| //===- UnrollLoopPeel.cpp - Loop peeling utilities ------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements some loop unrolling utilities for peeling loops |
| // with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for |
| // unrolling loops with compile-time constant trip counts. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopIterator.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/LoopSimplify.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/Transforms/Utils/UnrollLoop.h" |
| #include "llvm/Transforms/Utils/ValueMapper.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <limits> |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| #define DEBUG_TYPE "loop-unroll" |
| |
| STATISTIC(NumPeeled, "Number of loops peeled"); |
| |
| static cl::opt<unsigned> UnrollPeelMaxCount( |
| "unroll-peel-max-count", cl::init(7), cl::Hidden, |
| cl::desc("Max average trip count which will cause loop peeling.")); |
| |
| static cl::opt<unsigned> UnrollForcePeelCount( |
| "unroll-force-peel-count", cl::init(0), cl::Hidden, |
| cl::desc("Force a peel count regardless of profiling information.")); |
| |
| static cl::opt<bool> UnrollPeelMultiDeoptExit( |
| "unroll-peel-multi-deopt-exit", cl::init(true), cl::Hidden, |
| cl::desc("Allow peeling of loops with multiple deopt exits.")); |
| |
| static const char *PeeledCountMetaData = "llvm.loop.peeled.count"; |
| |
| // Designates that a Phi is estimated to become invariant after an "infinite" |
| // number of loop iterations (i.e. only may become an invariant if the loop is |
| // fully unrolled). |
| static const unsigned InfiniteIterationsToInvariance = |
| std::numeric_limits<unsigned>::max(); |
| |
| // Check whether we are capable of peeling this loop. |
| bool llvm::canPeel(Loop *L) { |
| // Make sure the loop is in simplified form |
| if (!L->isLoopSimplifyForm()) |
| return false; |
| |
| if (UnrollPeelMultiDeoptExit) { |
| SmallVector<BasicBlock *, 4> Exits; |
| L->getUniqueNonLatchExitBlocks(Exits); |
| |
| if (!Exits.empty()) { |
| // Latch's terminator is a conditional branch, Latch is exiting and |
| // all non Latch exits ends up with deoptimize. |
| const BasicBlock *Latch = L->getLoopLatch(); |
| const BranchInst *T = dyn_cast<BranchInst>(Latch->getTerminator()); |
| return T && T->isConditional() && L->isLoopExiting(Latch) && |
| all_of(Exits, [](const BasicBlock *BB) { |
| return BB->getTerminatingDeoptimizeCall(); |
| }); |
| } |
| } |
| |
| // Only peel loops that contain a single exit |
| if (!L->getExitingBlock() || !L->getUniqueExitBlock()) |
| return false; |
| |
| // Don't try to peel loops where the latch is not the exiting block. |
| // This can be an indication of two different things: |
| // 1) The loop is not rotated. |
| // 2) The loop contains irreducible control flow that involves the latch. |
| if (L->getLoopLatch() != L->getExitingBlock()) |
| return false; |
| |
| return true; |
| } |
| |
| // This function calculates the number of iterations after which the given Phi |
| // becomes an invariant. The pre-calculated values are memorized in the map. The |
| // function (shortcut is I) is calculated according to the following definition: |
| // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge]. |
| // If %y is a loop invariant, then I(%x) = 1. |
| // If %y is a Phi from the loop header, I(%x) = I(%y) + 1. |
| // Otherwise, I(%x) is infinite. |
| // TODO: Actually if %y is an expression that depends only on Phi %z and some |
| // loop invariants, we can estimate I(%x) = I(%z) + 1. The example |
| // looks like: |
| // %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration. |
| // %y = phi(0, 5), |
| // %a = %y + 1. |
| static unsigned calculateIterationsToInvariance( |
| PHINode *Phi, Loop *L, BasicBlock *BackEdge, |
| SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) { |
| assert(Phi->getParent() == L->getHeader() && |
| "Non-loop Phi should not be checked for turning into invariant."); |
| assert(BackEdge == L->getLoopLatch() && "Wrong latch?"); |
| // If we already know the answer, take it from the map. |
| auto I = IterationsToInvariance.find(Phi); |
| if (I != IterationsToInvariance.end()) |
| return I->second; |
| |
| // Otherwise we need to analyze the input from the back edge. |
| Value *Input = Phi->getIncomingValueForBlock(BackEdge); |
