| //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This transformation implements the well known scalar replacement of |
| /// aggregates transformation. It tries to identify promotable elements of an |
| /// aggregate alloca, and promote them to registers. It will also try to |
| /// convert uses of an element (or set of elements) of an alloca into a vector |
| /// or bitfield-style integer scalar if appropriate. |
| /// |
| /// It works to do this with minimal slicing of the alloca so that regions |
| /// which are merely transferred in and out of external memory remain unchanged |
| /// and are not decomposed to scalar code. |
| /// |
| /// Because this also performs alloca promotion, it can be thought of as also |
| /// serving the purpose of SSA formation. The algorithm iterates on the |
| /// function until all opportunities for promotion have been realized. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/SROA.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/PointerIntPair.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/ADT/iterator.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/PtrUseVisitor.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/ConstantFolder.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DIBuilder.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <chrono> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| #include <iterator> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| #ifndef NDEBUG |
| // We only use this for a debug check. |
| #include <random> |
| #endif |
| |
| using namespace llvm; |
| using namespace llvm::sroa; |
| |
| #define DEBUG_TYPE "sroa" |
| |
| STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); |
| STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); |
| STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); |
| STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); |
| STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); |
| STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); |
| STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); |
| STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); |
| STATISTIC(NumDeleted, "Number of instructions deleted"); |
| STATISTIC(NumVectorized, "Number of vectorized aggregates"); |
| |
| /// Hidden option to enable randomly shuffling the slices to help uncover |
| /// instability in their order. |
| static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices", |
| cl::init(false), cl::Hidden); |
| |
| /// Hidden option to experiment with completely strict handling of inbounds |
| /// GEPs. |
| static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false), |
| cl::Hidden); |
| |
| namespace { |
| |
| /// A custom IRBuilder inserter which prefixes all names, but only in |
| /// Assert builds. |
| class IRBuilderPrefixedInserter : public IRBuilderDefaultInserter { |
| std::string Prefix; |
| |
| const Twine getNameWithPrefix(const Twine &Name) const { |
| return Name.isTriviallyEmpty() ? Name : Prefix + Name; |
| } |
| |
| public: |
| void SetNamePrefix(const Twine &P) { Prefix = P.str(); } |
| |
| protected: |
| void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, |
| BasicBlock::iterator InsertPt) const { |
| IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB, |
| InsertPt); |
| } |
| }; |
| |
| /// Provide a type for IRBuilder that drops names in release builds. |
| using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>; |
| |
| /// A used slice of an alloca. |
| /// |
| /// This structure represents a slice of an alloca used by some instruction. It |
| /// stores both the begin and end offsets of this use, a pointer to the use |
| /// itself, and a flag indicating whether we can classify the use as splittable |
| /// or not when forming partitions of the alloca. |
| class Slice { |
| /// The beginning offset of the range. |
| uint64_t BeginOffset = 0; |
| |
| /// The ending offset, not included in the range. |
| uint64_t EndOffset = 0; |
| |
| /// Storage for both the use of this slice and whether it can be |
| /// split. |
| PointerIntPair<Use *, 1, bool> UseAndIsSplittable; |
| |
| public: |
| Slice() = default; |
| |
| Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) |
| : BeginOffset(BeginOffset), EndOffset(EndOffset), |
| UseAndIsSplittable(U, IsSplittable) {} |
| |
| uint64_t beginOffset() const { return BeginOffset; } |
| uint64_t endOffset() const { return EndOffset; } |
| |
| bool isSplittable() const { return UseAndIsSplittable.getInt(); } |
| void makeUnsplittable() { UseAndIsSplittable.setInt(false); } |
| |
| Use *getUse() const { return UseAndIsSplittable.getPointer(); } |
| |
| bool isDead() const { return getUse() == nullptr; } |
| void kill() { UseAndIsSplittable.setPointer(nullptr); } |
| |
| /// Support for ordering ranges. |
| /// |
| /// This provides an ordering over ranges such that start offsets are |
| /// always increasing, and within equal start offsets, the end offsets are |
| /// decreasing. Thus the spanning range comes first in a cluster with the |
| /// same start position. |
| bool operator<(const Slice &RHS) const { |
| if (beginOffset() < RHS.beginOffset()) |
| return true; |
| if (beginOffset() > RHS.beginOffset()) |
| return false; |
| if (isSplittable() != RHS.isSplittable()) |
| return !isSplittable(); |
| if (endOffset() > RHS.endOffset()) |
| return true; |
| return false; |
| } |
| |
| /// Support comparison with a single offset to allow binary searches. |
| friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, |
| uint64_t RHSOffset) { |
| return LHS.beginOffset() < RHSOffset; |
| } |
| friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, |
| const Slice &RHS) { |
| return LHSOffset < RHS.beginOffset(); |
| } |
| |
| bool operator==(const Slice &RHS) const { |
| return isSplittable() == RHS.isSplittable() && |
| beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); |
| } |
| bool operator!=(const Slice &RHS) const { return !operator==(RHS); } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Representation of the alloca slices. |
| /// |
| /// This class represents the slices of an alloca which are formed by its |
| /// various uses. If a pointer escapes, we can't fully build a representation |
| /// for the slices used and we reflect that in this structure. The uses are |
| /// stored, sorted by increasing beginning offset and with unsplittable slices |
| /// starting at a particular offset before splittable slices. |
| class llvm::sroa::AllocaSlices { |
| public: |
| /// Construct the slices of a particular alloca. |
| AllocaSlices(const DataLayout &DL, AllocaInst &AI); |
| |
| /// Test whether a pointer to the allocation escapes our analysis. |
| /// |
| /// If this is true, the slices are never fully built and should be |
| /// ignored. |
| bool isEscaped() const { return PointerEscapingInstr; } |
| |
| /// Support for iterating over the slices. |
| /// @{ |
| using iterator = SmallVectorImpl<Slice>::iterator; |
| using range = iterator_range<iterator>; |
| |
| iterator begin() { return Slices.begin(); } |
| iterator end() { return Slices.end(); } |
| |
| using const_iterator = SmallVectorImpl<Slice>::const_iterator; |
| using const_range = iterator_range<const_iterator>; |
| |
| const_iterator begin() const { return Slices.begin(); } |
| const_iterator end() const { return Slices.end(); } |
| /// @} |
| |
| /// Erase a range of slices. |
| void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); } |
| |
| /// Insert new slices for this alloca. |
| /// |
| /// This moves the slices into the alloca's slices collection, and re-sorts |
| /// everything so that the usual ordering properties of the alloca's slices |
| /// hold. |
| void insert(ArrayRef<Slice> NewSlices) { |
| int OldSize = Slices.size(); |
| Slices.append(NewSlices.begin(), NewSlices.end()); |
| auto SliceI = Slices.begin() + OldSize; |
| llvm::sort(SliceI, Slices.end()); |
| std::inplace_merge(Slices.begin(), SliceI, Slices.end()); |
| } |
| |
| // Forward declare the iterator and range accessor for walking the |
| // partitions. |
| class partition_iterator; |
| iterator_range<partition_iterator> partitions(); |
| |
| /// Access the dead users for this alloca. |
| ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; } |
| |
| /// Access the dead operands referring to this alloca. |
| /// |
| /// These are operands which have cannot actually be used to refer to the |
| /// alloca as they are outside its range and the user doesn't correct for |
| /// that. These mostly consist of PHI node inputs and the like which we just |
| /// need to replace with undef. |
| ArrayRef<Use *> getDeadOperands() const { return DeadOperands; } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; |
| void printSlice(raw_ostream &OS, const_iterator I, |
| StringRef Indent = " ") const; |
| void printUse(raw_ostream &OS, const_iterator I, |
| StringRef Indent = " ") const; |
| void print(raw_ostream &OS) const; |
| void dump(const_iterator I) const; |
| void dump() const; |
| #endif |
| |
| private: |
| template <typename DerivedT, typename RetT = void> class BuilderBase; |
| class SliceBuilder; |
| |
| friend class AllocaSlices::SliceBuilder; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Handle to alloca instruction to simplify method interfaces. |
| AllocaInst &AI; |
| #endif |
| |
| /// The instruction responsible for this alloca not having a known set |
| /// of slices. |
| /// |
| /// When an instruction (potentially) escapes the pointer to the alloca, we |
| /// store a pointer to that here and abort trying to form slices of the |
| /// alloca. This will be null if the alloca slices are analyzed successfully. |
| Instruction *PointerEscapingInstr; |
| |
| /// The slices of the alloca. |
| /// |
| /// We store a vector of the slices formed by uses of the alloca here. This |
| /// vector is sorted by increasing begin offset, and then the unsplittable |
| /// slices before the splittable ones. See the Slice inner class for more |
| /// details. |
| SmallVector<Slice, 8> Slices; |
| |
| /// Instructions which will become dead if we rewrite the alloca. |
| /// |
| /// Note that these are not separated by slice. This is because we expect an |
| /// alloca to be completely rewritten or not rewritten at all. If rewritten, |
| /// all these instructions can simply be removed and replaced with undef as |
| /// they come from outside of the allocated space. |
| SmallVector<Instruction *, 8> DeadUsers; |
| |
| /// Operands which will become dead if we rewrite the alloca. |
| /// |
| /// These are operands that in their particular use can be replaced with |
| /// undef when we rewrite the alloca. These show up in out-of-bounds inputs |
| /// to PHI nodes and the like. They aren't entirely dead (there might be |
| /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we |
| /// want to swap this particular input for undef to simplify the use lists of |
| /// the alloca. |
| SmallVector<Use *, 8> DeadOperands; |
| }; |
| |
| /// A partition of the slices. |
| /// |
| /// An ephemeral representation for a range of slices which can be viewed as |
| /// a partition of the alloca. This range represents a span of the alloca's |
| /// memory which cannot be split, and provides access to all of the slices |
| /// overlapping some part of the partition. |
| /// |
| /// Objects of this type are produced by traversing the alloca's slices, but |
| /// are only ephemeral and not persistent. |
| class llvm::sroa::Partition { |
| private: |
| friend class AllocaSlices; |
| friend class AllocaSlices::partition_iterator; |
| |
| using iterator = AllocaSlices::iterator; |
| |
| /// The beginning and ending offsets of the alloca for this |
| /// partition. |
| uint64_t BeginOffset = 0, EndOffset = 0; |
| |
| /// The start and end iterators of this partition. |
| iterator SI, SJ; |
| |
| /// A collection of split slice tails overlapping the partition. |
| SmallVector<Slice *, 4> SplitTails; |
| |
| /// Raw constructor builds an empty partition starting and ending at |
| /// the given iterator. |
| Partition(iterator SI) : SI(SI), SJ(SI) {} |
| |
| public: |
| /// The start offset of this partition. |
| /// |
| /// All of the contained slices start at or after this offset. |
| uint64_t beginOffset() const { return BeginOffset; } |
| |
| /// The end offset of this partition. |
| /// |
| /// All of the contained slices end at or before this offset. |
| uint64_t endOffset() const { return EndOffset; } |
| |
| /// The size of the partition. |
| /// |
| /// Note that this can never be zero. |
| uint64_t size() const { |
| assert(BeginOffset < EndOffset && "Partitions must span some bytes!"); |
| return EndOffset - BeginOffset; |
| } |
| |
| /// Test whether this partition contains no slices, and merely spans |
| /// a region occupied by split slices. |
| bool empty() const { return SI == SJ; } |
| |
| /// \name Iterate slices that start within the partition. |
| /// These may be splittable or unsplittable. They have a begin offset >= the |
| /// partition begin offset. |
| /// @{ |
| // FIXME: We should probably define a "concat_iterator" helper and use that |
| // to stitch together pointee_iterators over the split tails and the |
| // contiguous iterators of the partition. That would give a much nicer |
| // interface here. We could then additionally expose filtered iterators for |
| // split, unsplit, and unsplittable splices based on the usage patterns. |
| iterator begin() const { return SI; } |
| iterator end() const { return SJ; } |
| /// @} |
| |
| /// Get the sequence of split slice tails. |
| /// |
| /// These tails are of slices which start before this partition but are |
| /// split and overlap into the partition. We accumulate these while forming |
| /// partitions. |
| ArrayRef<Slice *> splitSliceTails() const { return SplitTails; } |
| }; |
| |
| /// An iterator over partitions of the alloca's slices. |
| /// |
| /// This iterator implements the core algorithm for partitioning the alloca's |
| /// slices. It is a forward iterator as we don't support backtracking for |
| /// efficiency reasons, and re-use a single storage area to maintain the |
| /// current set of split slices. |
| /// |
| /// It is templated on the slice iterator type to use so that it can operate |
| /// with either const or non-const slice iterators. |
| class AllocaSlices::partition_iterator |
| : public iterator_facade_base<partition_iterator, std::forward_iterator_tag, |
| Partition> { |
| friend class AllocaSlices; |
| |
| /// Most of the state for walking the partitions is held in a class |
| /// with a nice interface for examining them. |
| Partition P; |
| |
| /// We need to keep the end of the slices to know when to stop. |
| AllocaSlices::iterator SE; |
| |
| /// We also need to keep track of the maximum split end offset seen. |
| /// FIXME: Do we really? |
| uint64_t MaxSplitSliceEndOffset = 0; |
| |
| /// Sets the partition to be empty at given iterator, and sets the |
| /// end iterator. |
| partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE) |
| : P(SI), SE(SE) { |
| // If not already at the end, advance our state to form the initial |
| // partition. |
| if (SI != SE) |
| advance(); |
| } |
| |
| /// Advance the iterator to the next partition. |
| /// |
| /// Requires that the iterator not be at the end of the slices. |
| void advance() { |
| assert((P.SI != SE || !P.SplitTails.empty()) && |
| "Cannot advance past the end of the slices!"); |
| |
| // Clear out any split uses which have ended. |
| if (!P.SplitTails.empty()) { |
| if (P.EndOffset >= MaxSplitSliceEndOffset) { |
| // If we've finished all splits, this is easy. |
| P.SplitTails.clear(); |
| MaxSplitSliceEndOffset = 0; |
| } else { |
| // Remove the uses which have ended in the prior partition. This |
| // cannot change the max split slice end because we just checked that |
| // the prior partition ended prior to that max. |
| P.SplitTails.erase(llvm::remove_if(P.SplitTails, |
| [&](Slice *S) { |
| return S->endOffset() <= |
| P.EndOffset; |
| }), |
| P.SplitTails.end()); |
| assert(llvm::any_of(P.SplitTails, |
| [&](Slice *S) { |
| return S->endOffset() == MaxSplitSliceEndOffset; |
| }) && |
| "Could not find the current max split slice offset!"); |
| assert(llvm::all_of(P.SplitTails, |
| [&](Slice *S) { |
| return S->endOffset() <= MaxSplitSliceEndOffset; |
| }) && |
| "Max split slice end offset is not actually the max!"); |
| } |
| } |
| |
| // If P.SI is already at the end, then we've cleared the split tail and |
| // now have an end iterator. |
| if (P.SI == SE) { |
| assert(P.SplitTails.empty() && "Failed to clear the split slices!"); |
| return; |
| } |
| |
| // If we had a non-empty partition previously, set up the state for |
| // subsequent partitions. |
| if (P.SI != P.SJ) { |
| // Accumulate all the splittable slices which started in the old |
| // partition into the split list. |
| for (Slice &S : P) |
| if (S.isSplittable() && S.endOffset() > P.EndOffset) { |
| P.SplitTails.push_back(&S); |
| MaxSplitSliceEndOffset = |
| std::max(S.endOffset(), MaxSplitSliceEndOffset); |
| } |
| |
| // Start from the end of the previous partition. |
| P.SI = P.SJ; |
| |
| // If P.SI is now at the end, we at most have a tail of split slices. |
| if (P.SI == SE) { |
| P.BeginOffset = P.EndOffset; |
| P.EndOffset = MaxSplitSliceEndOffset; |
| return; |
| } |
| |
| // If the we have split slices and the next slice is after a gap and is |
| // not splittable immediately form an empty partition for the split |
| // slices up until the next slice begins. |
| if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset && |
| !P.SI->isSplittable()) { |
| P.BeginOffset = P.EndOffset; |
| P.EndOffset = P.SI->beginOffset(); |
| return; |
| } |
| } |
| |
| // OK, we need to consume new slices. Set the end offset based on the |
| // current slice, and step SJ past it. The beginning offset of the |
