |
| return *Entry = PointerType::get(ElementTypes[0], |
| cast<PointerType>(Ty)->getAddressSpace()); |
| case Type::FunctionTyID: |
| return *Entry = FunctionType::get(ElementTypes[0], |
| makeArrayRef(ElementTypes).slice(1), |
| cast<FunctionType>(Ty)->isVarArg()); |
| case Type::StructTyID: |
| // Note that this is only reached for anonymous structs. |
| return *Entry = StructType::get(Ty->getContext(), ElementTypes, |
| cast<StructType>(Ty)->isPacked()); |
| } |
| } |
| |
| // Otherwise, this is an unmapped named struct. If the struct can be directly |
| // mapped over, just use it as-is. This happens in a case when the linked-in |
| // module has something like: |
| // %T = type {%T*, i32} |
| // @GV = global %T* null |
| // where T does not exist at all in the destination module. |
| // |
| // The other case we watch for is when the type is not in the destination |
| // module, but that it has to be rebuilt because it refers to something that |
| // is already mapped. For example, if the destination module has: |
| // %A = type { i32 } |
| // and the source module has something like |
| // %A' = type { i32 } |
| // %B = type { %A'* } |
| // @GV = global %B* null |
| // then we want to create a new type: "%B = type { %A*}" and have it take the |
| // pristine "%B" name from the source module. |
| // |
| // To determine which case this is, we have to recursively walk the type graph |
| // speculating that we'll be able to reuse it unmodified. Only if this is |
| // safe would we map the entire thing over. Because this is an optimization, |
| // and is not required for the prettiness of the linked module, we just skip |
| // it and always rebuild a type here. |
| StructType *STy = cast<StructType>(Ty); |
| |
| // If the type is opaque, we can just use it directly. |
| if (STy->isOpaque()) |
| return *Entry = STy; |
| |
| // Otherwise we create a new type and resolve its body later. This will be |
| // resolved by the top level of get(). |
| DefinitionsToResolve.push_back(STy); |
| return *Entry = StructType::create(STy->getContext()); |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // ModuleLinker implementation. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// ModuleLinker - This is an implementation class for the LinkModules |
| /// function, which is the entrypoint for this file. |
| class ModuleLinker { |
| Module *DstM, *SrcM; |
| |
| TypeMapTy TypeMap; |
| |
| /// ValueMap - Mapping of values from what they used to be in Src, to what |
| /// they are now in DstM. ValueToValueMapTy is a ValueMap, which involves |
| /// some overhead due to the use of Value handles which the Linker doesn't |
| /// actually need, but this allows us to reuse the ValueMapper code. |
| ValueToValueMapTy ValueMap; |
| |
| struct AppendingVarInfo { |
| GlobalVariable *NewGV; // New aggregate global in dest module. |
| Constant *DstInit; // Old initializer from dest module. |
| Constant *SrcInit; // Old initializer from src module. |
| }; |
| |
| std::vector<AppendingVarInfo> AppendingVars; |
| |
| unsigned Mode; // Mode to treat source module. |
| |
| // Set of items not to link in from source. |
| SmallPtrSet<const Value*, 16> DoNotLinkFromSource; |
| |
| public: |
| std::string ErrorMsg; |
| |
| ModuleLinker(Module *dstM, Module *srcM, unsigned mode) |
| : DstM(dstM), SrcM(srcM), Mode(mode) { } |
| |
| bool run(); |
| |
| private: |
| /// emitError - Helper method for setting a message and returning an error |
| /// code. |
| bool emitError(const Twine &Message) { |
| ErrorMsg = Message.str(); |
| return true; |
| } |
| |
| /// getLinkageResult - This analyzes the two global values and determines |
| /// what the result will look like in the destination module. |
| bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src, |
| GlobalValue::LinkageTypes <, bool &LinkFromSrc); |
| |
| /// getLinkedToGlobal - Given a global in the source module, return the |
| /// global in the destination module that is being linked to, if any. |
| GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) { |
| // If the source has no name it can't link. If it has local linkage, |
| // there is no name match-up going on. |
| if (!SrcGV->hasName() || SrcGV->hasLocalLinkage()) |
| return 0; |
| |
| // Otherwise see if we have a match in the destination module's symtab. |
| GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName()); |
| if (DGV == 0) return 0; |
| |
| // If we found a global with the same name in the dest module, but it has |
| // internal linkage, we are really not doing any linkage here. |
| if (DGV->hasLocalLinkage()) |
| return 0; |
| |
| // Otherwise, we do in fact link to the destination global. |