| // Place infinity to map to avoid infinite recursion for cycled Phis. Such |
| // cycles can never stop on an invariant. |
| IterationsToInvariance[Phi] = InfiniteIterationsToInvariance; |
| unsigned ToInvariance = InfiniteIterationsToInvariance; |
| |
| if (L->isLoopInvariant(Input)) |
| ToInvariance = 1u; |
| else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) { |
| // Only consider Phis in header block. |
| if (IncPhi->getParent() != L->getHeader()) |
| return InfiniteIterationsToInvariance; |
| // If the input becomes an invariant after X iterations, then our Phi |
| // becomes an invariant after X + 1 iterations. |
| unsigned InputToInvariance = calculateIterationsToInvariance( |
| IncPhi, L, BackEdge, IterationsToInvariance); |
| if (InputToInvariance != InfiniteIterationsToInvariance) |
| ToInvariance = InputToInvariance + 1u; |
| } |
| |
| // If we found that this Phi lies in an invariant chain, update the map. |
| if (ToInvariance != InfiniteIterationsToInvariance) |
| IterationsToInvariance[Phi] = ToInvariance; |
| return ToInvariance; |
| } |
| |
| // Return the number of iterations to peel off that make conditions in the |
| // body true/false. For example, if we peel 2 iterations off the loop below, |
| // the condition i < 2 can be evaluated at compile time. |
| // for (i = 0; i < n; i++) |
| // if (i < 2) |
| // .. |
| // else |
| // .. |
| // } |
| static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount, |
| ScalarEvolution &SE) { |
| assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form"); |
| unsigned DesiredPeelCount = 0; |
| |
| for (auto *BB : L.blocks()) { |
| auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); |
| if (!BI || BI->isUnconditional()) |
| continue; |
| |
| // Ignore loop exit condition. |
| if (L.getLoopLatch() == BB) |
| continue; |
| |
| Value *Condition = BI->getCondition(); |
| Value *LeftVal, *RightVal; |
| CmpInst::Predicate Pred; |
| if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal)))) |
| continue; |
| |
| const SCEV *LeftSCEV = SE.getSCEV(LeftVal); |
| const SCEV *RightSCEV = SE.getSCEV(RightVal); |
| |
| // Do not consider predicates that are known to be true or false |
| // independently of the loop iteration. |
| if (SE.isKnownPredicate(Pred, LeftSCEV, RightSCEV) || |
| SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), LeftSCEV, |
| RightSCEV)) |
| continue; |
| |
| // Check if we have a condition with one AddRec and one non AddRec |
| // expression. Normalize LeftSCEV to be the AddRec. |
| if (!isa<SCEVAddRecExpr>(LeftSCEV)) { |
| if (isa<SCEVAddRecExpr>(RightSCEV)) { |
| std::swap(LeftSCEV, RightSCEV); |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| } else |
| continue; |
| } |
| |
| const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV); |
| |
| // Avoid huge SCEV computations in the loop below, make sure we only |
| // consider AddRecs of the loop we are trying to peel. |
| if (!LeftAR->isAffine() || LeftAR->getLoop() != &L) |
| continue; |
| bool Increasing; |
| if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) && |
| !SE.isMonotonicPredicate(LeftAR, Pred, Increasing)) |
| continue; |
| (void)Increasing; |
| |
| // Check if extending the current DesiredPeelCount lets us evaluate Pred |
| // or !Pred in the loop body statically. |
| unsigned NewPeelCount = DesiredPeelCount; |
| |
| const SCEV *IterVal = LeftAR->evaluateAtIteration( |
| SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE); |
| |
| // If the original condition is not known, get the negated predicate |
| // (which holds on the else branch) and check if it is known. This allows |
| // us to peel of iterations that make the original condition false. |
| if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV)) |
| Pred = ICmpInst::getInversePredicate(Pred); |
| |
| const SCEV *Step = LeftAR->getStepRecurrence(SE); |
| const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step); |
| auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step, |
| &NewPeelCount]() { |
| IterVal = NextIterVal; |
| NextIterVal = SE.getAddExpr(IterVal, Step); |
| NewPeelCount++; |
| }; |
| |
| auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() { |
| return NewPeelCount < MaxPeelCount; |
| }; |
| |
| while (CanPeelOneMoreIteration() && |
| SE.isKnownPredicate(Pred, IterVal, RightSCEV)) |