| // partition is the beginning offset of the next slice unless we have |
| // pre-existing split slices that are continuing, in which case we begin |
| // at the prior end offset. |
| P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset; |
| P.EndOffset = P.SI->endOffset(); |
| ++P.SJ; |
| |
| // There are two strategies to form a partition based on whether the |
| // partition starts with an unsplittable slice or a splittable slice. |
| if (!P.SI->isSplittable()) { |
| // When we're forming an unsplittable region, it must always start at |
| // the first slice and will extend through its end. |
| assert(P.BeginOffset == P.SI->beginOffset()); |
| |
| // Form a partition including all of the overlapping slices with this |
| // unsplittable slice. |
| while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { |
| if (!P.SJ->isSplittable()) |
| P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); |
| ++P.SJ; |
| } |
| |
| // We have a partition across a set of overlapping unsplittable |
| // partitions. |
| return; |
| } |
| |
| // If we're starting with a splittable slice, then we need to form |
| // a synthetic partition spanning it and any other overlapping splittable |
| // splices. |
| assert(P.SI->isSplittable() && "Forming a splittable partition!"); |
| |
| // Collect all of the overlapping splittable slices. |
| while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset && |
| P.SJ->isSplittable()) { |
| P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); |
| ++P.SJ; |
| } |
| |
| // Back upiP.EndOffset if we ended the span early when encountering an |
| // unsplittable slice. This synthesizes the early end offset of |
| // a partition spanning only splittable slices. |
| if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { |
| assert(!P.SJ->isSplittable()); |
| P.EndOffset = P.SJ->beginOffset(); |
| } |
| } |
| |
| public: |
| bool operator==(const partition_iterator &RHS) const { |
| assert(SE == RHS.SE && |
| "End iterators don't match between compared partition iterators!"); |
| |
| // The observed positions of partitions is marked by the P.SI iterator and |
| // the emptiness of the split slices. The latter is only relevant when |
| // P.SI == SE, as the end iterator will additionally have an empty split |
| // slices list, but the prior may have the same P.SI and a tail of split |
| // slices. |
| if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) { |
| assert(P.SJ == RHS.P.SJ && |
| "Same set of slices formed two different sized partitions!"); |
| assert(P.SplitTails.size() == RHS.P.SplitTails.size() && |
| "Same slice position with differently sized non-empty split " |
| "slice tails!"); |
| return true; |
| } |
| return false; |
| } |
| |
| partition_iterator &operator++() { |
| advance(); |
| return *this; |
| } |
| |
| Partition &operator*() { return P; } |
| }; |
| |
| /// A forward range over the partitions of the alloca's slices. |
| /// |
| /// This accesses an iterator range over the partitions of the alloca's |
| /// slices. It computes these partitions on the fly based on the overlapping |
| /// offsets of the slices and the ability to split them. It will visit "empty" |
| /// partitions to cover regions of the alloca only accessed via split |
| /// slices. |
| iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() { |
| return make_range(partition_iterator(begin(), end()), |
| partition_iterator(end(), end())); |
| } |
| |
| static Value *foldSelectInst(SelectInst &SI) { |
| // If the condition being selected on is a constant or the same value is |
| // being selected between, fold the select. Yes this does (rarely) happen |
| // early on. |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) |
| return SI.getOperand(1 + CI->isZero()); |
| if (SI.getOperand(1) == SI.getOperand(2)) |
| return SI.getOperand(1); |
| |
| return nullptr; |
| } |
| |
| /// A helper that folds a PHI node or a select. |
| static Value *foldPHINodeOrSelectInst(Instruction &I) { |
| if (PHINode *PN = dyn_cast<PHINode>(&I)) { |
| // If PN merges together the same value, return that value. |
| return PN->hasConstantValue(); |
| } |
| return foldSelectInst(cast<SelectInst>(I)); |
| } |
| |
| /// Builder for the alloca slices. |
| /// |
| /// This class builds a set of alloca slices by recursively visiting the uses |
| /// of an alloca and making a slice for each load and store at each offset. |
| class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { |
| friend class PtrUseVisitor<SliceBuilder>; |
| friend class InstVisitor<SliceBuilder>; |
| |
| using Base = PtrUseVisitor<SliceBuilder>; |
| |
| const uint64_t AllocSize; |
| AllocaSlices &AS; |
| |
| SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; |
| SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; |
| |
| /// Set to de-duplicate dead instructions found in the use walk. |
| SmallPtrSet<Instruction *, 4> VisitedDeadInsts; |
| |
| public: |
| SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS) |
| : PtrUseVisitor<SliceBuilder>(DL), |
| AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), AS(AS) {} |
| |
| private: |
| void markAsDead(Instruction &I) { |
| if (VisitedDeadInsts.insert(&I).second) |
| AS.DeadUsers.push_back(&I); |
| } |
| |
| void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, |
| bool IsSplittable = false) { |
| // Completely skip uses which have a zero size or start either before or |
| // past the end of the allocation. |
| if (Size == 0 || Offset.uge(AllocSize)) { |
| LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" |
| << Offset |
| << " which has zero size or starts outside of the " |
| << AllocSize << " byte alloca:\n" |
| << " alloca: " << AS.AI << "\n" |
| << " use: " << I << "\n"); |
| return markAsDead(I); |
| } |
| |
| uint64_t BeginOffset = Offset.getZExtValue(); |
| uint64_t EndOffset = BeginOffset + Size; |
| |
| // Clamp the end offset to the end of the allocation. Note that this is |
| // formulated to handle even the case where "BeginOffset + Size" overflows. |
| // This may appear superficially to be something we could ignore entirely, |
| // but that is not so! There may be widened loads or PHI-node uses where |
| // some instructions are dead but not others. We can't completely ignore |
| // them, and so have to record at least the information here. |
| assert(AllocSize >= BeginOffset); // Established above. |
| if (Size > AllocSize - BeginOffset) { |
| LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" |
| << Offset << " to remain within the " << AllocSize |
| << " byte alloca:\n" |
| << " alloca: " << AS.AI << "\n" |
| << " use: " << I << "\n"); |
| EndOffset = AllocSize; |
| } |
| |
| AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); |
| } |
| |
| void visitBitCastInst(BitCastInst &BC) { |
| if (BC.use_empty()) |
| return markAsDead(BC); |
| |
| return Base::visitBitCastInst(BC); |
| } |
| |
| void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { |
| if (ASC.use_empty()) |
| return markAsDead(ASC); |
| |
| return Base::visitAddrSpaceCastInst(ASC); |
| } |
| |
| void visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| if (GEPI.use_empty()) |
| return markAsDead(GEPI); |
| |
| if (SROAStrictInbounds && GEPI.isInBounds()) { |
| // FIXME: This is a manually un-factored variant of the basic code inside |
| // of GEPs with checking of the inbounds invariant specified in the |
| // langref in a very strict sense. If we ever want to enable |
| // SROAStrictInbounds, this code should be factored cleanly into |
| // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds |
| // by writing out the code here where we have the underlying allocation |
| // size readily available. |
| APInt GEPOffset = Offset; |
| const DataLayout &DL = GEPI.getModule()->getDataLayout(); |
| for (gep_type_iterator GTI = gep_type_begin(GEPI), |
| GTE = gep_type_end(GEPI); |
| GTI != GTE; ++GTI) { |
| ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); |
| if (!OpC) |
| break; |
| |
| // Handle a struct index, which adds its field offset to the pointer. |
| if (StructType *STy = GTI.getStructTypeOrNull()) { |
| unsigned ElementIdx = OpC->getZExtValue(); |
| const StructLayout *SL = DL.getStructLayout(STy); |
| GEPOffset += |
| APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); |
| } else { |
| // For array or vector indices, scale the index by the size of the |
| // type. |
| APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); |
| GEPOffset += Index * APInt(Offset.getBitWidth(), |
| DL.getTypeAllocSize(GTI.getIndexedType())); |
| } |
| |
| // If this index has computed an intermediate pointer which is not |
| // inbounds, then the result of the GEP is a poison value and we can |
| // delete it and all uses. |
| if (GEPOffset.ugt(AllocSize)) |
| return markAsDead(GEPI); |
| } |
| } |
| |
| return Base::visitGetElementPtrInst(GEPI); |
| } |
| |
| void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, |
| uint64_t Size, bool IsVolatile) { |
| // We allow splitting of non-volatile loads and stores where the type is an |
| // integer type. These may be used to implement 'memcpy' or other "transfer |
| // of bits" patterns. |
| bool IsSplittable = Ty->isIntegerTy() && !IsVolatile; |
| |
| insertUse(I, Offset, Size, IsSplittable); |
| } |
| |
| void visitLoadInst(LoadInst &LI) { |
| assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && |
| "All simple FCA loads should have been pre-split"); |
| |
| if (!IsOffsetKnown) |
| return PI.setAborted(&LI); |
| |
| if (LI.isVolatile() && |
| LI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) |
| return PI.setAborted(&LI); |
| |
| uint64_t Size = DL.getTypeStoreSize(LI.getType()); |
| return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); |
| } |
| |
| void visitStoreInst(StoreInst &SI) { |
| Value *ValOp = SI.getValueOperand(); |
| if (ValOp == *U) |
| return PI.setEscapedAndAborted(&SI); |
| if (!IsOffsetKnown) |
| return PI.setAborted(&SI); |
| |
| if (SI.isVolatile() && |
| SI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) |
| return PI.setAborted(&SI); |
| |
| uint64_t Size = DL.getTypeStoreSize(ValOp->getType()); |
| |
| // If this memory access can be shown to *statically* extend outside the |
| // bounds of the allocation, it's behavior is undefined, so simply |
| // ignore it. Note that this is more strict than the generic clamping |
| // behavior of insertUse. We also try to handle cases which might run the |
| // risk of overflow. |
| // FIXME: We should instead consider the pointer to have escaped if this |
| // function is being instrumented for addressing bugs or race conditions. |
| if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { |
| LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" |
| << Offset << " which extends past the end of the " |
| << AllocSize << " byte alloca:\n" |
| << " alloca: " << AS.AI << "\n" |
| << " use: " << SI << "\n"); |
| return markAsDead(SI); |
| } |
| |
| assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && |
| "All simple FCA stores should have been pre-split"); |
| handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); |
| } |
| |
| void visitMemSetInst(MemSetInst &II) { |
| assert(II.getRawDest() == *U && "Pointer use is not the destination?"); |
| ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
| if ((Length && Length->getValue() == 0) || |
| (IsOffsetKnown && Offset.uge(AllocSize))) |
| // Zero-length mem transfer intrinsics can be ignored entirely. |
| return markAsDead(II); |
| |
| if (!IsOffsetKnown) |
| return PI.setAborted(&II); |
| |
| // Don't replace this with a store with a different address space. TODO: |
| // Use a store with the casted new alloca? |
| if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace()) |
| return PI.setAborted(&II); |
| |
| insertUse(II, Offset, Length ? Length->getLimitedValue() |
| : AllocSize - Offset.getLimitedValue(), |
| (bool)Length); |
| } |
| |
| void visitMemTransferInst(MemTransferInst &II) { |
| ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
| if (Length && Length->getValue() == 0) |
| // Zero-length mem transfer intrinsics can be ignored entirely. |
| return markAsDead(II); |
| |
| // Because we can visit these intrinsics twice, also check to see if the |
| // first time marked this instruction as dead. If so, skip it. |
| if (VisitedDeadInsts.count(&II)) |
| return; |
| |
| if (!IsOffsetKnown) |
| return PI.setAborted(&II); |
| |
| // Don't replace this with a load/store with a different address space. |
| // TODO: Use a store with the casted new alloca? |
| if (II.isVolatile() && |
| (II.getDestAddressSpace() != DL.getAllocaAddrSpace() || |
| II.getSourceAddressSpace() != DL.getAllocaAddrSpace())) |
| return PI.setAborted(&II); |
| |
| // This side of the transfer is completely out-of-bounds, and so we can |
| // nuke the entire transfer. However, we also need to nuke the other side |
| // if already added to our partitions. |
| // FIXME: Yet another place we really should bypass this when |
| // instrumenting for ASan. |
| if (Offset.uge(AllocSize)) { |
| SmallDenseMap<Instruction *, unsigned>::iterator MTPI = |
| MemTransferSliceMap.find(&II); |
| if (MTPI != MemTransferSliceMap.end()) |
| AS.Slices[MTPI->second].kill(); |
| return markAsDead(II); |
| } |
| |
| uint64_t RawOffset = Offset.getLimitedValue(); |
| uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; |
| |
| // Check for the special case where the same exact value is used for both |
| // source and dest. |
| if (*U == II.getRawDest() && *U == II.getRawSource()) { |
| // For non-volatile transfers this is a no-op. |
| if (!II.isVolatile()) |
| return markAsDead(II); |
| |
| return insertUse(II, Offset, Size, /*IsSplittable=*/false); |
| } |
| |
| // If we have seen both source and destination for a mem transfer, then |
| // they both point to the same alloca. |
| bool Inserted; |
| SmallDenseMap<Instruction *, unsigned>::iterator MTPI; |
| std::tie(MTPI, Inserted) = |
| MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size())); |
| unsigned PrevIdx = MTPI->second; |
| if (!Inserted) { |
| Slice &PrevP = AS.Slices[PrevIdx]; |
| |
| // Check if the begin offsets match and this is a non-volatile transfer. |
| // In that case, we can completely elide the transfer. |
| if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { |
| PrevP.kill(); |
| return markAsDead(II); |
| } |
| |
| // Otherwise we have an offset transfer within the same alloca. We can't |
| // split those. |
| PrevP.makeUnsplittable(); |
| } |
| |
| // Insert the use now that we've fixed up the splittable nature. |
| insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); |
| |
| // Check that we ended up with a valid index in the map. |
| assert(AS.Slices[PrevIdx].getUse()->getUser() == &II && |
| "Map index doesn't point back to a slice with this user."); |
| } |
| |
| // Disable SRoA for any intrinsics except for lifetime invariants. |
| // FIXME: What about debug intrinsics? This matches old behavior, but |
| // doesn't make sense. |
| void visitIntrinsicInst(IntrinsicInst &II) { |
| if (!IsOffsetKnown) |
| return PI.setAborted(&II); |
| |
| if (II.isLifetimeStartOrEnd()) { |
| ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); |
| uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), |
| Length->getLimitedValue()); |
| insertUse(II, Offset, Size, true); |
| return; |
| } |
| |
| Base::visitIntrinsicInst(II); |
| } |
| |
| Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { |
| // We consider any PHI or select that results in a direct load or store of |
| // the same offset to be a viable use for slicing purposes. These uses |
| // are considered unsplittable and the size is the maximum loaded or stored |
| // size. |
| SmallPtrSet<Instruction *, 4> Visited; |
| SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; |
| Visited.insert(Root); |
| Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); |
| const DataLayout &DL = Root->getModule()->getDataLayout(); |
| // If there are no loads or stores, the access is dead. We mark that as |
| // a size zero access. |
| Size = 0; |
| do { |
| Instruction *I, *UsedI; |
| std::tie(UsedI, I) = Uses.pop_back_val(); |
| |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| Size = std::max(Size, |
| DL.getTypeStoreSize(LI->getType()).getFixedSize()); |
| continue; |
| } |
| if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| Value *Op = SI->getOperand(0); |
| if (Op == UsedI) |
| return SI; |
| Size = std::max(Size, |
| DL.getTypeStoreSize(Op->getType()).getFixedSize()); |
| continue; |
| } |
| |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { |
| if (!GEP->hasAllZeroIndices()) |
| return GEP; |
| } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && |
| !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) { |
| return I; |
| } |
| |
| for (User *U : I->users()) |
| if (Visited.insert(cast<Instruction>(U)).second) |
| Uses.push_back(std::make_pair(I, cast<Instruction>(U))); |
| } while (!Uses.empty()); |
| |
| return nullptr; |
| } |
| |
| void visitPHINodeOrSelectInst(Instruction &I) { |
| assert(isa<PHINode>(I) || isa<SelectInst>(I)); |
| if (I.use_empty()) |
| return markAsDead(I); |
| |
| // TODO: We could use SimplifyInstruction here to fold PHINodes and |
| // SelectInsts. However, doing so requires to change the current |
| // dead-operand-tracking mechanism. For instance, suppose neither loading |
| // from %U nor %other traps. Then "load (select undef, %U, %other)" does not |
| // trap either. However, if we simply replace %U with undef using the |
| // current dead-operand-tracking mechanism, "load (select undef, undef, |
| // %other)" may trap because the select may return the first operand |
| // "undef". |
| if (Value *Result = foldPHINodeOrSelectInst(I)) { |
| if (Result == *U) |
| // If the result of the constant fold will be the pointer, recurse |
| // through the PHI/select as if we had RAUW'ed it. |
| enqueueUsers(I); |
| else |
| // Otherwise the operand to the PHI/select is dead, and we can replace |