| return DGV; |
| } |
| |
| void computeTypeMapping(); |
| |
| bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV); |
| bool linkGlobalProto(GlobalVariable *SrcGV); |
| bool linkFunctionProto(Function *SrcF); |
| bool linkAliasProto(GlobalAlias *SrcA); |
| |
| void linkAppendingVarInit(const AppendingVarInfo &AVI); |
| void linkGlobalInits(); |
| void linkFunctionBody(Function *Dst, Function *Src); |
| void linkAliasBodies(); |
| void linkNamedMDNodes(); |
| }; |
| } |
| |
| |
| |
| /// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict |
| /// in the symbol table. This is good for all clients except for us. Go |
| /// through the trouble to force this back. |
| static void forceRenaming(GlobalValue *GV, StringRef Name) { |
| // If the global doesn't force its name or if it already has the right name, |
| // there is nothing for us to do. |
| if (GV->hasLocalLinkage() || GV->getName() == Name) |
| return; |
| |
| Module *M = GV->getParent(); |
| |
| // If there is a conflict, rename the conflict. |
| if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { |
| GV->takeName(ConflictGV); |
| ConflictGV->setName(Name); // This will cause ConflictGV to get renamed |
| assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); |
| } else { |
| GV->setName(Name); // Force the name back |
| } |
| } |
| |
| /// CopyGVAttributes - copy additional attributes (those not needed to construct |
| /// a GlobalValue) from the SrcGV to the DestGV. |
| static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) { |
| // Use the maximum alignment, rather than just copying the alignment of SrcGV. |
| unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment()); |
| DestGV->copyAttributesFrom(SrcGV); |
| DestGV->setAlignment(Alignment); |
| |
| forceRenaming(DestGV, SrcGV->getName()); |
| } |
| |
| /// getLinkageResult - This analyzes the two global values and determines what |
| /// the result will look like in the destination module. In particular, it |
| /// computes the resultant linkage type, computes whether the global in the |
| /// source should be copied over to the destination (replacing the existing |
| /// one), and computes whether this linkage is an error or not. It also performs |
| /// visibility checks: we cannot link together two symbols with different |
| /// visibilities. |
| bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src, |
| GlobalValue::LinkageTypes <, |
| bool &LinkFromSrc) { |
| assert(Dest && "Must have two globals being queried"); |
| assert(!Src->hasLocalLinkage() && |
| "If Src has internal linkage, Dest shouldn't be set!"); |
| |
| bool SrcIsDeclaration = Src->isDeclaration(); |
| bool DestIsDeclaration = Dest->isDeclaration(); |
| |
| if (SrcIsDeclaration) { |
| // If Src is external or if both Src & Dest are external.. Just link the |
| // external globals, we aren't adding anything. |
| if (Src->hasDLLImportLinkage()) { |
| // If one of GVs has DLLImport linkage, result should be dllimport'ed. |
| if (DestIsDeclaration) { |
| LinkFromSrc = true; |
| LT = Src->getLinkage(); |
| } |
| } else if (Dest->hasExternalWeakLinkage()) { |
| // If the Dest is weak, use the source linkage. |
| LinkFromSrc = true; |
| LT = Src->getLinkage(); |
| } else { |
| LinkFromSrc = false; |
| LT = Dest->getLinkage(); |
| } |
| } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) { |
| // If Dest is external but Src is not: |
| LinkFromSrc = true; |
| LT = Src->getLinkage(); |
| } else if (Src->isWeakForLinker()) { |
| // At this point we know that Dest has LinkOnce, External*, Weak, Common, |
| // or DLL* linkage. |
| if (Dest->hasExternalWeakLinkage() || |
| Dest->hasAvailableExternallyLinkage() || |
| (Dest->hasLinkOnceLinkage() && |
| (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) { |
| LinkFromSrc = true; |
| LT = Src->getLinkage(); |
| } else { |
| LinkFromSrc = false; |
| LT = Dest->getLinkage(); |
| } |
| } else if (Dest->isWeakForLinker()) { |
| // At this point we know that Src has External* or DLL* linkage. |
| if (Src->hasExternalWeakLinkage()) { |
| LinkFromSrc = false; |
| LT = Dest->getLinkage(); |
| } else { |
| LinkFromSrc = true; |
| LT = GlobalValue::ExternalLinkage; |
| } |
| } else { |
| assert((Dest->hasExternalLinkage() || Dest->hasDLLImportLinkage() || |
| Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) && |
| (Src->hasExternalLinkage() || Src->hasDLLImportLinkage() || |
| Src->hasDLLExportLinkage() || Src->hasExternalWeakLinkage()) && |
| "Unexpected linkage type!"); |
| return emitError("Linking globals named '" + Src->getName() + |
| "': symbol multiply defined!"); |
| } |
| |
| // Check visibility |
| if (Src->getVisibility() != Dest->getVisibility() && |