| PeelOneMoreIteration(); |
| |
| // With *that* peel count, does the predicate !Pred become known in the |
| // first iteration of the loop body after peeling? |
| if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal, |
| RightSCEV)) |
| continue; // If not, give up. |
| |
| // However, for equality comparisons, that isn't always sufficient to |
| // eliminate the comparsion in loop body, we may need to peel one more |
| // iteration. See if that makes !Pred become unknown again. |
| if (ICmpInst::isEquality(Pred) && |
| !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal, |
| RightSCEV)) { |
| assert(!SE.isKnownPredicate(Pred, IterVal, RightSCEV) && |
| SE.isKnownPredicate(Pred, NextIterVal, RightSCEV) && |
| "Expected Pred to go from known to unknown."); |
| if (!CanPeelOneMoreIteration()) |
| continue; // Need to peel one more iteration, but can't. Give up. |
| PeelOneMoreIteration(); // Great! |
| } |
| |
| DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount); |
| } |
| |
| return DesiredPeelCount; |
| } |
| |
| // Return the number of iterations we want to peel off. |
| void llvm::computePeelCount(Loop *L, unsigned LoopSize, |
| TargetTransformInfo::UnrollingPreferences &UP, |
| unsigned &TripCount, ScalarEvolution &SE) { |
| assert(LoopSize > 0 && "Zero loop size is not allowed!"); |
| // Save the UP.PeelCount value set by the target in |
| // TTI.getUnrollingPreferences or by the flag -unroll-peel-count. |
| unsigned TargetPeelCount = UP.PeelCount; |
| UP.PeelCount = 0; |
| if (!canPeel(L)) |
| return; |
| |
| // Only try to peel innermost loops. |
| if (!L->empty()) |
| return; |
| |
| // If the user provided a peel count, use that. |
| bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; |
| if (UserPeelCount) { |
| LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount |
| << " iterations.\n"); |
| UP.PeelCount = UnrollForcePeelCount; |
| UP.PeelProfiledIterations = true; |
| return; |
| } |
| |
| // Skip peeling if it's disabled. |
| if (!UP.AllowPeeling) |
| return; |
| |
| unsigned AlreadyPeeled = 0; |
| if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) |
| AlreadyPeeled = *Peeled; |
| // Stop if we already peeled off the maximum number of iterations. |
| if (AlreadyPeeled >= UnrollPeelMaxCount) |
| return; |
| |
| // Here we try to get rid of Phis which become invariants after 1, 2, ..., N |
| // iterations of the loop. For this we compute the number for iterations after |
| // which every Phi is guaranteed to become an invariant, and try to peel the |
| // maximum number of iterations among these values, thus turning all those |
| // Phis into invariants. |
| // First, check that we can peel at least one iteration. |
| if (2 * LoopSize <= UP.Threshold && UnrollPeelMaxCount > 0) { |
| // Store the pre-calculated values here. |
| SmallDenseMap<PHINode *, unsigned> IterationsToInvariance; |
| // Now go through all Phis to calculate their the number of iterations they |
| // need to become invariants. |
| // Start the max computation with the UP.PeelCount value set by the target |
| // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count. |
| unsigned DesiredPeelCount = TargetPeelCount; |
| BasicBlock *BackEdge = L->getLoopLatch(); |
| assert(BackEdge && "Loop is not in simplified form?"); |
| for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) { |
| PHINode *Phi = cast<PHINode>(&*BI); |
| unsigned ToInvariance = calculateIterationsToInvariance( |
| Phi, L, BackEdge, IterationsToInvariance); |
| if (ToInvariance != InfiniteIterationsToInvariance) |
| DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance); |
| } |
| |
| // Pay respect to limitations implied by loop size and the max peel count. |
| unsigned MaxPeelCount = UnrollPeelMaxCount; |
| MaxPeelCount = std::min(MaxPeelCount, UP.Threshold / LoopSize - 1); |
| |
| DesiredPeelCount = std::max(DesiredPeelCount, |
| countToEliminateCompares(*L, MaxPeelCount, SE)); |
| |
| if (DesiredPeelCount > 0) { |
| DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); |
| // Consider max peel count limitation. |
| assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); |
| if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) { |
| LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount |
| << " iteration(s) to turn" |
| << " some Phis into invariants.\n"); |