| // it with undef. |
| AS.DeadOperands.push_back(U); |
| |
| return; |
| } |
| |
| if (!IsOffsetKnown) |
| return PI.setAborted(&I); |
| |
| // See if we already have computed info on this node. |
| uint64_t &Size = PHIOrSelectSizes[&I]; |
| if (!Size) { |
| // This is a new PHI/Select, check for an unsafe use of it. |
| if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size)) |
| return PI.setAborted(UnsafeI); |
| } |
| |
| // For PHI and select operands outside the alloca, we can't nuke the entire |
| // phi or select -- the other side might still be relevant, so we special |
| // case them here and use a separate structure to track the operands |
| // themselves which should be replaced with undef. |
| // FIXME: This should instead be escaped in the event we're instrumenting |
| // for address sanitization. |
| if (Offset.uge(AllocSize)) { |
| AS.DeadOperands.push_back(U); |
| return; |
| } |
| |
| insertUse(I, Offset, Size); |
| } |
| |
| void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); } |
| |
| void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); } |
| |
| /// Disable SROA entirely if there are unhandled users of the alloca. |
| void visitInstruction(Instruction &I) { PI.setAborted(&I); } |
| }; |
| |
| AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) |
| : |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| AI(AI), |
| #endif |
| PointerEscapingInstr(nullptr) { |
| SliceBuilder PB(DL, AI, *this); |
| SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); |
| if (PtrI.isEscaped() || PtrI.isAborted()) { |
| // FIXME: We should sink the escape vs. abort info into the caller nicely, |
| // possibly by just storing the PtrInfo in the AllocaSlices. |
| PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() |
| : PtrI.getAbortingInst(); |
| assert(PointerEscapingInstr && "Did not track a bad instruction"); |
| return; |
| } |
| |
| Slices.erase( |
| llvm::remove_if(Slices, [](const Slice &S) { return S.isDead(); }), |
| Slices.end()); |
| |
| #ifndef NDEBUG |
| if (SROARandomShuffleSlices) { |
| std::mt19937 MT(static_cast<unsigned>( |
| std::chrono::system_clock::now().time_since_epoch().count())); |
| std::shuffle(Slices.begin(), Slices.end(), MT); |
| } |
| #endif |
| |
| // Sort the uses. This arranges for the offsets to be in ascending order, |
| // and the sizes to be in descending order. |
| llvm::sort(Slices); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| |
| void AllocaSlices::print(raw_ostream &OS, const_iterator I, |
| StringRef Indent) const { |
| printSlice(OS, I, Indent); |
| OS << "\n"; |
| printUse(OS, I, Indent); |
| } |
| |
| void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, |
| StringRef Indent) const { |
| OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" |
| << " slice #" << (I - begin()) |
| << (I->isSplittable() ? " (splittable)" : ""); |
| } |
| |
| void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, |
| StringRef Indent) const { |
| OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; |
| } |
| |
| void AllocaSlices::print(raw_ostream &OS) const { |
| if (PointerEscapingInstr) { |
| OS << "Can't analyze slices for alloca: " << AI << "\n" |
| << " A pointer to this alloca escaped by:\n" |
| << " " << *PointerEscapingInstr << "\n"; |
| return; |
| } |
| |
| OS << "Slices of alloca: " << AI << "\n"; |
| for (const_iterator I = begin(), E = end(); I != E; ++I) |
| print(OS, I); |
| } |
| |
| LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { |
| print(dbgs(), I); |
| } |
| LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } |
| |
| #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| |
| /// Walk the range of a partitioning looking for a common type to cover this |
| /// sequence of slices. |
| static Type *findCommonType(AllocaSlices::const_iterator B, |
| AllocaSlices::const_iterator E, |
| uint64_t EndOffset) { |
| Type *Ty = nullptr; |
| bool TyIsCommon = true; |
| IntegerType *ITy = nullptr; |
| |
| // Note that we need to look at *every* alloca slice's Use to ensure we |
| // always get consistent results regardless of the order of slices. |
| for (AllocaSlices::const_iterator I = B; I != E; ++I) { |
| Use *U = I->getUse(); |
| if (isa<IntrinsicInst>(*U->getUser())) |
| continue; |
| if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) |
| continue; |
| |
| Type *UserTy = nullptr; |
| if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { |
| UserTy = LI->getType(); |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { |
| UserTy = SI->getValueOperand()->getType(); |
| } |
| |
| if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) { |
| // If the type is larger than the partition, skip it. We only encounter |
| // this for split integer operations where we want to use the type of the |
| // entity causing the split. Also skip if the type is not a byte width |
| // multiple. |
| if (UserITy->getBitWidth() % 8 != 0 || |
| UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) |
| continue; |
| |
| // Track the largest bitwidth integer type used in this way in case there |
| // is no common type. |
| if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) |
| ITy = UserITy; |
| } |
| |
| // To avoid depending on the order of slices, Ty and TyIsCommon must not |
| // depend on types skipped above. |
| if (!UserTy || (Ty && Ty != UserTy)) |
| TyIsCommon = false; // Give up on anything but an iN type. |
| else |
| Ty = UserTy; |
| } |
| |
| return TyIsCommon ? Ty : ITy; |
| } |
| |
| /// PHI instructions that use an alloca and are subsequently loaded can be |
| /// rewritten to load both input pointers in the pred blocks and then PHI the |
| /// results, allowing the load of the alloca to be promoted. |
| /// From this: |
| /// %P2 = phi [i32* %Alloca, i32* %Other] |
| /// %V = load i32* %P2 |
| /// to: |
| /// %V1 = load i32* %Alloca -> will be mem2reg'd |
| /// ... |
| /// %V2 = load i32* %Other |
| /// ... |
| /// %V = phi [i32 %V1, i32 %V2] |
| /// |
| /// We can do this to a select if its only uses are loads and if the operands |
| /// to the select can be loaded unconditionally. |
| /// |
| /// FIXME: This should be hoisted into a generic utility, likely in |
| /// Transforms/Util/Local.h |
| static bool isSafePHIToSpeculate(PHINode &PN) { |
| const DataLayout &DL = PN.getModule()->getDataLayout(); |
| |
| // For now, we can only do this promotion if the load is in the same block |
| // as the PHI, and if there are no stores between the phi and load. |
| // TODO: Allow recursive phi users. |
| // TODO: Allow stores. |
| BasicBlock *BB = PN.getParent(); |
| MaybeAlign MaxAlign; |
| uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType()); |
| APInt MaxSize(APWidth, 0); |
| bool HaveLoad = false; |
| for (User *U : PN.users()) { |
| LoadInst *LI = dyn_cast<LoadInst>(U); |
| if (!LI || !LI->isSimple()) |
| return false; |
| |
| // For now we only allow loads in the same block as the PHI. This is |
| // a common case that happens when instcombine merges two loads through |
| // a PHI. |
| if (LI->getParent() != BB) |
| return false; |
| |
| // Ensure that there are no instructions between the PHI and the load that |
| // could store. |
| for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) |
| if (BBI->mayWriteToMemory()) |
| return false; |
| |
| uint64_t Size = DL.getTypeStoreSize(LI->getType()); |
| MaxAlign = std::max(MaxAlign, MaybeAlign(LI->getAlignment())); |
| MaxSize = MaxSize.ult(Size) ? APInt(APWidth, Size) : MaxSize; |
| HaveLoad = true; |
| } |
| |
| if (!HaveLoad) |
| return false; |
| |
| // We can only transform this if it is safe to push the loads into the |
| // predecessor blocks. The only thing to watch out for is that we can't put |
| // a possibly trapping load in the predecessor if it is a critical edge. |
| for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { |
| Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator(); |
| Value *InVal = PN.getIncomingValue(Idx); |
| |
| // If the value is produced by the terminator of the predecessor (an |
| // invoke) or it has side-effects, there is no valid place to put a load |
| // in the predecessor. |
| if (TI == InVal || TI->mayHaveSideEffects()) |
| return false; |
| |
| // If the predecessor has a single successor, then the edge isn't |
| // critical. |
| if (TI->getNumSuccessors() == 1) |
| continue; |
| |
| // If this pointer is always safe to load, or if we can prove that there |
| // is already a load in the block, then we can move the load to the pred |
| // block. |
| if (isSafeToLoadUnconditionally(InVal, MaxAlign, MaxSize, DL, TI)) |
| continue; |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void speculatePHINodeLoads(PHINode &PN) { |
| LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); |
| |
| LoadInst *SomeLoad = cast<LoadInst>(PN.user_back()); |
| Type *LoadTy = SomeLoad->getType(); |
| IRBuilderTy PHIBuilder(&PN); |
| PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), |
| PN.getName() + ".sroa.speculated"); |
| |
| // Get the AA tags and alignment to use from one of the loads. It does not |
| // matter which one we get and if any differ. |
| AAMDNodes AATags; |
| SomeLoad->getAAMetadata(AATags); |
| const MaybeAlign Align = MaybeAlign(SomeLoad->getAlignment()); |
| |
| // Rewrite all loads of the PN to use the new PHI. |
| while (!PN.use_empty()) { |
| LoadInst *LI = cast<LoadInst>(PN.user_back()); |
| LI->replaceAllUsesWith(NewPN); |
| LI->eraseFromParent(); |
| } |
| |
| // Inject loads into all of the pred blocks. |
| DenseMap<BasicBlock*, Value*> InjectedLoads; |
| for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { |
| BasicBlock *Pred = PN.getIncomingBlock(Idx); |
| Value *InVal = PN.getIncomingValue(Idx); |
| |
| // A PHI node is allowed to have multiple (duplicated) entries for the same |
| // basic block, as long as the value is the same. So if we already injected |
| // a load in the predecessor, then we should reuse the same load for all |
| // duplicated entries. |
| if (Value* V = InjectedLoads.lookup(Pred)) { |
| NewPN->addIncoming(V, Pred); |
| continue; |
| } |
| |
| Instruction *TI = Pred->getTerminator(); |
| IRBuilderTy PredBuilder(TI); |
| |
| LoadInst *Load = PredBuilder.CreateLoad( |
| LoadTy, InVal, |
| (PN.getName() + ".sroa.speculate.load." + Pred->getName())); |
| ++NumLoadsSpeculated; |
| Load->setAlignment(Align); |
| if (AATags) |
| Load->setAAMetadata(AATags); |
| NewPN->addIncoming(Load, Pred); |
| InjectedLoads[Pred] = Load; |
| } |
| |
| LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); |
| PN.eraseFromParent(); |
| } |
| |
| /// Select instructions that use an alloca and are subsequently loaded can be |
| /// rewritten to load both input pointers and then select between the result, |
| /// allowing the load of the alloca to be promoted. |
| /// From this: |
| /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other |
| /// %V = load i32* %P2 |
| /// to: |
| /// %V1 = load i32* %Alloca -> will be mem2reg'd |
| /// %V2 = load i32* %Other |
| /// %V = select i1 %cond, i32 %V1, i32 %V2 |
| /// |
| /// We can do this to a select if its only uses are loads and if the operand |
| /// to the select can be loaded unconditionally. |
| static bool isSafeSelectToSpeculate(SelectInst &SI) { |
| Value *TValue = SI.getTrueValue(); |
| Value *FValue = SI.getFalseValue(); |
| const DataLayout &DL = SI.getModule()->getDataLayout(); |
| |
| for (User *U : SI.users()) { |
| LoadInst *LI = dyn_cast<LoadInst>(U); |
| if (!LI || !LI->isSimple()) |
| return false; |
| |
| // Both operands to the select need to be dereferenceable, either |
| // absolutely (e.g. allocas) or at this point because we can see other |
| // accesses to it. |
| if (!isSafeToLoadUnconditionally(TValue, LI->getType(), |
| MaybeAlign(LI->getAlignment()), DL, LI)) |
| return false; |
| if (!isSafeToLoadUnconditionally(FValue, LI->getType(), |
| MaybeAlign(LI->getAlignment()), DL, LI)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void speculateSelectInstLoads(SelectInst &SI) { |
| LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); |
| |
| IRBuilderTy IRB(&SI); |
| Value *TV = SI.getTrueValue(); |
| Value *FV = SI.getFalseValue(); |
| // Replace the loads of the select with a select of two loads. |
| while (!SI.use_empty()) { |
| LoadInst *LI = cast<LoadInst>(SI.user_back()); |
| assert(LI->isSimple() && "We only speculate simple loads"); |
| |
| IRB.SetInsertPoint(LI); |
| LoadInst *TL = IRB.CreateLoad(LI->getType(), TV, |
| LI->getName() + ".sroa.speculate.load.true"); |
| LoadInst *FL = IRB.CreateLoad(LI->getType(), FV, |
| LI->getName() + ".sroa.speculate.load.false"); |
| NumLoadsSpeculated += 2; |
| |
| // Transfer alignment and AA info if present. |
| TL->setAlignment(MaybeAlign(LI->getAlignment())); |
| FL->setAlignment(MaybeAlign(LI->getAlignment())); |
| |
| AAMDNodes Tags; |
| LI->getAAMetadata(Tags); |
| if (Tags) { |
| TL->setAAMetadata(Tags); |
| FL->setAAMetadata(Tags); |
| } |
| |
| Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, |
| LI->getName() + ".sroa.speculated"); |
| |
| LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n"); |
| LI->replaceAllUsesWith(V); |
| LI->eraseFromParent(); |
| } |
| SI.eraseFromParent(); |
| } |
| |
| /// Build a GEP out of a base pointer and indices. |
| /// |
| /// This will return the BasePtr if that is valid, or build a new GEP |
| /// instruction using the IRBuilder if GEP-ing is needed. |
| static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, |
| SmallVectorImpl<Value *> &Indices, Twine NamePrefix) { |
| if (Indices.empty()) |
| return BasePtr; |
| |
| // A single zero index is a no-op, so check for this and avoid building a GEP |
| // in that case. |
| if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) |
| return BasePtr; |
| |
| return IRB.CreateInBoundsGEP(BasePtr->getType()->getPointerElementType(), |
| BasePtr, Indices, NamePrefix + "sroa_idx"); |
| } |
| |
| /// Get a natural GEP off of the BasePtr walking through Ty toward |
| /// TargetTy without changing the offset of the pointer. |
| /// |
| /// This routine assumes we've already established a properly offset GEP with |
| /// Indices, and arrived at the Ty type. The goal is to continue to GEP with |
| /// zero-indices down through type layers until we find one the same as |
| /// TargetTy. If we can't find one with the same type, we at least try to use |
| /// one with the same size. If none of that works, we just produce the GEP as |
| /// indicated by Indices to have the correct offset. |
| static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, |
| Value *BasePtr, Type *Ty, Type *TargetTy, |
| SmallVectorImpl<Value *> &Indices, |
| Twine NamePrefix) { |
| if (Ty == TargetTy) |
| return buildGEP(IRB, BasePtr, Indices, NamePrefix); |
| |
| // Offset size to use for the indices. |
| unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType()); |
| |
| // See if we can descend into a struct and locate a field with the correct |
| // type. |
| unsigned NumLayers = 0; |
| Type *ElementTy = Ty; |
| do { |
| if (ElementTy->isPointerTy()) |
| break; |
| |
| if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) { |
| ElementTy = ArrayTy->getElementType(); |
| Indices.push_back(IRB.getIntN(OffsetSize, 0)); |
| } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) { |
| ElementTy = VectorTy->getElementType(); |
| Indices.push_back(IRB.getInt32(0)); |
| } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { |
| if (STy->element_begin() == STy->element_end()) |
| break; // Nothing left to descend into. |
| ElementTy = *STy->element_begin(); |
| Indices.push_back(IRB.getInt32(0)); |
| } else { |
| break; |
| } |
| ++NumLayers; |
| } while (ElementTy != TargetTy); |
| if (ElementTy != TargetTy) |
| Indices.erase(Indices.end() - NumLayers, Indices.end()); |
| |
| return buildGEP(IRB, BasePtr, Indices, NamePrefix); |
| } |
| |
| /// Recursively compute indices for a natural GEP. |
| /// |
| /// This is the recursive step for getNaturalGEPWithOffset that walks down the |
| /// element types adding appropriate indices for the GEP. |
| static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL, |
| Value *Ptr, Type *Ty, APInt &Offset, |
| Type *TargetTy, |
| SmallVectorImpl<Value *> &Indices, |
| Twine NamePrefix) { |
| if (Offset == 0) |
| return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices, |
| NamePrefix); |
| |
| // We can't recurse through pointer types. |
| if (Ty->isPointerTy()) |
| return nullptr; |
| |
| // We try to analyze GEPs over vectors here, but note that these GEPs are |
| // extremely poorly defined currently. The long-term goal is to remove GEPing |
| // over a vector from the IR completely. |
| if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) { |
| unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType()); |
| if (ElementSizeInBits % 8 != 0) { |
| // GEPs over non-multiple of 8 size vector elements are invalid. |
| return nullptr; |
| } |
| APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); |
| APInt NumSkippedElements = Offset.sdiv(ElementSize); |
| if (NumSkippedElements.ugt(VecTy->getNumElements())) |
| return nullptr; |
| Offset -= NumSkippedElements * ElementSize; |
| Indices.push_back(IRB.getInt(NumSkippedElements)); |
| return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(), |
| Offset, TargetTy, Indices, NamePrefix); |
| } |
| |
| if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { |
| Type *ElementTy = ArrTy->getElementType(); |
| APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); |
| APInt NumSkippedElements = Offset.sdiv(ElementSize); |
| if (NumSkippedElements.ugt(ArrTy->getNumElements())) |
| return nullptr; |
| |
| Offset -= NumSkippedElements * ElementSize; |
| Indices.push_back(IRB.getInt(NumSkippedElements)); |
| return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, |
| Indices, NamePrefix); |
| } |
| |
| StructType *STy = dyn_cast<StructType>(Ty); |