| !SrcIsDeclaration && !DestIsDeclaration && |
| !Src->hasAvailableExternallyLinkage() && |
| !Dest->hasAvailableExternallyLinkage()) |
| return emitError("Linking globals named '" + Src->getName() + |
| "': symbols have different visibilities!"); |
| return false; |
| } |
| |
| /// computeTypeMapping - Loop over all of the linked values to compute type |
| /// mappings. For example, if we link "extern Foo *x" and "Foo *x = NULL", then |
| /// we have two struct types 'Foo' but one got renamed when the module was |
| /// loaded into the same LLVMContext. |
| void ModuleLinker::computeTypeMapping() { |
| // Incorporate globals. |
| for (Module::global_iterator I = SrcM->global_begin(), |
| E = SrcM->global_end(); I != E; ++I) { |
| GlobalValue *DGV = getLinkedToGlobal(I); |
| if (DGV == 0) continue; |
| |
| if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) { |
| TypeMap.addTypeMapping(DGV->getType(), I->getType()); |
| continue; |
| } |
| |
| // Unify the element type of appending arrays. |
| ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType()); |
| ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType()); |
| TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); |
| } |
| |
| // Incorporate functions. |
| for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) { |
| if (GlobalValue *DGV = getLinkedToGlobal(I)) |
| TypeMap.addTypeMapping(DGV->getType(), I->getType()); |
| } |
| |
| // Don't bother incorporating aliases, they aren't generally typed well. |
| |
| // Now that we have discovered all of the type equivalences, get a body for |
| // any 'opaque' types in the dest module that are now resolved. |
| TypeMap.linkDefinedTypeBodies(); |
| } |
| |
| /// linkAppendingVarProto - If there were any appending global variables, link |
| /// them together now. Return true on error. |
| bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV, |
| GlobalVariable *SrcGV) { |
| |
| if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) |
| return emitError("Linking globals named '" + SrcGV->getName() + |
| "': can only link appending global with another appending global!"); |
| |
| ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType()); |
| ArrayType *SrcTy = |
| cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType())); |
| Type *EltTy = DstTy->getElementType(); |
| |
| // Check to see that they two arrays agree on type. |
| if (EltTy != SrcTy->getElementType()) |
| return emitError("Appending variables with different element types!"); |
| if (DstGV->isConstant() != SrcGV->isConstant()) |
| return emitError("Appending variables linked with different const'ness!"); |
| |
| if (DstGV->getAlignment() != SrcGV->getAlignment()) |
| return emitError( |
| "Appending variables with different alignment need to be linked!"); |
| |
| if (DstGV->getVisibility() != SrcGV->getVisibility()) |
| return emitError( |
| "Appending variables with different visibility need to be linked!"); |
| |
| if (DstGV->getSection() != SrcGV->getSection()) |
| return emitError( |
| "Appending variables with different section name need to be linked!"); |
| |
| uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements(); |
| ArrayType *NewType = ArrayType::get(EltTy, NewSize); |
| |
| // Create the new global variable. |
| GlobalVariable *NG = |
| new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(), |
| DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV, |
| DstGV->isThreadLocal(), |
| DstGV->getType()->getAddressSpace()); |
| |
| // Propagate alignment, visibility and section info. |
| CopyGVAttributes(NG, DstGV); |
| |
| AppendingVarInfo AVI; |
| AVI.NewGV = NG; |
| AVI.DstInit = DstGV->getInitializer(); |
| AVI.SrcInit = SrcGV->getInitializer(); |
| AppendingVars.push_back(AVI); |
| |
| // Replace any uses of the two global variables with uses of the new |
| // global. |
| ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); |
| |
| DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType())); |
| DstGV->eraseFromParent(); |
| |
| // Track the source variable so we don't try to link it. |
| DoNotLinkFromSource.insert(SrcGV); |
| |
| return false; |
| } |
| |
| /// linkGlobalProto - Loop through the global variables in the src module and |
| /// merge them into the dest module. |
| bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) { |
| GlobalValue *DGV = getLinkedToGlobal(SGV); |
| |
| if (DGV) { |
| // Concatenation of appending linkage variables is magic and handled later. |
| if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage()) |
| return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV); |
| |
| // Determine whether linkage of these two globals follows the source |