| UP.PeelCount = DesiredPeelCount; |
| UP.PeelProfiledIterations = false; |
| return; |
| } |
| } |
| } |
| |
| // Bail if we know the statically calculated trip count. |
| // In this case we rather prefer partial unrolling. |
| if (TripCount) |
| return; |
| |
| // Do not apply profile base peeling if it is disabled. |
| if (!UP.PeelProfiledIterations) |
| return; |
| // If we don't know the trip count, but have reason to believe the average |
| // trip count is low, peeling should be beneficial, since we will usually |
| // hit the peeled section. |
| // We only do this in the presence of profile information, since otherwise |
| // our estimates of the trip count are not reliable enough. |
| if (L->getHeader()->getParent()->hasProfileData()) { |
| Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L); |
| if (!PeelCount) |
| return; |
| |
| LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount |
| << "\n"); |
| |
| if (*PeelCount) { |
| if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) && |
| (LoopSize * (*PeelCount + 1) <= UP.Threshold)) { |
| LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount |
| << " iterations.\n"); |
| UP.PeelCount = *PeelCount; |
| return; |
| } |
| LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n"); |
| LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n"); |
| LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); |
| LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1) |
| << "\n"); |
| LLVM_DEBUG(dbgs() << "Max peel cost: " << UP.Threshold << "\n"); |
| } |
| } |
| } |
| |
| /// Update the branch weights of the latch of a peeled-off loop |
| /// iteration. |
| /// This sets the branch weights for the latch of the recently peeled off loop |
| /// iteration correctly. |
| /// Let F is a weight of the edge from latch to header. |
| /// Let E is a weight of the edge from latch to exit. |
| /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to |
| /// go to exit. |
| /// Then, Estimated TripCount = F / E. |
| /// For I-th (counting from 0) peeled off iteration we set the the weights for |
| /// the peeled latch as (TC - I, 1). It gives us reasonable distribution, |
| /// The probability to go to exit 1/(TC-I) increases. At the same time |
| /// the estimated trip count of remaining loop reduces by I. |
| /// To avoid dealing with division rounding we can just multiple both part |
| /// of weights to E and use weight as (F - I * E, E). |
| /// |
| /// \param Header The copy of the header block that belongs to next iteration. |
| /// \param LatchBR The copy of the latch branch that belongs to this iteration. |
| /// \param[in,out] FallThroughWeight The weight of the edge from latch to |
| /// header before peeling (in) and after peeled off one iteration (out). |
| static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR, |
| uint64_t ExitWeight, |
| uint64_t &FallThroughWeight) { |
| // FallThroughWeight is 0 means that there is no branch weights on original |
| // latch block or estimated trip count is zero. |
| if (!FallThroughWeight) |
| return; |
| |
| unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); |
| MDBuilder MDB(LatchBR->getContext()); |
| MDNode *WeightNode = |
| HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight) |
| : MDB.createBranchWeights(FallThroughWeight, ExitWeight); |
| LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); |
| FallThroughWeight = |
| FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1; |
| } |
| |
| /// Initialize the weights. |
| /// |
| /// \param Header The header block. |
| /// \param LatchBR The latch branch. |
| /// \param[out] ExitWeight The weight of the edge from Latch to Exit. |
| /// \param[out] FallThroughWeight The weight of the edge from Latch to Header. |
| static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR, |
| uint64_t &ExitWeight, |
| uint64_t &FallThroughWeight) { |
| uint64_t TrueWeight, FalseWeight; |
| if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) |
| return; |
| unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; |
| ExitWeight = HeaderIdx ? TrueWeight : FalseWeight; |
| FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight; |
| } |
| |
| /// Update the weights of original Latch block after peeling off all iterations. |
| /// |
| /// \param Header The header block. |