| if (!STy) |
| return nullptr; |
| |
| const StructLayout *SL = DL.getStructLayout(STy); |
| uint64_t StructOffset = Offset.getZExtValue(); |
| if (StructOffset >= SL->getSizeInBytes()) |
| return nullptr; |
| unsigned Index = SL->getElementContainingOffset(StructOffset); |
| Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); |
| Type *ElementTy = STy->getElementType(Index); |
| if (Offset.uge(DL.getTypeAllocSize(ElementTy))) |
| return nullptr; // The offset points into alignment padding. |
| |
| Indices.push_back(IRB.getInt32(Index)); |
| return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, |
| Indices, NamePrefix); |
| } |
| |
| /// Get a natural GEP from a base pointer to a particular offset and |
| /// resulting in a particular type. |
| /// |
| /// The goal is to produce a "natural" looking GEP that works with the existing |
| /// composite types to arrive at the appropriate offset and element type for |
| /// a pointer. TargetTy is the element type the returned GEP should point-to if |
| /// possible. We recurse by decreasing Offset, adding the appropriate index to |
| /// Indices, and setting Ty to the result subtype. |
| /// |
| /// If no natural GEP can be constructed, this function returns null. |
| static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, |
| Value *Ptr, APInt Offset, Type *TargetTy, |
| SmallVectorImpl<Value *> &Indices, |
| Twine NamePrefix) { |
| PointerType *Ty = cast<PointerType>(Ptr->getType()); |
| |
| // Don't consider any GEPs through an i8* as natural unless the TargetTy is |
| // an i8. |
| if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8)) |
| return nullptr; |
| |
| Type *ElementTy = Ty->getElementType(); |
| if (!ElementTy->isSized()) |
| return nullptr; // We can't GEP through an unsized element. |
| APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); |
| if (ElementSize == 0) |
| return nullptr; // Zero-length arrays can't help us build a natural GEP. |
| APInt NumSkippedElements = Offset.sdiv(ElementSize); |
| |
| Offset -= NumSkippedElements * ElementSize; |
| Indices.push_back(IRB.getInt(NumSkippedElements)); |
| return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, |
| Indices, NamePrefix); |
| } |
| |
| /// Compute an adjusted pointer from Ptr by Offset bytes where the |
| /// resulting pointer has PointerTy. |
| /// |
| /// This tries very hard to compute a "natural" GEP which arrives at the offset |
| /// and produces the pointer type desired. Where it cannot, it will try to use |
| /// the natural GEP to arrive at the offset and bitcast to the type. Where that |
| /// fails, it will try to use an existing i8* and GEP to the byte offset and |
| /// bitcast to the type. |
| /// |
| /// The strategy for finding the more natural GEPs is to peel off layers of the |
| /// pointer, walking back through bit casts and GEPs, searching for a base |
| /// pointer from which we can compute a natural GEP with the desired |
| /// properties. The algorithm tries to fold as many constant indices into |
| /// a single GEP as possible, thus making each GEP more independent of the |
| /// surrounding code. |
| static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, |
| APInt Offset, Type *PointerTy, Twine NamePrefix) { |
| // Even though we don't look through PHI nodes, we could be called on an |
| // instruction in an unreachable block, which may be on a cycle. |
| SmallPtrSet<Value *, 4> Visited; |
| Visited.insert(Ptr); |
| SmallVector<Value *, 4> Indices; |
| |
| // We may end up computing an offset pointer that has the wrong type. If we |
| // never are able to compute one directly that has the correct type, we'll |
| // fall back to it, so keep it and the base it was computed from around here. |
| Value *OffsetPtr = nullptr; |
| Value *OffsetBasePtr; |
| |
| // Remember any i8 pointer we come across to re-use if we need to do a raw |
| // byte offset. |
| Value *Int8Ptr = nullptr; |
| APInt Int8PtrOffset(Offset.getBitWidth(), 0); |
| |
| PointerType *TargetPtrTy = cast<PointerType>(PointerTy); |
| Type *TargetTy = TargetPtrTy->getElementType(); |
| |
| // As `addrspacecast` is , `Ptr` (the storage pointer) may have different |
| // address space from the expected `PointerTy` (the pointer to be used). |
| // Adjust the pointer type based the original storage pointer. |
| auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace(); |
| PointerTy = TargetTy->getPointerTo(AS); |
| |
| do { |
| // First fold any existing GEPs into the offset. |
| while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { |
| APInt GEPOffset(Offset.getBitWidth(), 0); |
| if (!GEP->accumulateConstantOffset(DL, GEPOffset)) |
| break; |
| Offset += GEPOffset; |
| Ptr = GEP->getPointerOperand(); |
| if (!Visited.insert(Ptr).second) |
| break; |
| } |
| |
| // See if we can perform a natural GEP here. |
| Indices.clear(); |
| if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, |
| Indices, NamePrefix)) { |
| // If we have a new natural pointer at the offset, clear out any old |
| // offset pointer we computed. Unless it is the base pointer or |
| // a non-instruction, we built a GEP we don't need. Zap it. |
| if (OffsetPtr && OffsetPtr != OffsetBasePtr) |
| if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) { |
| assert(I->use_empty() && "Built a GEP with uses some how!"); |
| I->eraseFromParent(); |
| } |
| OffsetPtr = P; |
| OffsetBasePtr = Ptr; |
| // If we also found a pointer of the right type, we're done. |
| if (P->getType() == PointerTy) |
| break; |
| } |
| |
| // Stash this pointer if we've found an i8*. |
| if (Ptr->getType()->isIntegerTy(8)) { |
| Int8Ptr = Ptr; |
| Int8PtrOffset = Offset; |
| } |
| |
| // Peel off a layer of the pointer and update the offset appropriately. |
| if (Operator::getOpcode(Ptr) == Instruction::BitCast) { |
| Ptr = cast<Operator>(Ptr)->getOperand(0); |
| } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { |
| if (GA->isInterposable()) |
| break; |
| Ptr = GA->getAliasee(); |
| } else { |
| break; |
| } |
| assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); |
| } while (Visited.insert(Ptr).second); |
| |
| if (!OffsetPtr) { |
| if (!Int8Ptr) { |
| Int8Ptr = IRB.CreateBitCast( |
| Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()), |
| NamePrefix + "sroa_raw_cast"); |
| Int8PtrOffset = Offset; |
| } |
| |
| OffsetPtr = Int8PtrOffset == 0 |
| ? Int8Ptr |
| : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr, |
| IRB.getInt(Int8PtrOffset), |
| NamePrefix + "sroa_raw_idx"); |
| } |
| Ptr = OffsetPtr; |
| |
| // On the off chance we were targeting i8*, guard the bitcast here. |
| if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) { |
| Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, |
| TargetPtrTy, |
| NamePrefix + "sroa_cast"); |
| } |
| |
| return Ptr; |
| } |
| |
| /// Compute the adjusted alignment for a load or store from an offset. |
| static Align getAdjustedAlignment(Instruction *I, uint64_t Offset, |
| const DataLayout &DL) { |
| MaybeAlign Alignment; |
| Type *Ty; |
| if (auto *LI = dyn_cast<LoadInst>(I)) { |
| Alignment = MaybeAlign(LI->getAlignment()); |
| Ty = LI->getType(); |
| } else if (auto *SI = dyn_cast<StoreInst>(I)) { |
| Alignment = MaybeAlign(SI->getAlignment()); |
| Ty = SI->getValueOperand()->getType(); |
| } else { |
| llvm_unreachable("Only loads and stores are allowed!"); |
| } |
| return commonAlignment(DL.getValueOrABITypeAlignment(Alignment, Ty), Offset); |
| } |
| |
| /// Test whether we can convert a value from the old to the new type. |
| /// |
| /// This predicate should be used to guard calls to convertValue in order to |
| /// ensure that we only try to convert viable values. The strategy is that we |
| /// will peel off single element struct and array wrappings to get to an |
| /// underlying value, and convert that value. |
| static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { |
| if (OldTy == NewTy) |
| return true; |
| |
| // For integer types, we can't handle any bit-width differences. This would |
| // break both vector conversions with extension and introduce endianness |
| // issues when in conjunction with loads and stores. |
| if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) { |
| assert(cast<IntegerType>(OldTy)->getBitWidth() != |
| cast<IntegerType>(NewTy)->getBitWidth() && |
| "We can't have the same bitwidth for different int types"); |
| return false; |
| } |
| |
| if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy)) |
| return false; |
| if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) |
| return false; |
| |
| // We can convert pointers to integers and vice-versa. Same for vectors |
| // of pointers and integers. |
| OldTy = OldTy->getScalarType(); |
| NewTy = NewTy->getScalarType(); |
| if (NewTy->isPointerTy() || OldTy->isPointerTy()) { |
| if (NewTy->isPointerTy() && OldTy->isPointerTy()) { |
| return cast<PointerType>(NewTy)->getPointerAddressSpace() == |
| cast<PointerType>(OldTy)->getPointerAddressSpace(); |
| } |
| |
| // We can convert integers to integral pointers, but not to non-integral |
| // pointers. |
| if (OldTy->isIntegerTy()) |
| return !DL.isNonIntegralPointerType(NewTy); |
| |
| // We can convert integral pointers to integers, but non-integral pointers |
| // need to remain pointers. |
| if (!DL.isNonIntegralPointerType(OldTy)) |
| return NewTy->isIntegerTy(); |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Generic routine to convert an SSA value to a value of a different |
| /// type. |
| /// |
| /// This will try various different casting techniques, such as bitcasts, |
| /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test |
| /// two types for viability with this routine. |
| static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, |
| Type *NewTy) { |
| Type *OldTy = V->getType(); |
| assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); |
| |
| if (OldTy == NewTy) |
| return V; |
| |
| assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) && |
| "Integer types must be the exact same to convert."); |
| |
| // See if we need inttoptr for this type pair. A cast involving both scalars |
| // and vectors requires and additional bitcast. |
| if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) { |
| // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* |
| if (OldTy->isVectorTy() && !NewTy->isVectorTy()) |
| return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), |
| NewTy); |
| |
| // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> |
| if (!OldTy->isVectorTy() && NewTy->isVectorTy()) |
| return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), |
| NewTy); |
| |
| return IRB.CreateIntToPtr(V, NewTy); |
| } |
| |
| // See if we need ptrtoint for this type pair. A cast involving both scalars |
| // and vectors requires and additional bitcast. |
| if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) { |
| // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 |
| if (OldTy->isVectorTy() && !NewTy->isVectorTy()) |
| return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), |
| NewTy); |
| |
| // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> |
| if (!OldTy->isVectorTy() && NewTy->isVectorTy()) |
| return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), |
| NewTy); |
| |
| return IRB.CreatePtrToInt(V, NewTy); |
| } |
| |
| return IRB.CreateBitCast(V, NewTy); |
| } |
| |
| /// Test whether the given slice use can be promoted to a vector. |
| /// |
| /// This function is called to test each entry in a partition which is slated |
| /// for a single slice. |
| static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S, |
| VectorType *Ty, |
| uint64_t ElementSize, |
| const DataLayout &DL) { |
| // First validate the slice offsets. |
| uint64_t BeginOffset = |
| std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset(); |
| uint64_t BeginIndex = BeginOffset / ElementSize; |
| if (BeginIndex * ElementSize != BeginOffset || |
| BeginIndex >= Ty->getNumElements()) |
| return false; |
| uint64_t EndOffset = |
| std::min(S.endOffset(), P.endOffset()) - P.beginOffset(); |
| uint64_t EndIndex = EndOffset / ElementSize; |
| if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements()) |
| return false; |
| |
| assert(EndIndex > BeginIndex && "Empty vector!"); |
| uint64_t NumElements = EndIndex - BeginIndex; |
| Type *SliceTy = (NumElements == 1) |
| ? Ty->getElementType() |
| : VectorType::get(Ty->getElementType(), NumElements); |
| |
| Type *SplitIntTy = |
| Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); |
| |
| Use *U = S.getUse(); |
| |
| if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { |
| if (MI->isVolatile()) |
| return false; |
| if (!S.isSplittable()) |
| return false; // Skip any unsplittable intrinsics. |
| } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { |
| if (!II->isLifetimeStartOrEnd()) |
| return false; |
| } else if (U->get()->getType()->getPointerElementType()->isStructTy()) { |
| // Disable vector promotion when there are loads or stores of an FCA. |
| return false; |
| } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { |
| if (LI->isVolatile()) |
| return false; |
| Type *LTy = LI->getType(); |
| if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { |
| assert(LTy->isIntegerTy()); |
| LTy = SplitIntTy; |
| } |
| if (!canConvertValue(DL, SliceTy, LTy)) |
| return false; |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { |
| if (SI->isVolatile()) |
| return false; |
| Type *STy = SI->getValueOperand()->getType(); |
| if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { |
| assert(STy->isIntegerTy()); |
| STy = SplitIntTy; |
| } |
| if (!canConvertValue(DL, STy, SliceTy)) |
| return false; |
| } else { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Test whether the given alloca partitioning and range of slices can be |
| /// promoted to a vector. |
| /// |
| /// This is a quick test to check whether we can rewrite a particular alloca |
| /// partition (and its newly formed alloca) into a vector alloca with only |
| /// whole-vector loads and stores such that it could be promoted to a vector |
| /// SSA value. We only can ensure this for a limited set of operations, and we |
| /// don't want to do the rewrites unless we are confident that the result will |
| /// be promotable, so we have an early test here. |
| static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) { |
| // Collect the candidate types for vector-based promotion. Also track whether |
| // we have different element types. |
| SmallVector<VectorType *, 4> CandidateTys; |
| Type *CommonEltTy = nullptr; |
| bool HaveCommonEltTy = true; |
| auto CheckCandidateType = [&](Type *Ty) { |
| if (auto *VTy = dyn_cast<VectorType>(Ty)) { |
| // Return if bitcast to vectors is different for total size in bits. |
| if (!CandidateTys.empty()) { |
| VectorType *V = CandidateTys[0]; |
| if (DL.getTypeSizeInBits(VTy) != DL.getTypeSizeInBits(V)) { |
| CandidateTys.clear(); |
| return; |
| } |
| } |
| CandidateTys.push_back(VTy); |
| if (!CommonEltTy) |
| CommonEltTy = VTy->getElementType(); |
| else if (CommonEltTy != VTy->getElementType()) |
| HaveCommonEltTy = false; |
| } |
| }; |
| // Consider any loads or stores that are the exact size of the slice. |
| for (const Slice &S : P) |
| if (S.beginOffset() == P.beginOffset() && |
| S.endOffset() == P.endOffset()) { |
| if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser())) |
| CheckCandidateType(LI->getType()); |
| else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) |
| CheckCandidateType(SI->getValueOperand()->getType()); |
| } |
| |
| // If we didn't find a vector type, nothing to do here. |
| if (CandidateTys.empty()) |
| return nullptr; |
| |
| // Remove non-integer vector types if we had multiple common element types. |
| // FIXME: It'd be nice to replace them with integer vector types, but we can't |
| // do that until all the backends are known to produce good code for all |
| // integer vector types. |
| if (!HaveCommonEltTy) { |
| CandidateTys.erase( |
| llvm::remove_if(CandidateTys, |
| [](VectorType *VTy) { |
| return !VTy->getElementType()->isIntegerTy(); |
| }), |
| CandidateTys.end()); |
| |
| // If there were no integer vector types, give up. |
| if (CandidateTys.empty()) |
| return nullptr; |
| |
| // Rank the remaining candidate vector types. This is easy because we know |
| // they're all integer vectors. We sort by ascending number of elements. |
| auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) { |
| (void)DL; |
| assert(DL.getTypeSizeInBits(RHSTy) == DL.getTypeSizeInBits(LHSTy) && |
| "Cannot have vector types of different sizes!"); |
| assert(RHSTy->getElementType()->isIntegerTy() && |
| "All non-integer types eliminated!"); |
| assert(LHSTy->getElementType()->isIntegerTy() && |
| "All non-integer types eliminated!"); |
| return RHSTy->getNumElements() < LHSTy->getNumElements(); |
| }; |
| llvm::sort(CandidateTys, RankVectorTypes); |
| CandidateTys.erase( |
| std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes), |
| CandidateTys.end()); |
| } else { |
| // The only way to have the same element type in every vector type is to |
| // have the same vector type. Check that and remove all but one. |
| #ifndef NDEBUG |
| for (VectorType *VTy : CandidateTys) { |
| assert(VTy->getElementType() == CommonEltTy && |
| "Unaccounted for element type!"); |
| assert(VTy == CandidateTys[0] && |
| "Different vector types with the same element type!"); |
| } |
| #endif |
| CandidateTys.resize(1); |
| } |
| |
| // Try each vector type, and return the one which works. |
| auto CheckVectorTypeForPromotion = [&](VectorType *VTy) { |
| uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType()); |
| |
| // While the definition of LLVM vectors is bitpacked, we don't support sizes |
| // that aren't byte sized. |
| if (ElementSize % 8) |
| return false; |
| assert((DL.getTypeSizeInBits(VTy) % 8) == 0 && |
| "vector size not a multiple of element size?"); |