| // module's definition or the destination module's definition. |
| GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage; |
| bool LinkFromSrc = false; |
| if (getLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc)) |
| return true; |
| |
| // If we're not linking from the source, then keep the definition that we |
| // have. |
| if (!LinkFromSrc) { |
| // Special case for const propagation. |
| if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV)) |
| if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant()) |
| DGVar->setConstant(true); |
| |
| // Set calculated linkage. |
| DGV->setLinkage(NewLinkage); |
| |
| // Make sure to remember this mapping. |
| ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType())); |
| |
| // Track the source global so that we don't attempt to copy it over when |
| // processing global initializers. |
| DoNotLinkFromSource.insert(SGV); |
| |
| return false; |
| } |
| } |
| |
| // No linking to be performed or linking from the source: simply create an |
| // identical version of the symbol over in the dest module... the |
| // initializer will be filled in later by LinkGlobalInits. |
| GlobalVariable *NewDGV = |
| new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()), |
| SGV->isConstant(), SGV->getLinkage(), /*init*/0, |
| SGV->getName(), /*insertbefore*/0, |
| SGV->isThreadLocal(), |
| SGV->getType()->getAddressSpace()); |
| // Propagate alignment, visibility and section info. |
| CopyGVAttributes(NewDGV, SGV); |
| |
| if (DGV) { |
| DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType())); |
| DGV->eraseFromParent(); |
| } |
| |
| // Make sure to remember this mapping. |
| ValueMap[SGV] = NewDGV; |
| return false; |
| } |
| |
| /// linkFunctionProto - Link the function in the source module into the |
| /// destination module if needed, setting up mapping information. |
| bool ModuleLinker::linkFunctionProto(Function *SF) { |
| GlobalValue *DGV = getLinkedToGlobal(SF); |
| |
| if (DGV) { |
| GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage; |
| bool LinkFromSrc = false; |
| if (getLinkageResult(DGV, SF, NewLinkage, LinkFromSrc)) |
| return true; |
| |
| if (!LinkFromSrc) { |
| // Set calculated linkage |
| DGV->setLinkage(NewLinkage); |
| |
| // Make sure to remember this mapping. |
| ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType())); |
| |
| // Track the function from the source module so we don't attempt to remap |
| // it. |
| DoNotLinkFromSource.insert(SF); |
| |
| return false; |
| } |
| } |
| |
| // If there is no linkage to be performed or we are linking from the source, |
| // bring SF over. |
| Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()), |
| SF->getLinkage(), SF->getName(), DstM); |
| CopyGVAttributes(NewDF, SF); |
| |
| if (DGV) { |
| // Any uses of DF need to change to NewDF, with cast. |
| DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType())); |
| DGV->eraseFromParent(); |
| } |
| |
| ValueMap[SF] = NewDF; |
| return false; |
| } |
| |
| /// LinkAliasProto - Set up prototypes for any aliases that come over from the |
| /// source module. |
| bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) { |
| GlobalValue *DGV = getLinkedToGlobal(SGA); |
| |
| if (DGV) { |
| GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage; |
| bool LinkFromSrc = false; |
| if (getLinkageResult(DGV, SGA, NewLinkage, LinkFromSrc)) |
| return true; |
| |
| if (!LinkFromSrc) { |
| // Set calculated linkage. |
| DGV->setLinkage(NewLinkage); |
| |
| // Make sure to remember this mapping. |
| ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType())); |
| |
| // Track the alias from the source module so we don't attempt to remap it. |
| DoNotLinkFromSource.insert(SGA); |
| |
| return false; |
| } |
| } |
| |
| // If there is no linkage to be performed or we're linking from the source, |
| // bring over SGA. |
| GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()), |
| SGA->getLinkage(), SGA->getName(), |
| /*aliasee*/0, DstM); |
| CopyGVAttributes(NewDA, SGA); |
| |
| if (DGV) { |
| // Any uses of DGV need to change to NewDA, with cast. |
| DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType())); |
| DGV->eraseFromParent(); |
| } |
| |
| ValueMap[SGA] = NewDA; |
| return false; |
| } |
| |
| void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) { |
| // Merge the initializer. |
| SmallVector<Constant*, 16> Elements; |
| if (ConstantArray *I = dyn_cast<ConstantArray>(AVI.DstInit)) { |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) |
| Elements.push_back(I->getOperand(i)); |
| } else { |
| assert(isa<ConstantAggregateZero>(AVI.DstInit)); |