| /// \param LatchBR The latch branch. |
| /// \param ExitWeight The weight of the edge from Latch to Exit. |
| /// \param FallThroughWeight The weight of the edge from Latch to Header. |
| static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR, |
| uint64_t ExitWeight, |
| uint64_t FallThroughWeight) { |
| // FallThroughWeight is 0 means that there is no branch weights on original |
| // latch block or estimated trip count is zero. |
| if (!FallThroughWeight) |
| return; |
| |
| // Sets the branch weights on the loop exit. |
| MDBuilder MDB(LatchBR->getContext()); |
| unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; |
| MDNode *WeightNode = |
| HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight) |
| : MDB.createBranchWeights(FallThroughWeight, ExitWeight); |
| LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); |
| } |
| |
| /// Clones the body of the loop L, putting it between \p InsertTop and \p |
| /// InsertBot. |
| /// \param IterNumber The serial number of the iteration currently being |
| /// peeled off. |
| /// \param ExitEdges The exit edges of the original loop. |
| /// \param[out] NewBlocks A list of the blocks in the newly created clone |
| /// \param[out] VMap The value map between the loop and the new clone. |
| /// \param LoopBlocks A helper for DFS-traversal of the loop. |
| /// \param LVMap A value-map that maps instructions from the original loop to |
| /// instructions in the last peeled-off iteration. |
| static void cloneLoopBlocks( |
| Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot, |
| SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *> > &ExitEdges, |
| SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, |
| ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT, |
| LoopInfo *LI) { |
| BasicBlock *Header = L->getHeader(); |
| BasicBlock *Latch = L->getLoopLatch(); |
| BasicBlock *PreHeader = L->getLoopPreheader(); |
| |
| Function *F = Header->getParent(); |
| LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); |
| LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); |
| Loop *ParentLoop = L->getParentLoop(); |
| |
| // For each block in the original loop, create a new copy, |
| // and update the value map with the newly created values. |
| for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { |
| BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); |
| NewBlocks.push_back(NewBB); |
| |
| if (ParentLoop) |
| ParentLoop->addBasicBlockToLoop(NewBB, *LI); |
| |
| VMap[*BB] = NewBB; |
| |
| // If dominator tree is available, insert nodes to represent cloned blocks. |
| if (DT) { |
| if (Header == *BB) |
| DT->addNewBlock(NewBB, InsertTop); |
| else { |
| DomTreeNode *IDom = DT->getNode(*BB)->getIDom(); |
| // VMap must contain entry for IDom, as the iteration order is RPO. |
| DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()])); |
| } |
| } |
| } |
| |
| // Hook-up the control flow for the newly inserted blocks. |
| // The new header is hooked up directly to the "top", which is either |
| // the original loop preheader (for the first iteration) or the previous |
| // iteration's exiting block (for every other iteration) |
| InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header])); |
| |
| // Similarly, for the latch: |
| // The original exiting edge is still hooked up to the loop exit. |
| // The backedge now goes to the "bottom", which is either the loop's real |
| // header (for the last peeled iteration) or the copied header of the next |
| // iteration (for every other iteration) |
| BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); |
| BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator()); |
| for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx) |
| if (LatchBR->getSuccessor(idx) == Header) { |
| LatchBR->setSuccessor(idx, InsertBot); |
| break; |
| } |
| if (DT) |
| DT->changeImmediateDominator(InsertBot, NewLatch); |
| |
| // The new copy of the loop body starts with a bunch of PHI nodes |
| // that pick an incoming value from either the preheader, or the previous |
| // loop iteration. Since this copy is no longer part of the loop, we |
| // resolve this statically: |
| // For the first iteration, we use the value from the preheader directly. |
| // For any other iteration, we replace the phi with the value generated by |