| ElementSize /= 8; |
| |
| for (const Slice &S : P) |
| if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL)) |
| return false; |
| |
| for (const Slice *S : P.splitSliceTails()) |
| if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL)) |
| return false; |
| |
| return true; |
| }; |
| for (VectorType *VTy : CandidateTys) |
| if (CheckVectorTypeForPromotion(VTy)) |
| return VTy; |
| |
| return nullptr; |
| } |
| |
| /// Test whether a slice of an alloca is valid for integer widening. |
| /// |
| /// This implements the necessary checking for the \c isIntegerWideningViable |
| /// test below on a single slice of the alloca. |
| static bool isIntegerWideningViableForSlice(const Slice &S, |
| uint64_t AllocBeginOffset, |
| Type *AllocaTy, |
| const DataLayout &DL, |
| bool &WholeAllocaOp) { |
| uint64_t Size = DL.getTypeStoreSize(AllocaTy); |
| |
| uint64_t RelBegin = S.beginOffset() - AllocBeginOffset; |
| uint64_t RelEnd = S.endOffset() - AllocBeginOffset; |
| |
| // We can't reasonably handle cases where the load or store extends past |
| // the end of the alloca's type and into its padding. |
| if (RelEnd > Size) |
| return false; |
| |
| Use *U = S.getUse(); |
| |
| if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { |
| if (LI->isVolatile()) |
| return false; |
| // We can't handle loads that extend past the allocated memory. |
| if (DL.getTypeStoreSize(LI->getType()) > Size) |
| return false; |
| // So far, AllocaSliceRewriter does not support widening split slice tails |
| // in rewriteIntegerLoad. |
| if (S.beginOffset() < AllocBeginOffset) |
| return false; |
| // Note that we don't count vector loads or stores as whole-alloca |
| // operations which enable integer widening because we would prefer to use |
| // vector widening instead. |
| if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size) |
| WholeAllocaOp = true; |
| if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { |
| if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) |
| return false; |
| } else if (RelBegin != 0 || RelEnd != Size || |
| !canConvertValue(DL, AllocaTy, LI->getType())) { |
| // Non-integer loads need to be convertible from the alloca type so that |
| // they are promotable. |
| return false; |
| } |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { |
| Type *ValueTy = SI->getValueOperand()->getType(); |
| if (SI->isVolatile()) |
| return false; |
| // We can't handle stores that extend past the allocated memory. |
| if (DL.getTypeStoreSize(ValueTy) > Size) |
| return false; |
| // So far, AllocaSliceRewriter does not support widening split slice tails |
| // in rewriteIntegerStore. |
| if (S.beginOffset() < AllocBeginOffset) |
| return false; |
| // Note that we don't count vector loads or stores as whole-alloca |
| // operations which enable integer widening because we would prefer to use |
| // vector widening instead. |
| if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size) |
| WholeAllocaOp = true; |
| if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { |
| if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) |
| return false; |
| } else if (RelBegin != 0 || RelEnd != Size || |
| !canConvertValue(DL, ValueTy, AllocaTy)) { |
| // Non-integer stores need to be convertible to the alloca type so that |
| // they are promotable. |
| return false; |
| } |
| } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { |
| if (MI->isVolatile() || !isa<Constant>(MI->getLength())) |
| return false; |
| if (!S.isSplittable()) |
| return false; // Skip any unsplittable intrinsics. |
| } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { |
| if (!II->isLifetimeStartOrEnd()) |
| return false; |
| } else { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Test whether the given alloca partition's integer operations can be |
| /// widened to promotable ones. |
| /// |
| /// This is a quick test to check whether we can rewrite the integer loads and |
| /// stores to a particular alloca into wider loads and stores and be able to |
| /// promote the resulting alloca. |
| static bool isIntegerWideningViable(Partition &P, Type *AllocaTy, |
| const DataLayout &DL) { |
| uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy); |
| // Don't create integer types larger than the maximum bitwidth. |
| if (SizeInBits > IntegerType::MAX_INT_BITS) |
| return false; |
| |
| // Don't try to handle allocas with bit-padding. |
| if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy)) |
| return false; |
| |
| // We need to ensure that an integer type with the appropriate bitwidth can |
| // be converted to the alloca type, whatever that is. We don't want to force |
| // the alloca itself to have an integer type if there is a more suitable one. |
| Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); |
| if (!canConvertValue(DL, AllocaTy, IntTy) || |
| !canConvertValue(DL, IntTy, AllocaTy)) |
| return false; |
| |
| // While examining uses, we ensure that the alloca has a covering load or |
| // store. We don't want to widen the integer operations only to fail to |
| // promote due to some other unsplittable entry (which we may make splittable |
| // later). However, if there are only splittable uses, go ahead and assume |
| // that we cover the alloca. |
| // FIXME: We shouldn't consider split slices that happen to start in the |
| // partition here... |
| bool WholeAllocaOp = |
| P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits); |
| |
| for (const Slice &S : P) |
| if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL, |
| WholeAllocaOp)) |
| return false; |
| |
| for (const Slice *S : P.splitSliceTails()) |
| if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL, |
| WholeAllocaOp)) |
| return false; |
| |
| return WholeAllocaOp; |
| } |
| |
| static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, |
| IntegerType *Ty, uint64_t Offset, |
| const Twine &Name) { |
| LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); |
| IntegerType *IntTy = cast<IntegerType>(V->getType()); |
| assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && |
| "Element extends past full value"); |
| uint64_t ShAmt = 8 * Offset; |
| if (DL.isBigEndian()) |
| ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); |
| if (ShAmt) { |
| V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); |
| LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); |
| } |
| assert(Ty->getBitWidth() <= IntTy->getBitWidth() && |
| "Cannot extract to a larger integer!"); |
| if (Ty != IntTy) { |
| V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); |
| LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n"); |
| } |
| return V; |
| } |
| |
| static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, |
| Value *V, uint64_t Offset, const Twine &Name) { |
| IntegerType *IntTy = cast<IntegerType>(Old->getType()); |
| IntegerType *Ty = cast<IntegerType>(V->getType()); |
| assert(Ty->getBitWidth() <= IntTy->getBitWidth() && |
| "Cannot insert a larger integer!"); |
| LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); |
| if (Ty != IntTy) { |
| V = IRB.CreateZExt(V, IntTy, Name + ".ext"); |
| LLVM_DEBUG(dbgs() << " extended: " << *V << "\n"); |
| } |
| assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && |
| "Element store outside of alloca store"); |
| uint64_t ShAmt = 8 * Offset; |
| if (DL.isBigEndian()) |
| ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); |
| if (ShAmt) { |
| V = IRB.CreateShl(V, ShAmt, Name + ".shift"); |
| LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); |
| } |
| |
| if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { |
| APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); |
| Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); |
| LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n"); |
| V = IRB.CreateOr(Old, V, Name + ".insert"); |
| LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n"); |
| } |
| return V; |
| } |
| |
| static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, |
| unsigned EndIndex, const Twine &Name) { |
| VectorType *VecTy = cast<VectorType>(V->getType()); |
| unsigned NumElements = EndIndex - BeginIndex; |
| assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); |
| |
| if (NumElements == VecTy->getNumElements()) |
| return V; |
| |
| if (NumElements == 1) { |
| V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), |
| Name + ".extract"); |
| LLVM_DEBUG(dbgs() << " extract: " << *V << "\n"); |
| return V; |
| } |
| |
| SmallVector<Constant *, 8> Mask; |
| Mask.reserve(NumElements); |
| for (unsigned i = BeginIndex; i != EndIndex; ++i) |
| Mask.push_back(IRB.getInt32(i)); |
| V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), |
| ConstantVector::get(Mask), Name + ".extract"); |
| LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); |
| return V; |
| } |
| |
| static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, |
| unsigned BeginIndex, const Twine &Name) { |
| VectorType *VecTy = cast<VectorType>(Old->getType()); |
| assert(VecTy && "Can only insert a vector into a vector"); |
| |
| VectorType *Ty = dyn_cast<VectorType>(V->getType()); |
| if (!Ty) { |
| // Single element to insert. |
| V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), |
| Name + ".insert"); |
| LLVM_DEBUG(dbgs() << " insert: " << *V << "\n"); |
| return V; |
| } |
| |
| assert(Ty->getNumElements() <= VecTy->getNumElements() && |
| "Too many elements!"); |
| if (Ty->getNumElements() == VecTy->getNumElements()) { |
| assert(V->getType() == VecTy && "Vector type mismatch"); |
| return V; |
| } |
| unsigned EndIndex = BeginIndex + Ty->getNumElements(); |
| |
| // When inserting a smaller vector into the larger to store, we first |
| // use a shuffle vector to widen it with undef elements, and then |
| // a second shuffle vector to select between the loaded vector and the |
| // incoming vector. |
| SmallVector<Constant *, 8> Mask; |
| Mask.reserve(VecTy->getNumElements()); |
| for (unsigned i = 0; i != VecTy->getNumElements(); ++i) |
| if (i >= BeginIndex && i < EndIndex) |
| Mask.push_back(IRB.getInt32(i - BeginIndex)); |
| else |
| Mask.push_back(UndefValue::get(IRB.getInt32Ty())); |
| V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), |
| ConstantVector::get(Mask), Name + ".expand"); |
| LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); |
| |
| Mask.clear(); |
| for (unsigned i = 0; i != VecTy->getNumElements(); ++i) |
| Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); |
| |
| V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend"); |
| |
| LLVM_DEBUG(dbgs() << " blend: " << *V << "\n"); |
| return V; |
| } |
| |
| /// Visitor to rewrite instructions using p particular slice of an alloca |
| /// to use a new alloca. |
| /// |
| /// Also implements the rewriting to vector-based accesses when the partition |
| /// passes the isVectorPromotionViable predicate. Most of the rewriting logic |
| /// lives here. |
| class llvm::sroa::AllocaSliceRewriter |
| : public InstVisitor<AllocaSliceRewriter, bool> { |
| // Befriend the base class so it can delegate to private visit methods. |
| friend class InstVisitor<AllocaSliceRewriter, bool>; |
| |
| using Base = InstVisitor<AllocaSliceRewriter, bool>; |
| |
| const DataLayout &DL; |
| AllocaSlices &AS; |
| SROA &Pass; |
| AllocaInst &OldAI, &NewAI; |
| const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; |
| Type *NewAllocaTy; |
| |
| // This is a convenience and flag variable that will be null unless the new |
| // alloca's integer operations should be widened to this integer type due to |
| // passing isIntegerWideningViable above. If it is non-null, the desired |
| // integer type will be stored here for easy access during rewriting. |
| IntegerType *IntTy; |
| |
| // If we are rewriting an alloca partition which can be written as pure |
| // vector operations, we stash extra information here. When VecTy is |
| // non-null, we have some strict guarantees about the rewritten alloca: |
| // - The new alloca is exactly the size of the vector type here. |
| // - The accesses all either map to the entire vector or to a single |
| // element. |
| // - The set of accessing instructions is only one of those handled above |
| // in isVectorPromotionViable. Generally these are the same access kinds |
| // which are promotable via mem2reg. |
| VectorType *VecTy; |
| Type *ElementTy; |
| uint64_t ElementSize; |
| |
| // The original offset of the slice currently being rewritten relative to |
| // the original alloca. |
| uint64_t BeginOffset = 0; |
| uint64_t EndOffset = 0; |
| |
| // The new offsets of the slice currently being rewritten relative to the |
| // original alloca. |
| uint64_t NewBeginOffset = 0, NewEndOffset = 0; |
| |
| uint64_t SliceSize = 0; |
| bool IsSplittable = false; |
| bool IsSplit = false; |
| Use *OldUse = nullptr; |
| Instruction *OldPtr = nullptr; |
| |
| // Track post-rewrite users which are PHI nodes and Selects. |
| SmallSetVector<PHINode *, 8> &PHIUsers; |
| SmallSetVector<SelectInst *, 8> &SelectUsers; |
| |
| // Utility IR builder, whose name prefix is setup for each visited use, and |
| // the insertion point is set to point to the user. |
| IRBuilderTy IRB; |
| |
| public: |
| AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass, |
| AllocaInst &OldAI, AllocaInst &NewAI, |
| uint64_t NewAllocaBeginOffset, |
| uint64_t NewAllocaEndOffset, bool IsIntegerPromotable, |
| VectorType *PromotableVecTy, |
| SmallSetVector<PHINode *, 8> &PHIUsers, |
| SmallSetVector<SelectInst *, 8> &SelectUsers) |
| : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI), |
| NewAllocaBeginOffset(NewAllocaBeginOffset), |
| NewAllocaEndOffset(NewAllocaEndOffset), |
| NewAllocaTy(NewAI.getAllocatedType()), |
| IntTy(IsIntegerPromotable |
| ? Type::getIntNTy( |
| NewAI.getContext(), |
| DL.getTypeSizeInBits(NewAI.getAllocatedType())) |
| : nullptr), |
| VecTy(PromotableVecTy), |
| ElementTy(VecTy ? VecTy->getElementType() : nullptr), |
| ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0), |
| PHIUsers(PHIUsers), SelectUsers(SelectUsers), |
| IRB(NewAI.getContext(), ConstantFolder()) { |
| if (VecTy) { |
| assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 && |
| "Only multiple-of-8 sized vector elements are viable"); |
| ++NumVectorized; |
| } |
| assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy)); |
| } |
| |
| bool visit(AllocaSlices::const_iterator I) { |
| bool CanSROA = true; |
| BeginOffset = I->beginOffset(); |
| EndOffset = I->endOffset(); |
| IsSplittable = I->isSplittable(); |
| IsSplit = |
| BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; |
| LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : "")); |
| LLVM_DEBUG(AS.printSlice(dbgs(), I, "")); |
| LLVM_DEBUG(dbgs() << "\n"); |
| |
| // Compute the intersecting offset range. |
| assert(BeginOffset < NewAllocaEndOffset); |
| assert(EndOffset > NewAllocaBeginOffset); |
| NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); |
| NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); |
| |
| SliceSize = NewEndOffset - NewBeginOffset; |
| |
| OldUse = I->getUse(); |
| OldPtr = cast<Instruction>(OldUse->get()); |
| |
| Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); |
| IRB.SetInsertPoint(OldUserI); |
| IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); |
| IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); |
| |
| CanSROA &= visit(cast<Instruction>(OldUse->getUser())); |
| if (VecTy || IntTy) |
| assert(CanSROA); |
| return CanSROA; |
| } |
| |
| private: |
| // Make sure the other visit overloads are visible. |
| using Base::visit; |
| |
| // Every instruction which can end up as a user must have a rewrite rule. |
| bool visitInstruction(Instruction &I) { |
| LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); |
| llvm_unreachable("No rewrite rule for this instruction!"); |
| } |
| |
| Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { |
| // Note that the offset computation can use BeginOffset or NewBeginOffset |
| // interchangeably for unsplit slices. |
| assert(IsSplit || BeginOffset == NewBeginOffset); |
| uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
| |
| #ifndef NDEBUG |
| StringRef OldName = OldPtr->getName(); |
| // Skip through the last '.sroa.' component of the name. |
| size_t LastSROAPrefix = OldName.rfind(".sroa."); |
| if (LastSROAPrefix != StringRef::npos) { |
| OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); |
| // Look for an SROA slice index. |
| size_t IndexEnd = OldName.find_first_not_of("0123456789"); |
| if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { |
| // Strip the index and look for the offset. |
| OldName = OldName.substr(IndexEnd + 1); |
| size_t OffsetEnd = OldName.find_first_not_of("0123456789"); |
| if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') |
| // Strip the offset. |
| OldName = OldName.substr(OffsetEnd + 1); |
| } |
| } |
| // Strip any SROA suffixes as well. |
| OldName = OldName.substr(0, OldName.find(".sroa_")); |
| #endif |
| |
| return getAdjustedPtr(IRB, DL, &NewAI, |
| APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset), |
| PointerTy, |
| #ifndef NDEBUG |
| Twine(OldName) + "." |
| #else |
| Twine() |
| #endif |
| ); |
| } |
| |
| /// Compute suitable alignment to access this slice of the *new* |
| /// alloca. |
| /// |
| /// You can optionally pass a type to this routine and if that type's ABI |
| /// alignment is itself suitable, this will return zero. |
| MaybeAlign getSliceAlign(Type *Ty = nullptr) { |
| const MaybeAlign NewAIAlign = DL.getValueOrABITypeAlignment( |
| MaybeAlign(NewAI.getAlignment()), NewAI.getAllocatedType()); |
| const MaybeAlign Align = |
| commonAlignment(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset); |
| return (Ty && Align && Align->value() == DL.getABITypeAlignment(Ty)) |
| ? None |
| : Align; |
| } |
| |
| unsigned getIndex(uint64_t Offset) { |
| assert(VecTy && "Can only call getIndex when rewriting a vector"); |