| ArrayType *DstAT = cast<ArrayType>(AVI.DstInit->getType()); |
| Type *EltTy = DstAT->getElementType(); |
| Elements.append(DstAT->getNumElements(), Constant::getNullValue(EltTy)); |
| } |
| |
| Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap); |
| if (const ConstantArray *I = dyn_cast<ConstantArray>(SrcInit)) { |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) |
| Elements.push_back(I->getOperand(i)); |
| } else { |
| assert(isa<ConstantAggregateZero>(SrcInit)); |
| ArrayType *SrcAT = cast<ArrayType>(SrcInit->getType()); |
| Type *EltTy = SrcAT->getElementType(); |
| Elements.append(SrcAT->getNumElements(), Constant::getNullValue(EltTy)); |
| } |
| ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType()); |
| AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements)); |
| } |
| |
| |
| // linkGlobalInits - Update the initializers in the Dest module now that all |
| // globals that may be referenced are in Dest. |
| void ModuleLinker::linkGlobalInits() { |
| // Loop over all of the globals in the src module, mapping them over as we go |
| for (Module::const_global_iterator I = SrcM->global_begin(), |
| E = SrcM->global_end(); I != E; ++I) { |
| |
| // Only process initialized GV's or ones not already in dest. |
| if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue; |
| |
| // Grab destination global variable. |
| GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]); |
| // Figure out what the initializer looks like in the dest module. |
| DGV->setInitializer(MapValue(I->getInitializer(), ValueMap, |
| RF_None, &TypeMap)); |
| } |
| } |
| |
| // linkFunctionBody - Copy the source function over into the dest function and |
| // fix up references to values. At this point we know that Dest is an external |
| // function, and that Src is not. |
| void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) { |
| assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration()); |
| |
| // Go through and convert function arguments over, remembering the mapping. |
| Function::arg_iterator DI = Dst->arg_begin(); |
| for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end(); |
| I != E; ++I, ++DI) { |
| DI->setName(I->getName()); // Copy the name over. |
| |
| // Add a mapping to our mapping. |
| ValueMap[I] = DI; |
| } |
| |
| if (Mode == Linker::DestroySource) { |
| // Splice the body of the source function into the dest function. |
| Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList()); |
| |
| // At this point, all of the instructions and values of the function are now |
| // copied over. The only problem is that they are still referencing values in |
| // the Source function as operands. Loop through all of the operands of the |
| // functions and patch them up to point to the local versions. |
| for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB) |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap); |
| |
| } else { |
| // Clone the body of the function into the dest function. |
| SmallVector<ReturnInst*, 8> Returns; // Ignore returns. |
| CloneFunctionInto(Dst, Src, ValueMap, false, Returns); |
| } |
| |
| // There is no need to map the arguments anymore. |
| for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end(); |
| I != E; ++I) |
| ValueMap.erase(I); |
| |
| } |
| |
| |
| void ModuleLinker::linkAliasBodies() { |
| for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end(); |
| I != E; ++I) { |
| if (DoNotLinkFromSource.count(I)) |
| continue; |
| if (Constant *Aliasee = I->getAliasee()) { |
| GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]); |
| DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap)); |
| } |
| } |
| } |
| |
| /// linkNamedMDNodes - Insert all of the named mdnodes in Src into the Dest |
| /// module. |
| void ModuleLinker::linkNamedMDNodes() { |
| for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(), |
| E = SrcM->named_metadata_end(); I != E; ++I) { |
| NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName()); |
| // Add Src elements into Dest node. |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) |
| DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap, |
| RF_None, &TypeMap)); |
| } |
| } |
| |
| bool ModuleLinker::run() { |
| assert(DstM && "Null Destination module"); |
| assert(SrcM && "Null Source Module"); |
| |
| // Inherit the target data from the source module if the destination module |
| // doesn't have one already. |
| if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty()) |
| DstM->setDataLayout(SrcM->getDataLayout()); |
| |
| // Copy the target triple from the source to dest if the dest's is empty. |
| if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty()) |