| // the immediately preceding clone of the loop body (which represents |
| // the previous iteration). |
| for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { |
| PHINode *NewPHI = cast<PHINode>(VMap[&*I]); |
| if (IterNumber == 0) { |
| VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); |
| } else { |
| Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); |
| Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); |
| if (LatchInst && L->contains(LatchInst)) |
| VMap[&*I] = LVMap[LatchInst]; |
| else |
| VMap[&*I] = LatchVal; |
| } |
| cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); |
| } |
| |
| // Fix up the outgoing values - we need to add a value for the iteration |
| // we've just created. Note that this must happen *after* the incoming |
| // values are adjusted, since the value going out of the latch may also be |
| // a value coming into the header. |
| for (auto Edge : ExitEdges) |
| for (PHINode &PHI : Edge.second->phis()) { |
| Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first); |
| Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); |
| if (LatchInst && L->contains(LatchInst)) |
| LatchVal = VMap[LatchVal]; |
| PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first])); |
| } |
| |
| // LastValueMap is updated with the values for the current loop |
| // which are used the next time this function is called. |
| for (auto KV : VMap) |
| LVMap[KV.first] = KV.second; |
| } |
| |
| /// Peel off the first \p PeelCount iterations of loop \p L. |
| /// |
| /// Note that this does not peel them off as a single straight-line block. |
| /// Rather, each iteration is peeled off separately, and needs to check the |
| /// exit condition. |
| /// For loops that dynamically execute \p PeelCount iterations or less |
| /// this provides a benefit, since the peeled off iterations, which account |
| /// for the bulk of dynamic execution, can be further simplified by scalar |
| /// optimizations. |
| bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, |
| ScalarEvolution *SE, DominatorTree *DT, |
| AssumptionCache *AC, bool PreserveLCSSA) { |
| assert(PeelCount > 0 && "Attempt to peel out zero iterations?"); |
| assert(canPeel(L) && "Attempt to peel a loop which is not peelable?"); |
| |
| LoopBlocksDFS LoopBlocks(L); |
| LoopBlocks.perform(LI); |
| |
| BasicBlock *Header = L->getHeader(); |
| BasicBlock *PreHeader = L->getLoopPreheader(); |
| BasicBlock *Latch = L->getLoopLatch(); |
| SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges; |
| L->getExitEdges(ExitEdges); |
| |
| DenseMap<BasicBlock *, BasicBlock *> ExitIDom; |
| if (DT) { |
| // We'd like to determine the idom of exit block after peeling one |
| // iteration. |
| // Let Exit is exit block. |
| // Let ExitingSet - is a set of predecessors of Exit block. They are exiting |
| // blocks. |
| // Let Latch' and ExitingSet' are copies after a peeling. |
| // We'd like to find an idom'(Exit) - idom of Exit after peeling. |
| // It is an evident that idom'(Exit) will be the nearest common dominator |
| // of ExitingSet and ExitingSet'. |
| // idom(Exit) is a nearest common dominator of ExitingSet. |
| // idom(Exit)' is a nearest common dominator of ExitingSet'. |
| // Taking into account that we have a single Latch, Latch' will dominate |
| // Header and idom(Exit). |
| // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'. |
| // All these basic blocks are in the same loop, so what we find is |
| // (nearest common dominator of idom(Exit) and Latch)'. |
| // In the loop below we remember nearest common dominator of idom(Exit) and |
| // Latch to update idom of Exit later. |
| assert(L->hasDedicatedExits() && "No dedicated exits?"); |
| for (auto Edge : ExitEdges) { |
| if (ExitIDom.count(Edge.second)) |
| continue; |
| BasicBlock *BB = DT->findNearestCommonDominator( |
| DT->getNode(Edge.second)->getIDom()->getBlock(), Latch); |
| assert(L->contains(BB) && "IDom is not in a loop"); |
| ExitIDom[Edge.second] = BB; |
| } |
| } |
| |
| Function *F = Header->getParent(); |
| |
| // Set up all the necessary basic blocks. It is convenient to split the |
| // preheader into 3 parts - two blocks to anchor the peeled copy of the loop |
| // body, and a new preheader for the "real" loop. |
| |
| // Peeling the first iteration transforms. |
| // |
| // PreHeader: |
| // ... |