| uint64_t RelOffset = Offset - NewAllocaBeginOffset; |
| assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); |
| uint32_t Index = RelOffset / ElementSize; |
| assert(Index * ElementSize == RelOffset); |
| return Index; |
| } |
| |
| void deleteIfTriviallyDead(Value *V) { |
| Instruction *I = cast<Instruction>(V); |
| if (isInstructionTriviallyDead(I)) |
| Pass.DeadInsts.insert(I); |
| } |
| |
| Value *rewriteVectorizedLoadInst() { |
| unsigned BeginIndex = getIndex(NewBeginOffset); |
| unsigned EndIndex = getIndex(NewEndOffset); |
| assert(EndIndex > BeginIndex && "Empty vector!"); |
| |
| Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, |
| NewAI.getAlignment(), "load"); |
| return extractVector(IRB, V, BeginIndex, EndIndex, "vec"); |
| } |
| |
| Value *rewriteIntegerLoad(LoadInst &LI) { |
| assert(IntTy && "We cannot insert an integer to the alloca"); |
| assert(!LI.isVolatile()); |
| Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, |
| NewAI.getAlignment(), "load"); |
| V = convertValue(DL, IRB, V, IntTy); |
| assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); |
| uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
| if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) { |
| IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8); |
| V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract"); |
| } |
| // It is possible that the extracted type is not the load type. This |
| // happens if there is a load past the end of the alloca, and as |
| // a consequence the slice is narrower but still a candidate for integer |
| // lowering. To handle this case, we just zero extend the extracted |
| // integer. |
| assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 && |
| "Can only handle an extract for an overly wide load"); |
| if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8) |
| V = IRB.CreateZExt(V, LI.getType()); |
| return V; |
| } |
| |
| bool visitLoadInst(LoadInst &LI) { |
| LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); |
| Value *OldOp = LI.getOperand(0); |
| assert(OldOp == OldPtr); |
| |
| AAMDNodes AATags; |
| LI.getAAMetadata(AATags); |
| |
| unsigned AS = LI.getPointerAddressSpace(); |
| |
| Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) |
| : LI.getType(); |
| const bool IsLoadPastEnd = DL.getTypeStoreSize(TargetTy) > SliceSize; |
| bool IsPtrAdjusted = false; |
| Value *V; |
| if (VecTy) { |
| V = rewriteVectorizedLoadInst(); |
| } else if (IntTy && LI.getType()->isIntegerTy()) { |
| V = rewriteIntegerLoad(LI); |
| } else if (NewBeginOffset == NewAllocaBeginOffset && |
| NewEndOffset == NewAllocaEndOffset && |
| (canConvertValue(DL, NewAllocaTy, TargetTy) || |
| (IsLoadPastEnd && NewAllocaTy->isIntegerTy() && |
| TargetTy->isIntegerTy()))) { |
| LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, |
| NewAI.getAlignment(), |
| LI.isVolatile(), LI.getName()); |
| if (AATags) |
| NewLI->setAAMetadata(AATags); |
| if (LI.isVolatile()) |
| NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); |
| if (NewLI->isAtomic()) |
| NewLI->setAlignment(LI.getAlign()); |
| |
| // Any !nonnull metadata or !range metadata on the old load is also valid |
| // on the new load. This is even true in some cases even when the loads |
| // are different types, for example by mapping !nonnull metadata to |
| // !range metadata by modeling the null pointer constant converted to the |
| // integer type. |
| // FIXME: Add support for range metadata here. Currently the utilities |
| // for this don't propagate range metadata in trivial cases from one |
| // integer load to another, don't handle non-addrspace-0 null pointers |
| // correctly, and don't have any support for mapping ranges as the |
| // integer type becomes winder or narrower. |
| if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull)) |
| copyNonnullMetadata(LI, N, *NewLI); |
| |
| // Try to preserve nonnull metadata |
| V = NewLI; |
| |
| // If this is an integer load past the end of the slice (which means the |
| // bytes outside the slice are undef or this load is dead) just forcibly |
| // fix the integer size with correct handling of endianness. |
| if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) |
| if (auto *TITy = dyn_cast<IntegerType>(TargetTy)) |
| if (AITy->getBitWidth() < TITy->getBitWidth()) { |
| V = IRB.CreateZExt(V, TITy, "load.ext"); |
| if (DL.isBigEndian()) |
| V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(), |
| "endian_shift"); |
| } |
| } else { |
| Type *LTy = TargetTy->getPointerTo(AS); |
| LoadInst *NewLI = IRB.CreateAlignedLoad( |
| TargetTy, getNewAllocaSlicePtr(IRB, LTy), getSliceAlign(TargetTy), |
| LI.isVolatile(), LI.getName()); |
| if (AATags) |
| NewLI->setAAMetadata(AATags); |
| if (LI.isVolatile()) |
| NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); |
| |
| V = NewLI; |
| IsPtrAdjusted = true; |
| } |
| V = convertValue(DL, IRB, V, TargetTy); |
| |
| if (IsSplit) { |
| assert(!LI.isVolatile()); |
| assert(LI.getType()->isIntegerTy() && |
| "Only integer type loads and stores are split"); |
| assert(SliceSize < DL.getTypeStoreSize(LI.getType()) && |
| "Split load isn't smaller than original load"); |
| assert(DL.typeSizeEqualsStoreSize(LI.getType()) && |
| "Non-byte-multiple bit width"); |
| // Move the insertion point just past the load so that we can refer to it. |
| IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI))); |
| // Create a placeholder value with the same type as LI to use as the |
| // basis for the new value. This allows us to replace the uses of LI with |
| // the computed value, and then replace the placeholder with LI, leaving |
| // LI only used for this computation. |
| Value *Placeholder = new LoadInst( |
| LI.getType(), UndefValue::get(LI.getType()->getPointerTo(AS))); |
| V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset, |
| "insert"); |
| LI.replaceAllUsesWith(V); |
| Placeholder->replaceAllUsesWith(&LI); |
| Placeholder->deleteValue(); |
| } else { |
| LI.replaceAllUsesWith(V); |
| } |
| |
| Pass.DeadInsts.insert(&LI); |
| deleteIfTriviallyDead(OldOp); |
| LLVM_DEBUG(dbgs() << " to: " << *V << "\n"); |
| return !LI.isVolatile() && !IsPtrAdjusted; |
| } |
| |
| bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, |
| AAMDNodes AATags) { |
| if (V->getType() != VecTy) { |
| unsigned BeginIndex = getIndex(NewBeginOffset); |
| unsigned EndIndex = getIndex(NewEndOffset); |
| assert(EndIndex > BeginIndex && "Empty vector!"); |
| unsigned NumElements = EndIndex - BeginIndex; |
| assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); |
| Type *SliceTy = (NumElements == 1) |
| ? ElementTy |
| : VectorType::get(ElementTy, NumElements); |
| if (V->getType() != SliceTy) |
| V = convertValue(DL, IRB, V, SliceTy); |
| |
| // Mix in the existing elements. |
| Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, |
| NewAI.getAlignment(), "load"); |
| V = insertVector(IRB, Old, V, BeginIndex, "vec"); |
| } |
| StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); |
| if (AATags) |
| Store->setAAMetadata(AATags); |
| Pass.DeadInsts.insert(&SI); |
| |
| LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); |
| return true; |
| } |
| |
| bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) { |
| assert(IntTy && "We cannot extract an integer from the alloca"); |
| assert(!SI.isVolatile()); |
| if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) { |
| Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, |
| NewAI.getAlignment(), "oldload"); |
| Old = convertValue(DL, IRB, Old, IntTy); |
| assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); |
| uint64_t Offset = BeginOffset - NewAllocaBeginOffset; |
| V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert"); |
| } |
| V = convertValue(DL, IRB, V, NewAllocaTy); |
| StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); |
| Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, |
| LLVMContext::MD_access_group}); |
| if (AATags) |
| Store->setAAMetadata(AATags); |
| Pass.DeadInsts.insert(&SI); |
| LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); |
| return true; |
| } |
| |
| bool visitStoreInst(StoreInst &SI) { |
| LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); |
| Value *OldOp = SI.getOperand(1); |
| assert(OldOp == OldPtr); |
| |
| AAMDNodes AATags; |
| SI.getAAMetadata(AATags); |
| |
| Value *V = SI.getValueOperand(); |
| |
| // Strip all inbounds GEPs and pointer casts to try to dig out any root |
| // alloca that should be re-examined after promoting this alloca. |
| if (V->getType()->isPointerTy()) |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) |
| Pass.PostPromotionWorklist.insert(AI); |
| |
| if (SliceSize < DL.getTypeStoreSize(V->getType())) { |
| assert(!SI.isVolatile()); |
| assert(V->getType()->isIntegerTy() && |
| "Only integer type loads and stores are split"); |
| assert(DL.typeSizeEqualsStoreSize(V->getType()) && |
| "Non-byte-multiple bit width"); |
| IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); |
| V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset, |
| "extract"); |
| } |
| |
| if (VecTy) |
| return rewriteVectorizedStoreInst(V, SI, OldOp, AATags); |
| if (IntTy && V->getType()->isIntegerTy()) |
| return rewriteIntegerStore(V, SI, AATags); |
| |
| const bool IsStorePastEnd = DL.getTypeStoreSize(V->getType()) > SliceSize; |
| StoreInst *NewSI; |
| if (NewBeginOffset == NewAllocaBeginOffset && |
| NewEndOffset == NewAllocaEndOffset && |
| (canConvertValue(DL, V->getType(), NewAllocaTy) || |
| (IsStorePastEnd && NewAllocaTy->isIntegerTy() && |
| V->getType()->isIntegerTy()))) { |
| // If this is an integer store past the end of slice (and thus the bytes |
| // past that point are irrelevant or this is unreachable), truncate the |
| // value prior to storing. |
| if (auto *VITy = dyn_cast<IntegerType>(V->getType())) |
| if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) |
| if (VITy->getBitWidth() > AITy->getBitWidth()) { |
| if (DL.isBigEndian()) |
| V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(), |
| "endian_shift"); |
| V = IRB.CreateTrunc(V, AITy, "load.trunc"); |
| } |
| |
| V = convertValue(DL, IRB, V, NewAllocaTy); |
| NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), |
| SI.isVolatile()); |
| } else { |
| unsigned AS = SI.getPointerAddressSpace(); |
| Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS)); |
| NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()), |
| SI.isVolatile()); |
| } |
| NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, |
| LLVMContext::MD_access_group}); |
| if (AATags) |
| NewSI->setAAMetadata(AATags); |
| if (SI.isVolatile()) |
| NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); |
| if (NewSI->isAtomic()) |
| NewSI->setAlignment(SI.getAlign()); |
| Pass.DeadInsts.insert(&SI); |
| deleteIfTriviallyDead(OldOp); |
| |
| LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n"); |
| return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile(); |
| } |
| |
| /// Compute an integer value from splatting an i8 across the given |
| /// number of bytes. |
| /// |
| /// Note that this routine assumes an i8 is a byte. If that isn't true, don't |
| /// call this routine. |
| /// FIXME: Heed the advice above. |
| /// |
| /// \param V The i8 value to splat. |
| /// \param Size The number of bytes in the output (assuming i8 is one byte) |
| Value *getIntegerSplat(Value *V, unsigned Size) { |
| assert(Size > 0 && "Expected a positive number of bytes."); |
| IntegerType *VTy = cast<IntegerType>(V->getType()); |
| assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); |
| if (Size == 1) |
| return V; |
| |
| Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8); |
| V = IRB.CreateMul( |
| IRB.CreateZExt(V, SplatIntTy, "zext"), |
| ConstantExpr::getUDiv( |
| Constant::getAllOnesValue(SplatIntTy), |
| ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()), |
| SplatIntTy)), |
| "isplat"); |
| return V; |
| } |
| |
| /// Compute a vector splat for a given element value. |
| Value *getVectorSplat(Value *V, unsigned NumElements) { |
| V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); |
| LLVM_DEBUG(dbgs() << " splat: " << *V << "\n"); |
| return V; |
| } |
| |
| bool visitMemSetInst(MemSetInst &II) { |
| LLVM_DEBUG(dbgs() << " original: " << II << "\n"); |
| assert(II.getRawDest() == OldPtr); |
| |
| AAMDNodes AATags; |
| II.getAAMetadata(AATags); |
| |
| // If the memset has a variable size, it cannot be split, just adjust the |
| // pointer to the new alloca. |
| if (!isa<Constant>(II.getLength())) { |
| assert(!IsSplit); |
| assert(NewBeginOffset == BeginOffset); |
| II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); |
| II.setDestAlignment(getSliceAlign()); |
| |
| deleteIfTriviallyDead(OldPtr); |
| return false; |
| } |
| |
| // Record this instruction for deletion. |
| Pass.DeadInsts.insert(&II); |
| |
| Type *AllocaTy = NewAI.getAllocatedType(); |
| Type *ScalarTy = AllocaTy->getScalarType(); |
| |
| const bool CanContinue = [&]() { |
| if (VecTy || IntTy) |
| return true; |
| if (BeginOffset > NewAllocaBeginOffset || |
| EndOffset < NewAllocaEndOffset) |
| return false; |
| auto *C = cast<ConstantInt>(II.getLength()); |
| if (C->getBitWidth() > 64) |
| return false; |
| const auto Len = C->getZExtValue(); |
| auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext()); |
| auto *SrcTy = VectorType::get(Int8Ty, Len); |
| return canConvertValue(DL, SrcTy, AllocaTy) && |
| DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)); |
| }(); |
| |
| // If this doesn't map cleanly onto the alloca type, and that type isn't |
| // a single value type, just emit a memset. |
| if (!CanContinue) { |
| Type *SizeTy = II.getLength()->getType(); |
| Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); |
| CallInst *New = IRB.CreateMemSet( |
| getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, |
| MaybeAlign(getSliceAlign()), II.isVolatile()); |
| if (AATags) |
| New->setAAMetadata(AATags); |
| LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); |
| return false; |
| } |
| |
| // If we can represent this as a simple value, we have to build the actual |
| // value to store, which requires expanding the byte present in memset to |
| // a sensible representation for the alloca type. This is essentially |
| // splatting the byte to a sufficiently wide integer, splatting it across |
| // any desired vector width, and bitcasting to the final type. |
| Value *V; |
| |
| if (VecTy) { |
| // If this is a memset of a vectorized alloca, insert it. |
| assert(ElementTy == ScalarTy); |
| |
| unsigned BeginIndex = getIndex(NewBeginOffset); |
| unsigned EndIndex = getIndex(NewEndOffset); |
| assert(EndIndex > BeginIndex && "Empty vector!"); |
| unsigned NumElements = EndIndex - BeginIndex; |
| assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); |
| |
| Value *Splat = |
| getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8); |
| Splat = convertValue(DL, IRB, Splat, ElementTy); |
| if (NumElements > 1) |
| Splat = getVectorSplat(Splat, NumElements); |
| |
| Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, |
| NewAI.getAlignment(), "oldload"); |
| V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); |
| } else if (IntTy) { |
| // If this is a memset on an alloca where we can widen stores, insert the |
| // set integer. |
| assert(!II.isVolatile()); |
| |
| uint64_t Size = NewEndOffset - NewBeginOffset; |
| V = getIntegerSplat(II.getValue(), Size); |
| |
| if (IntTy && (BeginOffset != NewAllocaBeginOffset || |
| EndOffset != NewAllocaBeginOffset)) { |
| Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, |
| NewAI.getAlignment(), "oldload"); |
| Old = convertValue(DL, IRB, Old, IntTy); |
| uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
| V = insertInteger(DL, IRB, Old, V, Offset, "insert"); |
| } else { |
| assert(V->getType() == IntTy && |
| "Wrong type for an alloca wide integer!"); |
| } |
| V = convertValue(DL, IRB, V, AllocaTy); |
| } else { |
| // Established these invariants above. |
| assert(NewBeginOffset == NewAllocaBeginOffset); |
| assert(NewEndOffset == NewAllocaEndOffset); |
| |
| V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8); |
| if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) |
| V = getVectorSplat(V, AllocaVecTy->getNumElements()); |
| |
| V = convertValue(DL, IRB, V, AllocaTy); |
| } |
| |
| StoreInst *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), |
| II.isVolatile()); |
| if (AATags) |
| New->setAAMetadata(AATags); |
| LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); |
| return !II.isVolatile(); |
| } |
| |
| bool visitMemTransferInst(MemTransferInst &II) { |
| // Rewriting of memory transfer instructions can be a bit tricky. We break |
| // them into two categories: split intrinsics and unsplit intrinsics. |
| |
| LLVM_DEBUG(dbgs() << " original: " << II << "\n"); |
| |
| AAMDNodes AATags; |
| II.getAAMetadata(AATags); |
| |
| bool IsDest = &II.getRawDestUse() == OldUse; |
| assert((IsDest && II.getRawDest() == OldPtr) || |
| (!IsDest && II.getRawSource() == OldPtr)); |
| |
| MaybeAlign SliceAlign = getSliceAlign(); |
| |
| // For unsplit intrinsics, we simply modify the source and destination |
| // pointers in place. This isn't just an optimization, it is a matter of |
| // correctness. With unsplit intrinsics we may be dealing with transfers |
| // within a single alloca before SROA ran, or with transfers that have |
| // a variable length. We may also be dealing with memmove instead of |
| // memcpy, and so simply updating the pointers is the necessary for us to |
| // update both source and dest of a single call. |
| if (!IsSplittable) { |
| Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); |
| if (IsDest) { |
| II.setDest(AdjustedPtr); |
| II.setDestAlignment(SliceAlign); |
| } |
| else { |
| II.setSource(AdjustedPtr); |
| II.setSourceAlignment(SliceAlign); |
| } |
| |
| LLVM_DEBUG(dbgs() << " to: " << II << "\n"); |
| deleteIfTriviallyDead(OldPtr); |
