| //===- InjectTLIMAppings.cpp - TLI to VFABI attribute injection ----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Populates the VFABI attribute with the scalar-to-vector mappings |
| // from the TargetLibraryInfo. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/InjectTLIMappings.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/Transforms/Utils.h" |
| #include "llvm/Transforms/Utils/ModuleUtils.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "inject-tli-mappings" |
| |
| STATISTIC(NumCallInjected, |
| "Number of calls in which the mappings have been injected."); |
| |
| STATISTIC(NumVFDeclAdded, |
| "Number of function declarations that have been added."); |
| STATISTIC(NumCompUsedAdded, |
| "Number of `@llvm.compiler.used` operands that have been added."); |
| |
| /// Helper function to map the TLI name to a strings that holds |
| /// scalar-to-vector mapping. |
| /// |
| /// _ZGV<isa><mask><vlen><vparams>_<scalarname>(<vectorname>) |
| /// |
| /// where: |
| /// |
| /// <isa> = "_LLVM_" |
| /// <mask> = "N". Note: TLI does not support masked interfaces. |
| /// <vlen> = Number of concurrent lanes, stored in the `VectorizationFactor` |
| /// field of the `VecDesc` struct. |
| /// <vparams> = "v", as many as are the number of parameters of CI. |
| /// <scalarname> = the name of the scalar function called by CI. |
| /// <vectorname> = the name of the vector function mapped by the TLI. |
| static std::string mangleTLIName(StringRef VectorName, const CallInst &CI, |
| unsigned VF) { |
| SmallString<256> Buffer; |
| llvm::raw_svector_ostream Out(Buffer); |
| Out << "_ZGV" << VFABI::_LLVM_ << "N" << VF; |
| for (unsigned I = 0; I < CI.getNumArgOperands(); ++I) |
| Out << "v"; |
| Out << "_" << CI.getCalledFunction()->getName() << "(" << VectorName << ")"; |
| return Out.str(); |
| } |
| |
| /// A helper function for converting Scalar types to vector types. |
| /// If the incoming type is void, we return void. If the VF is 1, we return |
| /// the scalar type. |
| static Type *ToVectorTy(Type *Scalar, unsigned VF, bool isScalable = false) { |
| if (Scalar->isVoidTy() || VF == 1) |
| return Scalar; |
| return VectorType::get(Scalar, {VF, isScalable}); |
| } |
| |
| /// A helper function that adds the vector function declaration that |
| /// vectorizes the CallInst CI with a vectorization factor of VF |
| /// lanes. The TLI assumes that all parameters and the return type of |
| /// CI (other than void) need to be widened to a VectorType of VF |
| /// lanes. |
| static void addVariantDeclaration(CallInst &CI, const unsigned VF, |
| const StringRef VFName) { |
| Module *M = CI.getModule(); |
| |
| // Add function declaration. |
| Type *RetTy = ToVectorTy(CI.getType(), VF); |
| SmallVector<Type *, 4> Tys; |
| for (Value *ArgOperand : CI.arg_operands()) |
| Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); |
| assert(!CI.getFunctionType()->isVarArg() && |
| "VarArg functions are not supported."); |
| FunctionType *FTy = FunctionType::get(RetTy, Tys, /*isVarArg=*/false); |
| Function *VectorF = |
| Function::Create(FTy, Function::ExternalLinkage, VFName, M); |
| VectorF->copyAttributesFrom(CI.getCalledFunction()); |
| ++NumVFDeclAdded; |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Added to the module: `" << VFName |
| << "` of type " << *(VectorF->getType()) << "\n"); |
| |
| // Make function declaration (without a body) "sticky" in the IR by |
| // listing it in the @llvm.compiler.used intrinsic. |
| assert(!VectorF->size() && "VFABI attribute requires `@llvm.compiler.used` " |
| "only on declarations."); |
| appendToCompilerUsed(*M, {VectorF}); |
| LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Adding `" << VFName |
| << "` to `@llvm.compiler.used`.\n"); |
| ++NumCompUsedAdded; |
| } |
| |
| static void addMappingsFromTLI(const TargetLibraryInfo &TLI, CallInst &CI) { |
| // This is needed to make sure we don't query the TLI for calls to |
| // bitcast of function pointers, like `%call = call i32 (i32*, ...) |
| // bitcast (i32 (...)* @goo to i32 (i32*, ...)*)(i32* nonnull %i)`, |
| // as such calls make the `isFunctionVectorizable` raise an |
| // exception. |
| if (CI.isNoBuiltin() || !CI.getCalledFunction()) |
| return; |
| |
| const std::string ScalarName = CI.getCalledFunction()->getName(); |
| // Nothing to be done if the TLI thinks the function is not |
| // vectorizable. |
| if (!TLI.isFunctionVectorizable(ScalarName)) |
| return; |
| SmallVector<std::string, 8> Mappings; |
| VFABI::getVectorVariantNames(CI, Mappings); |
| Module *M = CI.getModule(); |
| const SetVector<StringRef> OriginalSetOfMappings(Mappings.begin(), |
| Mappings.end()); |
| // All VFs in the TLI are powers of 2. |
| for (unsigned VF = 2, WidestVF = TLI.getWidestVF(ScalarName); VF <= WidestVF; |
| VF *= 2) { |
| const std::string TLIName = TLI.getVectorizedFunction(ScalarName, VF); |
| if (!TLIName.empty()) { |
| std::string MangledName = mangleTLIName(TLIName, CI, VF); |
| if (!OriginalSetOfMappings.count(MangledName)) { |
| Mappings.push_back(MangledName); |
| ++NumCallInjected; |
| } |
| Function *VariantF = M->getFunction(TLIName); |
| if (!VariantF) |
| addVariantDeclaration(CI, VF, TLIName); |
| } |
| } |
| |
| VFABI::setVectorVariantNames(&CI, Mappings); |
| } |
| |
| static bool runImpl(const TargetLibraryInfo &TLI, Function &F) { |
| for (auto &I : instructions(F)) |
| if (auto CI = dyn_cast<CallInst>(&I)) |
| addMappingsFromTLI(TLI, *CI); |
| // Even if the pass adds IR attributes, the analyses are preserved. |
| return false; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // New pass manager implementation. |
| //////////////////////////////////////////////////////////////////////////////// |
| PreservedAnalyses InjectTLIMappings::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F); |
| runImpl(TLI, F); |
| // Even if the pass adds IR attributes, the analyses are preserved. |
| return PreservedAnalyses::all(); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Legacy PM Implementation. |
| //////////////////////////////////////////////////////////////////////////////// |
| bool InjectTLIMappingsLegacy::runOnFunction(Function &F) { |
| const TargetLibraryInfo &TLI = |
| getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| return runImpl(TLI, F); |
| } |
| |
| void InjectTLIMappingsLegacy::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addPreserved<TargetLibraryInfoWrapperPass>(); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Legacy Pass manager initialization |
| //////////////////////////////////////////////////////////////////////////////// |
| char InjectTLIMappingsLegacy::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(InjectTLIMappingsLegacy, DEBUG_TYPE, |
| "Inject TLI Mappings", false, false) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_END(InjectTLIMappingsLegacy, DEBUG_TYPE, "Inject TLI Mappings", |
| false, false) |
| |
| FunctionPass *llvm::createInjectTLIMappingsLegacyPass() { |
| return new InjectTLIMappingsLegacy(); |
| } |