| DstM->setTargetTriple(SrcM->getTargetTriple()); |
| |
| if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() && |
| SrcM->getDataLayout() != DstM->getDataLayout()) |
| errs() << "WARNING: Linking two modules of different data layouts!\n"; |
| if (!SrcM->getTargetTriple().empty() && |
| DstM->getTargetTriple() != SrcM->getTargetTriple()) { |
| errs() << "WARNING: Linking two modules of different target triples: "; |
| if (!SrcM->getModuleIdentifier().empty()) |
| errs() << SrcM->getModuleIdentifier() << ": "; |
| errs() << "'" << SrcM->getTargetTriple() << "' and '" |
| << DstM->getTargetTriple() << "'\n"; |
| } |
| |
| // Append the module inline asm string. |
| if (!SrcM->getModuleInlineAsm().empty()) { |
| if (DstM->getModuleInlineAsm().empty()) |
| DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm()); |
| else |
| DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+ |
| SrcM->getModuleInlineAsm()); |
| } |
| |
| // Update the destination module's dependent libraries list with the libraries |
| // from the source module. There's no opportunity for duplicates here as the |
| // Module ensures that duplicate insertions are discarded. |
| for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end(); |
| SI != SE; ++SI) |
| DstM->addLibrary(*SI); |
| |
| // If the source library's module id is in the dependent library list of the |
| // destination library, remove it since that module is now linked in. |
| StringRef ModuleId = SrcM->getModuleIdentifier(); |
| if (!ModuleId.empty()) |
| DstM->removeLibrary(sys::path::stem(ModuleId)); |
| |
| // Loop over all of the linked values to compute type mappings. |
| computeTypeMapping(); |
| |
| // Insert all of the globals in src into the DstM module... without linking |
| // initializers (which could refer to functions not yet mapped over). |
| for (Module::global_iterator I = SrcM->global_begin(), |
| E = SrcM->global_end(); I != E; ++I) |
| if (linkGlobalProto(I)) |
| return true; |
| |
| // Link the functions together between the two modules, without doing function |
| // bodies... this just adds external function prototypes to the DstM |
| // function... We do this so that when we begin processing function bodies, |
| // all of the global values that may be referenced are available in our |
| // ValueMap. |
| for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) |
| if (linkFunctionProto(I)) |
| return true; |
| |
| // If there were any aliases, link them now. |
| for (Module::alias_iterator I = SrcM->alias_begin(), |
| E = SrcM->alias_end(); I != E; ++I) |
| if (linkAliasProto(I)) |
| return true; |
| |
| for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i) |
| linkAppendingVarInit(AppendingVars[i]); |
| |
| // Update the initializers in the DstM module now that all globals that may |
| // be referenced are in DstM. |
| linkGlobalInits(); |
| |
| // Link in the function bodies that are defined in the source module into |
| // DstM. |
| for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) { |
| |
| // Skip if not linking from source. |
| if (DoNotLinkFromSource.count(SF)) continue; |
| |
| // Skip if no body (function is external) or materialize. |
| if (SF->isDeclaration()) { |
| if (!SF->isMaterializable()) |
| continue; |
| if (SF->Materialize(&ErrorMsg)) |
| return true; |
| } |
| |
| linkFunctionBody(cast<Function>(ValueMap[SF]), SF); |
| } |
| |
| // Resolve all uses of aliases with aliasees. |
| linkAliasBodies(); |
| |
| // Remap all of the named mdnoes in Src into the DstM module. We do this |
| // after linking GlobalValues so that MDNodes that reference GlobalValues |
| // are properly remapped. |
| linkNamedMDNodes(); |
| |
| // Now that all of the types from the source are used, resolve any structs |
| // copied over to the dest that didn't exist there. |
| TypeMap.linkDefinedTypeBodies(); |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LinkModules entrypoint. |
| //===----------------------------------------------------------------------===// |
| |
| // LinkModules - This function links two modules together, with the resulting |
| // left module modified to be the composite of the two input modules. If an |
| // error occurs, true is returned and ErrorMsg (if not null) is set to indicate |
| // the problem. Upon failure, the Dest module could be in a modified state, and |
| // shouldn't be relied on to be consistent. |
| bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode, |
| std::string *ErrorMsg) { |
| ModuleLinker TheLinker(Dest, Src, Mode); |
| if (TheLinker.run()) { |
| if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg; |
| return true; |
| } |
| |
| return false; |
| } |