| return false; |
| } |
| // For split transfer intrinsics we have an incredibly useful assurance: |
| // the source and destination do not reside within the same alloca, and at |
| // least one of them does not escape. This means that we can replace |
| // memmove with memcpy, and we don't need to worry about all manner of |
| // downsides to splitting and transforming the operations. |
| |
| // If this doesn't map cleanly onto the alloca type, and that type isn't |
| // a single value type, just emit a memcpy. |
| bool EmitMemCpy = |
| !VecTy && !IntTy && |
| (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || |
| SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) || |
| !NewAI.getAllocatedType()->isSingleValueType()); |
| |
| // If we're just going to emit a memcpy, the alloca hasn't changed, and the |
| // size hasn't been shrunk based on analysis of the viable range, this is |
| // a no-op. |
| if (EmitMemCpy && &OldAI == &NewAI) { |
| // Ensure the start lines up. |
| assert(NewBeginOffset == BeginOffset); |
| |
| // Rewrite the size as needed. |
| if (NewEndOffset != EndOffset) |
| II.setLength(ConstantInt::get(II.getLength()->getType(), |
| NewEndOffset - NewBeginOffset)); |
| return false; |
| } |
| // Record this instruction for deletion. |
| Pass.DeadInsts.insert(&II); |
| |
| // Strip all inbounds GEPs and pointer casts to try to dig out any root |
| // alloca that should be re-examined after rewriting this instruction. |
| Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); |
| if (AllocaInst *AI = |
| dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) { |
| assert(AI != &OldAI && AI != &NewAI && |
| "Splittable transfers cannot reach the same alloca on both ends."); |
| Pass.Worklist.insert(AI); |
| } |
| |
| Type *OtherPtrTy = OtherPtr->getType(); |
| unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); |
| |
| // Compute the relative offset for the other pointer within the transfer. |
| unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS); |
| APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset); |
| Align OtherAlign = |
| assumeAligned(IsDest ? II.getSourceAlignment() : II.getDestAlignment()); |
| OtherAlign = |
| commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue()); |
| |
| if (EmitMemCpy) { |
| // Compute the other pointer, folding as much as possible to produce |
| // a single, simple GEP in most cases. |
| OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, |
| OtherPtr->getName() + "."); |
| |
| Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); |
| Type *SizeTy = II.getLength()->getType(); |
| Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); |
| |
| Value *DestPtr, *SrcPtr; |
| MaybeAlign DestAlign, SrcAlign; |
| // Note: IsDest is true iff we're copying into the new alloca slice |
| if (IsDest) { |
| DestPtr = OurPtr; |
| DestAlign = SliceAlign; |
| SrcPtr = OtherPtr; |
| SrcAlign = OtherAlign; |
| } else { |
| DestPtr = OtherPtr; |
| DestAlign = OtherAlign; |
| SrcPtr = OurPtr; |
| SrcAlign = SliceAlign; |
| } |
| CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign, |
| Size, II.isVolatile()); |
| if (AATags) |
| New->setAAMetadata(AATags); |
| LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); |
| return false; |
| } |
| |
| bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && |
| NewEndOffset == NewAllocaEndOffset; |
| uint64_t Size = NewEndOffset - NewBeginOffset; |
| unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; |
| unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; |
| unsigned NumElements = EndIndex - BeginIndex; |
| IntegerType *SubIntTy = |
| IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr; |
| |
| // Reset the other pointer type to match the register type we're going to |
| // use, but using the address space of the original other pointer. |
| Type *OtherTy; |
| if (VecTy && !IsWholeAlloca) { |
| if (NumElements == 1) |
| OtherTy = VecTy->getElementType(); |
| else |
| OtherTy = VectorType::get(VecTy->getElementType(), NumElements); |
| } else if (IntTy && !IsWholeAlloca) { |
| OtherTy = SubIntTy; |
| } else { |
| OtherTy = NewAllocaTy; |
| } |
| OtherPtrTy = OtherTy->getPointerTo(OtherAS); |
| |
| Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, |
| OtherPtr->getName() + "."); |
| MaybeAlign SrcAlign = OtherAlign; |
| Value *DstPtr = &NewAI; |
| MaybeAlign DstAlign = SliceAlign; |
| if (!IsDest) { |
| std::swap(SrcPtr, DstPtr); |
| std::swap(SrcAlign, DstAlign); |
| } |
| |
| Value *Src; |
| if (VecTy && !IsWholeAlloca && !IsDest) { |
| Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, |
| NewAI.getAlignment(), "load"); |
| Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); |
| } else if (IntTy && !IsWholeAlloca && !IsDest) { |
| Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, |
| NewAI.getAlignment(), "load"); |
| Src = convertValue(DL, IRB, Src, IntTy); |
| uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
| Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); |
| } else { |
| LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign, |
| II.isVolatile(), "copyload"); |
| if (AATags) |
| Load->setAAMetadata(AATags); |
| Src = Load; |
| } |
| |
| if (VecTy && !IsWholeAlloca && IsDest) { |
| Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, |
| NewAI.getAlignment(), "oldload"); |
| Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); |
| } else if (IntTy && !IsWholeAlloca && IsDest) { |
| Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, |
| NewAI.getAlignment(), "oldload"); |
| Old = convertValue(DL, IRB, Old, IntTy); |
| uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
| Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); |
| Src = convertValue(DL, IRB, Src, NewAllocaTy); |
| } |
| |
| StoreInst *Store = cast<StoreInst>( |
| IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); |
| if (AATags) |
| Store->setAAMetadata(AATags); |
| LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); |
| return !II.isVolatile(); |
| } |
| |
| bool visitIntrinsicInst(IntrinsicInst &II) { |
| assert(II.isLifetimeStartOrEnd()); |
| LLVM_DEBUG(dbgs() << " original: " << II << "\n"); |
| assert(II.getArgOperand(1) == OldPtr); |
| |
| // Record this instruction for deletion. |
| Pass.DeadInsts.insert(&II); |
| |
| // Lifetime intrinsics are only promotable if they cover the whole alloca. |
| // Therefore, we drop lifetime intrinsics which don't cover the whole |
| // alloca. |
| // (In theory, intrinsics which partially cover an alloca could be |
| // promoted, but PromoteMemToReg doesn't handle that case.) |
| // FIXME: Check whether the alloca is promotable before dropping the |
| // lifetime intrinsics? |
| if (NewBeginOffset != NewAllocaBeginOffset || |
| NewEndOffset != NewAllocaEndOffset) |
| return true; |
| |
| ConstantInt *Size = |
| ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), |
| NewEndOffset - NewBeginOffset); |
| // Lifetime intrinsics always expect an i8* so directly get such a pointer |
| // for the new alloca slice. |
| Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace()); |
| Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy); |
| Value *New; |
| if (II.getIntrinsicID() == Intrinsic::lifetime_start) |
| New = IRB.CreateLifetimeStart(Ptr, Size); |
| else |
| New = IRB.CreateLifetimeEnd(Ptr, Size); |
| |
| (void)New; |
| LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); |
| |
| return true; |
| } |
| |
| void fixLoadStoreAlign(Instruction &Root) { |
| // This algorithm implements the same visitor loop as |
| // hasUnsafePHIOrSelectUse, and fixes the alignment of each load |
| // or store found. |
| SmallPtrSet<Instruction *, 4> Visited; |
| SmallVector<Instruction *, 4> Uses; |
| Visited.insert(&Root); |
| Uses.push_back(&Root); |
| do { |
| Instruction *I = Uses.pop_back_val(); |
| |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| MaybeAlign LoadAlign = DL.getValueOrABITypeAlignment( |
| MaybeAlign(LI->getAlignment()), LI->getType()); |
| LI->setAlignment(std::min(LoadAlign, getSliceAlign())); |
| continue; |
| } |
| if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| Value *Op = SI->getOperand(0); |
| MaybeAlign StoreAlign = DL.getValueOrABITypeAlignment( |
| MaybeAlign(SI->getAlignment()), Op->getType()); |
| SI->setAlignment(std::min(StoreAlign, getSliceAlign())); |
| continue; |
| } |
| |
| assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) || |
| isa<PHINode>(I) || isa<SelectInst>(I) || |
| isa<GetElementPtrInst>(I)); |
| for (User *U : I->users()) |
| if (Visited.insert(cast<Instruction>(U)).second) |
| Uses.push_back(cast<Instruction>(U)); |
| } while (!Uses.empty()); |
| } |
| |
| bool visitPHINode(PHINode &PN) { |
| LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); |
| assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); |
| assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); |
| |
| // We would like to compute a new pointer in only one place, but have it be |
| // as local as possible to the PHI. To do that, we re-use the location of |
| // the old pointer, which necessarily must be in the right position to |
| // dominate the PHI. |
| IRBuilderTy PtrBuilder(IRB); |
| if (isa<PHINode>(OldPtr)) |
| PtrBuilder.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt()); |
| else |
| PtrBuilder.SetInsertPoint(OldPtr); |
| PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc()); |
| |
| Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType()); |
| // Replace the operands which were using the old pointer. |
| std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); |
| |
| LLVM_DEBUG(dbgs() << " to: " << PN << "\n"); |
| deleteIfTriviallyDead(OldPtr); |
| |
| // Fix the alignment of any loads or stores using this PHI node. |
| fixLoadStoreAlign(PN); |
| |
| // PHIs can't be promoted on their own, but often can be speculated. We |
| // check the speculation outside of the rewriter so that we see the |
| // fully-rewritten alloca. |
| PHIUsers.insert(&PN); |
| return true; |
| } |
| |
| bool visitSelectInst(SelectInst &SI) { |
| LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); |
| assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && |
| "Pointer isn't an operand!"); |
| assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); |
| assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); |
| |
| Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); |
| // Replace the operands which were using the old pointer. |
| if (SI.getOperand(1) == OldPtr) |
| SI.setOperand(1, NewPtr); |
| if (SI.getOperand(2) == OldPtr) |
| SI.setOperand(2, NewPtr); |
| |
| LLVM_DEBUG(dbgs() << " to: " << SI << "\n"); |
| deleteIfTriviallyDead(OldPtr); |
| |
| // Fix the alignment of any loads or stores using this select. |
| fixLoadStoreAlign(SI); |
| |
| // Selects can't be promoted on their own, but often can be speculated. We |
| // check the speculation outside of the rewriter so that we see the |
| // fully-rewritten alloca. |
| SelectUsers.insert(&SI); |
| return true; |
| } |
| }; |
| |
| namespace { |
| |
| /// Visitor to rewrite aggregate loads and stores as scalar. |
| /// |
| /// This pass aggressively rewrites all aggregate loads and stores on |
| /// a particular pointer (or any pointer derived from it which we can identify) |
| /// with scalar loads and stores. |
| class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { |
| // Befriend the base class so it can delegate to private visit methods. |
| friend class InstVisitor<AggLoadStoreRewriter, bool>; |
| |
| /// Queue of pointer uses to analyze and potentially rewrite. |
| SmallVector<Use *, 8> Queue; |
| |
| /// Set to prevent us from cycling with phi nodes and loops. |
| SmallPtrSet<User *, 8> Visited; |
| |
| /// The current pointer use being rewritten. This is used to dig up the used |
| /// value (as opposed to the user). |
| Use *U = nullptr; |
| |
| /// Used to calculate offsets, and hence alignment, of subobjects. |
| const DataLayout &DL; |
| |
| public: |
| AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {} |
| |
| /// Rewrite loads and stores through a pointer and all pointers derived from |
| /// it. |
| bool rewrite(Instruction &I) { |
| LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); |
| enqueueUsers(I); |
| bool Changed = false; |
| while (!Queue.empty()) { |
| U = Queue.pop_back_val(); |
| Changed |= visit(cast<Instruction>(U->getUser())); |
| } |
| return Changed; |
| } |
| |
| private: |
| /// Enqueue all the users of the given instruction for further processing. |
| /// This uses a set to de-duplicate users. |
| void enqueueUsers(Instruction &I) { |
| for (Use &U : I.uses()) |
| if (Visited.insert(U.getUser()).second) |
| Queue.push_back(&U); |
| } |
| |
| // Conservative default is to not rewrite anything. |
| bool visitInstruction(Instruction &I) { return false; } |
| |
| /// Generic recursive split emission class. |
| template <typename Derived> class OpSplitter { |
| protected: |
| /// The builder used to form new instructions. |
| IRBuilderTy IRB; |
| |
| /// The indices which to be used with insert- or extractvalue to select the |
| /// appropriate value within the aggregate. |
| SmallVector<unsigned, 4> Indices; |
| |
| /// The indices to a GEP instruction which will move Ptr to the correct slot |
| /// within the aggregate. |
| SmallVector<Value *, 4> GEPIndices; |
| |
| /// The base pointer of the original op, used as a base for GEPing the |
| /// split operations. |
| Value *Ptr; |
| |
| /// The base pointee type being GEPed into. |
| Type *BaseTy; |
| |
| /// Known alignment of the base pointer. |
| Align BaseAlign; |
| |
| /// To calculate offset of each component so we can correctly deduce |
| /// alignments. |
| const DataLayout &DL; |
| |
| /// Initialize the splitter with an insertion point, Ptr and start with a |
| /// single zero GEP index. |
| OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, |
| Align BaseAlign, const DataLayout &DL) |
| : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), |
| BaseTy(BaseTy), BaseAlign(BaseAlign), DL(DL) {} |
| |
| public: |
| /// Generic recursive split emission routine. |
| /// |
| /// This method recursively splits an aggregate op (load or store) into |
| /// scalar or vector ops. It splits recursively until it hits a single value |
| /// and emits that single value operation via the template argument. |
| /// |
| /// The logic of this routine relies on GEPs and insertvalue and |
| /// extractvalue all operating with the same fundamental index list, merely |
| /// formatted differently (GEPs need actual values). |
| /// |
| /// \param Ty The type being split recursively into smaller ops. |
| /// \param Agg The aggregate value being built up or stored, depending on |
| /// whether this is splitting a load or a store respectively. |
| void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { |
| if (Ty->isSingleValueType()) { |
| unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices); |
| return static_cast<Derived *>(this)->emitFunc( |
| Ty, Agg, commonAlignment(BaseAlign, Offset), Name); |
| } |
| |
| if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| unsigned OldSize = Indices.size(); |
| (void)OldSize; |
| for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; |
| ++Idx) { |
| assert(Indices.size() == OldSize && "Did not return to the old size"); |
| Indices.push_back(Idx); |
| GEPIndices.push_back(IRB.getInt32(Idx)); |
| emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); |
| GEPIndices.pop_back(); |
| Indices.pop_back(); |
| } |
| return; |
| } |
| |
| if (StructType *STy = dyn_cast<StructType>(Ty)) { |
| unsigned OldSize = Indices.size(); |
| (void)OldSize; |
| for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; |
| ++Idx) { |
| assert(Indices.size() == OldSize && "Did not return to the old size"); |
| Indices.push_back(Idx); |
| GEPIndices.push_back(IRB.getInt32(Idx)); |
| emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); |
| GEPIndices.pop_back(); |
| Indices.pop_back(); |
| } |
| return; |
| } |
| |
| llvm_unreachable("Only arrays and structs are aggregate loadable types"); |
| } |
| }; |
| |
| struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { |
| AAMDNodes AATags; |
| |
| LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, |
| AAMDNodes AATags, Align BaseAlign, const DataLayout &DL) |
| : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, |
| DL), |
| AATags(AATags) {} |
| |
| /// Emit a leaf load of a single value. This is called at the leaves of the |
| /// recursive emission to actually load values. |
| void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { |
| assert(Ty->isSingleValueType()); |
| // Load the single value and insert it using the indices. |
| Value *GEP = |
| IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); |
| LoadInst *Load = |
| IRB.CreateAlignedLoad(Ty, GEP, Alignment.value(), Name + ".load"); |
| if (AATags) |
| Load->setAAMetadata(AATags); |
| Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); |
| LLVM_DEBUG(dbgs() << " to: " << *Load << "\n"); |
| } |
| }; |
| |
| bool visitLoadInst(LoadInst &LI) { |
| assert(LI.getPointerOperand() == *U); |
| if (!LI.isSimple() || LI.getType()->isSingleValueType()) |
| return false; |
| |
| // We have an aggregate being loaded, split it apart. |
| LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); |
| AAMDNodes AATags; |
| LI.getAAMetadata(AATags); |
| LoadOpSplitter Splitter(&LI, *U, LI.getType(), AATags, |
| getAdjustedAlignment(&LI, 0, DL), DL); |
| Value *V = UndefValue::get(LI.getType()); |
| Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); |
| LI.replaceAllUsesWith(V); |
| LI.eraseFromParent(); |
| return true; |
| } |
| |
| struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { |
| StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, |
| AAMDNodes AATags, Align BaseAlign, const DataLayout &DL) |
| : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, |
| DL), |