| // Header: |
| // LoopBody |
| // If (cond) goto Header |
| // Exit: |
| // |
| // into |
| // |
| // InsertTop: |
| // LoopBody |
| // If (!cond) goto Exit |
| // InsertBot: |
| // NewPreHeader: |
| // ... |
| // Header: |
| // LoopBody |
| // If (cond) goto Header |
| // Exit: |
| // |
| // Each following iteration will split the current bottom anchor in two, |
| // and put the new copy of the loop body between these two blocks. That is, |
| // after peeling another iteration from the example above, we'll split |
| // InsertBot, and get: |
| // |
| // InsertTop: |
| // LoopBody |
| // If (!cond) goto Exit |
| // InsertBot: |
| // LoopBody |
| // If (!cond) goto Exit |
| // InsertBot.next: |
| // NewPreHeader: |
| // ... |
| // Header: |
| // LoopBody |
| // If (cond) goto Header |
| // Exit: |
| |
| BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI); |
| BasicBlock *InsertBot = |
| SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI); |
| BasicBlock *NewPreHeader = |
| SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); |
| |
| InsertTop->setName(Header->getName() + ".peel.begin"); |
| InsertBot->setName(Header->getName() + ".peel.next"); |
| NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); |
| |
| ValueToValueMapTy LVMap; |
| |
| // If we have branch weight information, we'll want to update it for the |
| // newly created branches. |
| BranchInst *LatchBR = |
| cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator()); |
| uint64_t ExitWeight = 0, FallThroughWeight = 0; |
| initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight); |
| |
| // For each peeled-off iteration, make a copy of the loop. |
| for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { |
| SmallVector<BasicBlock *, 8> NewBlocks; |
| ValueToValueMapTy VMap; |
| |
| cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks, |
| LoopBlocks, VMap, LVMap, DT, LI); |
| |
| // Remap to use values from the current iteration instead of the |
| // previous one. |
| remapInstructionsInBlocks(NewBlocks, VMap); |
| |
| if (DT) { |
| // Latches of the cloned loops dominate over the loop exit, so idom of the |
| // latter is the first cloned loop body, as original PreHeader dominates |
| // the original loop body. |
| if (Iter == 0) |
| for (auto Exit : ExitIDom) |
| DT->changeImmediateDominator(Exit.first, |
| cast<BasicBlock>(LVMap[Exit.second])); |
| #ifdef EXPENSIVE_CHECKS |
| assert(DT->verify(DominatorTree::VerificationLevel::Fast)); |
| #endif |
| } |
| |
| auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]); |
| updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight); |
| // Remove Loop metadata from the latch branch instruction |
| // because it is not the Loop's latch branch anymore. |
| LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr); |
| |
| InsertTop = InsertBot; |
| InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); |
| InsertBot->setName(Header->getName() + ".peel.next"); |
| |
| F->getBasicBlockList().splice(InsertTop->getIterator(), |
| F->getBasicBlockList(), |
| NewBlocks[0]->getIterator(), F->end()); |
| } |
| |
| // Now adjust the phi nodes in the loop header to get their initial values |
| // from the last peeled-off iteration instead of the preheader. |
| for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PHI = cast<PHINode>(I); |
| Value *NewVal = PHI->getIncomingValueForBlock(Latch); |
| Instruction *LatchInst = dyn_cast<Instruction>(NewVal); |
| if (LatchInst && L->contains(LatchInst)) |
| NewVal = LVMap[LatchInst]; |
| |
| PHI->setIncomingValueForBlock(NewPreHeader, NewVal); |
| } |
| |
| fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight); |
| |
| // Update Metadata for count of peeled off iterations. |
| unsigned AlreadyPeeled = 0; |
| if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) |
| AlreadyPeeled = *Peeled; |
| addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount); |
| |
| if (Loop *ParentLoop = L->getParentLoop()) |
| L = ParentLoop; |
| |
| // We modified the loop, update SE. |
| SE->forgetTopmostLoop(L); |
| |
| // Finally DomtTree must be correct. |
| assert(DT->verify(DominatorTree::VerificationLevel::Fast)); |
| |
| // FIXME: Incrementally update loop-simplify |
| simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA); |
| |
| NumPeeled++; |
| |
| return true; |
| } |