| AATags(AATags) {} |
| AAMDNodes AATags; |
| /// Emit a leaf store of a single value. This is called at the leaves of the |
| /// recursive emission to actually produce stores. |
| void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { |
| assert(Ty->isSingleValueType()); |
| // Extract the single value and store it using the indices. |
| // |
| // The gep and extractvalue values are factored out of the CreateStore |
| // call to make the output independent of the argument evaluation order. |
| Value *ExtractValue = |
| IRB.CreateExtractValue(Agg, Indices, Name + ".extract"); |
| Value *InBoundsGEP = |
| IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); |
| StoreInst *Store = |
| IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment.value()); |
| if (AATags) |
| Store->setAAMetadata(AATags); |
| LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); |
| } |
| }; |
| |
| bool visitStoreInst(StoreInst &SI) { |
| if (!SI.isSimple() || SI.getPointerOperand() != *U) |
| return false; |
| Value *V = SI.getValueOperand(); |
| if (V->getType()->isSingleValueType()) |
| return false; |
| |
| // We have an aggregate being stored, split it apart. |
| LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); |
| AAMDNodes AATags; |
| SI.getAAMetadata(AATags); |
| StoreOpSplitter Splitter(&SI, *U, V->getType(), AATags, |
| getAdjustedAlignment(&SI, 0, DL), DL); |
| Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); |
| SI.eraseFromParent(); |
| return true; |
| } |
| |
| bool visitBitCastInst(BitCastInst &BC) { |
| enqueueUsers(BC); |
| return false; |
| } |
| |
| bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { |
| enqueueUsers(ASC); |
| return false; |
| } |
| |
| bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| enqueueUsers(GEPI); |
| return false; |
| } |
| |
| bool visitPHINode(PHINode &PN) { |
| enqueueUsers(PN); |
| return false; |
| } |
| |
| bool visitSelectInst(SelectInst &SI) { |
| enqueueUsers(SI); |
| return false; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Strip aggregate type wrapping. |
| /// |
| /// This removes no-op aggregate types wrapping an underlying type. It will |
| /// strip as many layers of types as it can without changing either the type |
| /// size or the allocated size. |
| static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { |
| if (Ty->isSingleValueType()) |
| return Ty; |
| |
| uint64_t AllocSize = DL.getTypeAllocSize(Ty); |
| uint64_t TypeSize = DL.getTypeSizeInBits(Ty); |
| |
| Type *InnerTy; |
| if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { |
| InnerTy = ArrTy->getElementType(); |
| } else if (StructType *STy = dyn_cast<StructType>(Ty)) { |
| const StructLayout *SL = DL.getStructLayout(STy); |
| unsigned Index = SL->getElementContainingOffset(0); |
| InnerTy = STy->getElementType(Index); |
| } else { |
| return Ty; |
| } |
| |
| if (AllocSize > DL.getTypeAllocSize(InnerTy) || |
| TypeSize > DL.getTypeSizeInBits(InnerTy)) |
| return Ty; |
| |
| return stripAggregateTypeWrapping(DL, InnerTy); |
| } |
| |
| /// Try to find a partition of the aggregate type passed in for a given |
| /// offset and size. |
| /// |
| /// This recurses through the aggregate type and tries to compute a subtype |
| /// based on the offset and size. When the offset and size span a sub-section |
| /// of an array, it will even compute a new array type for that sub-section, |
| /// and the same for structs. |
| /// |
| /// Note that this routine is very strict and tries to find a partition of the |
| /// type which produces the *exact* right offset and size. It is not forgiving |
| /// when the size or offset cause either end of type-based partition to be off. |
| /// Also, this is a best-effort routine. It is reasonable to give up and not |
| /// return a type if necessary. |
| static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, |
| uint64_t Size) { |
| if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size) |
| return stripAggregateTypeWrapping(DL, Ty); |
| if (Offset > DL.getTypeAllocSize(Ty) || |
| (DL.getTypeAllocSize(Ty) - Offset) < Size) |
| return nullptr; |
| |
| if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) { |
| Type *ElementTy = SeqTy->getElementType(); |
| uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); |
| uint64_t NumSkippedElements = Offset / ElementSize; |
| if (NumSkippedElements >= SeqTy->getNumElements()) |
| return nullptr; |
| Offset -= NumSkippedElements * ElementSize; |
| |
| // First check if we need to recurse. |
| if (Offset > 0 || Size < ElementSize) { |
| // Bail if the partition ends in a different array element. |
| if ((Offset + Size) > ElementSize) |
| return nullptr; |
| // Recurse through the element type trying to peel off offset bytes. |
| return getTypePartition(DL, ElementTy, Offset, Size); |
| } |
| assert(Offset == 0); |
| |
| if (Size == ElementSize) |
| return stripAggregateTypeWrapping(DL, ElementTy); |
| assert(Size > ElementSize); |
| uint64_t NumElements = Size / ElementSize; |
| if (NumElements * ElementSize != Size) |
| return nullptr; |
| return ArrayType::get(ElementTy, NumElements); |
| } |
| |
| StructType *STy = dyn_cast<StructType>(Ty); |
| if (!STy) |
| return nullptr; |
| |
| const StructLayout *SL = DL.getStructLayout(STy); |
| if (Offset >= SL->getSizeInBytes()) |
| return nullptr; |
| uint64_t EndOffset = Offset + Size; |
| if (EndOffset > SL->getSizeInBytes()) |
| return nullptr; |
| |
| unsigned Index = SL->getElementContainingOffset(Offset); |
| Offset -= SL->getElementOffset(Index); |
| |
| Type *ElementTy = STy->getElementType(Index); |
| uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); |
| if (Offset >= ElementSize) |
| return nullptr; // The offset points into alignment padding. |
| |
| // See if any partition must be contained by the element. |
| if (Offset > 0 || Size < ElementSize) { |
| if ((Offset + Size) > ElementSize) |
| return nullptr; |
| return getTypePartition(DL, ElementTy, Offset, Size); |
| } |
| assert(Offset == 0); |
| |
| if (Size == ElementSize) |
| return stripAggregateTypeWrapping(DL, ElementTy); |
| |
| StructType::element_iterator EI = STy->element_begin() + Index, |
| EE = STy->element_end(); |
| if (EndOffset < SL->getSizeInBytes()) { |
| unsigned EndIndex = SL->getElementContainingOffset(EndOffset); |
| if (Index == EndIndex) |
| return nullptr; // Within a single element and its padding. |
| |
| // Don't try to form "natural" types if the elements don't line up with the |
| // expected size. |
| // FIXME: We could potentially recurse down through the last element in the |
| // sub-struct to find a natural end point. |
| if (SL->getElementOffset(EndIndex) != EndOffset) |
| return nullptr; |
| |
| assert(Index < EndIndex); |
| EE = STy->element_begin() + EndIndex; |
| } |
| |
| // Try to build up a sub-structure. |
| StructType *SubTy = |
| StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked()); |
| const StructLayout *SubSL = DL.getStructLayout(SubTy); |
| if (Size != SubSL->getSizeInBytes()) |
| return nullptr; // The sub-struct doesn't have quite the size needed. |
| |
| return SubTy; |
| } |
| |
| /// Pre-split loads and stores to simplify rewriting. |
| /// |
| /// We want to break up the splittable load+store pairs as much as |
| /// possible. This is important to do as a preprocessing step, as once we |
| /// start rewriting the accesses to partitions of the alloca we lose the |
| /// necessary information to correctly split apart paired loads and stores |
| /// which both point into this alloca. The case to consider is something like |
| /// the following: |
| /// |
| /// %a = alloca [12 x i8] |
| /// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0 |
| /// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4 |
| /// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8 |
| /// %iptr1 = bitcast i8* %gep1 to i64* |
| /// %iptr2 = bitcast i8* %gep2 to i64* |
| /// %fptr1 = bitcast i8* %gep1 to float* |
| /// %fptr2 = bitcast i8* %gep2 to float* |
| /// %fptr3 = bitcast i8* %gep3 to float* |
| /// store float 0.0, float* %fptr1 |
| /// store float 1.0, float* %fptr2 |
| /// %v = load i64* %iptr1 |
| /// store i64 %v, i64* %iptr2 |
| /// %f1 = load float* %fptr2 |
| /// %f2 = load float* %fptr3 |
| /// |
| /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and |
| /// promote everything so we recover the 2 SSA values that should have been |
| /// there all along. |
| /// |
| /// \returns true if any changes are made. |
| bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) { |
| LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n"); |
| |
| // Track the loads and stores which are candidates for pre-splitting here, in |
| // the order they first appear during the partition scan. These give stable |
| // iteration order and a basis for tracking which loads and stores we |
| // actually split. |
| SmallVector<LoadInst *, 4> Loads; |
| SmallVector<StoreInst *, 4> Stores; |
| |
| // We need to accumulate the splits required of each load or store where we |
| // can find them via a direct lookup. This is important to cross-check loads |
| // and stores against each other. We also track the slice so that we can kill |
| // all the slices that end up split. |
| struct SplitOffsets { |
| Slice *S; |
| std::vector<uint64_t> Splits; |
| }; |
| SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap; |
| |
| // Track loads out of this alloca which cannot, for any reason, be pre-split. |
| // This is important as we also cannot pre-split stores of those loads! |
| // FIXME: This is all pretty gross. It means that we can be more aggressive |
| // in pre-splitting when the load feeding the store happens to come from |
| // a separate alloca. Put another way, the effectiveness of SROA would be |
| // decreased by a frontend which just concatenated all of its local allocas |
| // into one big flat alloca. But defeating such patterns is exactly the job |
| // SROA is tasked with! Sadly, to not have this discrepancy we would have |
| // change store pre-splitting to actually force pre-splitting of the load |
| // that feeds it *and all stores*. That makes pre-splitting much harder, but |
| // maybe it would make it more principled? |
| SmallPtrSet<LoadInst *, 8> UnsplittableLoads; |
| |
| LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n"); |
| for (auto &P : AS.partitions()) { |
| for (Slice &S : P) { |
| Instruction *I = cast<Instruction>(S.getUse()->getUser()); |
| if (!S.isSplittable() || S.endOffset() <= P.endOffset()) { |
| // If this is a load we have to track that it can't participate in any |
| // pre-splitting. If this is a store of a load we have to track that |
| // that load also can't participate in any pre-splitting. |
| if (auto *LI = dyn_cast<LoadInst>(I)) |
| UnsplittableLoads.insert(LI); |
| else if (auto *SI = dyn_cast<StoreInst>(I)) |
| if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand())) |
| UnsplittableLoads.insert(LI); |
| continue; |
| } |
| assert(P.endOffset() > S.beginOffset() && |
| "Empty or backwards partition!"); |
| |
| // Determine if this is a pre-splittable slice. |
| if (auto *LI = dyn_cast<LoadInst>(I)) { |
| assert(!LI->isVolatile() && "Cannot split volatile loads!"); |
| |
| // The load must be used exclusively to store into other pointers for |
| // us to be able to arbitrarily pre-split it. The stores must also be |
| // simple to avoid changing semantics. |
| auto IsLoadSimplyStored = [](LoadInst *LI) { |
| for (User *LU : LI->users()) { |
| auto *SI = dyn_cast<StoreInst>(LU); |
| if (!SI || !SI->isSimple()) |
| return false; |
| } |
| return true; |
| }; |
| if (!IsLoadSimplyStored(LI)) { |
| UnsplittableLoads.insert(LI); |
| continue; |
| } |
| |
| Loads.push_back(LI); |
| } else if (auto *SI = dyn_cast<StoreInst>(I)) { |
| if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex())) |
| // Skip stores *of* pointers. FIXME: This shouldn't even be possible! |
| continue; |
| auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand()); |
| if (!StoredLoad || !StoredLoad->isSimple()) |
| continue; |
| assert(!SI->isVolatile() && "Cannot split volatile stores!"); |
| |
| Stores.push_back(SI); |
| } else { |
| // Other uses cannot be pre-split. |
| continue; |
| } |
| |
| // Record the initial split. |
| LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n"); |
| auto &Offsets = SplitOffsetsMap[I]; |
| assert(Offsets.Splits.empty() && |
| "Should not have splits the first time we see an instruction!"); |
| Offsets.S = &S; |
| Offsets.Splits.push_back(P.endOffset() - S.beginOffset()); |
| } |
| |
| // Now scan the already split slices, and add a split for any of them which |
| // we're going to pre-split. |
| for (Slice *S : P.splitSliceTails()) { |
| auto SplitOffsetsMapI = |
| SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser())); |
| if (SplitOffsetsMapI == SplitOffsetsMap.end()) |
| continue; |
| auto &Offsets = SplitOffsetsMapI->second; |
| |
| assert(Offsets.S == S && "Found a mismatched slice!"); |
| assert(!Offsets.Splits.empty() && |
| "Cannot have an empty set of splits on the second partition!"); |
| assert(Offsets.Splits.back() == |
| P.beginOffset() - Offsets.S->beginOffset() && |
| "Previous split does not end where this one begins!"); |
| |
| // Record each split. The last partition's end isn't needed as the size |
| // of the slice dictates that. |
| if (S->endOffset() > P.endOffset()) |
| Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset()); |
| } |
| } |
| |
| // We may have split loads where some of their stores are split stores. For |
| // such loads and stores, we can only pre-split them if their splits exactly |
| // match relative to their starting offset. We have to verify this prior to |
| // any rewriting. |
| Stores.erase( |
| llvm::remove_if(Stores, |
| [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) { |
| // Lookup the load we are storing in our map of split |
| // offsets. |
| auto *LI = cast<LoadInst>(SI->getValueOperand()); |
| // If it was completely unsplittable, then we're done, |
| // and this store can't be pre-split. |
| if (UnsplittableLoads.count(LI)) |
| return true; |
| |
| auto LoadOffsetsI = SplitOffsetsMap.find(LI); |
| if (LoadOffsetsI == SplitOffsetsMap.end()) |
| return false; // Unrelated loads are definitely safe. |
| auto &LoadOffsets = LoadOffsetsI->second; |
| |
| // Now lookup the store's offsets. |
| auto &StoreOffsets = SplitOffsetsMap[SI]; |
| |
| // If the relative offsets of each split in the load and |
| // store match exactly, then we can split them and we |
| // don't need to remove them here. |
| if (LoadOffsets.Splits == StoreOffsets.Splits) |
| return false; |
| |
| LLVM_DEBUG( |
| dbgs() |
| << " Mismatched splits for load and store:\n" |
| << " " << *LI << "\n" |
| << " " << *SI << "\n"); |
| |
| // We've found a store and load that we need to split |
| // with mismatched relative splits. Just give up on them |
| // and remove both instructions from our list of |
| // candidates. |
| UnsplittableLoads.insert(LI); |
| return true; |
| }), |
| Stores.end()); |
| // Now we have to go *back* through all the stores, because a later store may |
| // have caused an earlier store's load to become unsplittable and if it is |
| // unsplittable for the later store, then we can't rely on it being split in |
| // the earlier store either. |
| Stores.erase(llvm::remove_if(Stores, |
| [&UnsplittableLoads](StoreInst *SI) { |
| auto *LI = |
| cast<LoadInst>(SI->getValueOperand()); |
| return UnsplittableLoads.count(LI); |
| }), |
| Stores.end()); |
| // Once we've established all the loads that can't be split for some reason, |
| // filter any that made it into our list out. |
| Loads.erase(llvm::remove_if(Loads, |
| [&UnsplittableLoads](LoadInst *LI) { |
| return UnsplittableLoads.count(LI); |
| }), |
| Loads.end()); |
| |
| // If no loads or stores are left, there is no pre-splitting to be done for |
| // this alloca. |
| if (Loads.empty() && Stores.empty()) |
| return false; |
| |
| // From here on, we can't fail and will be building new accesses, so rig up |
| // an IR builder. |
| IRBuilderTy IRB(&AI); |
| |
| // Collect the new slices which we will merge into the alloca slices. |
| SmallVector<Slice, 4> NewSlices; |
| |
| // Track any allocas we end up splitting loads and stores for so we iterate |
| // on them. |
| SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas; |
| |
| // At this point, we have collected all of the loads and stores we can |
| // pre-split, and the specific splits needed for them. We actually do the |
| // splitting in a specific order in order to handle when one of the loads in |
| // the value operand to one of the stores. |
| // |
| // First, we rewrite all of the split loads, and just accumulate each split |
| // load in a parallel structure. We also build the slices for them and append |
| // them to the alloca slices. |
| SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap; |
| std::vector<LoadInst *> SplitLoads; |
| const DataLayout &DL = AI.getModule()->getDataLayout(); |
| for (LoadInst *LI : Loads) { |
| SplitLoads.clear(); |
| |
| IntegerType *Ty = cast<IntegerType>(LI->getType()); |
| uint64_t LoadSize = Ty->getBitWidth() / 8; |
| assert(LoadSize > 0 && "Cannot have a zero-sized integer load!"); |
| |
| auto &Offsets = SplitOffsetsMap[LI]; |
| assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && |
| "Slice size should always match load size exactly!"); |
| uint64_t BaseOffset = Offsets.S->beginOffset(); |
| assert(BaseOffset + LoadSize > BaseOffset && |
| "Cannot represent alloca access size using 64-bit integers!"); |
| |
| Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand()); |
| IRB.SetInsertPoint(LI); |
| |
| LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n"); |
| |
| uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); |
| int Idx = 0, Size = Offsets.Splits.size(); |
| for (;;) { |
| auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); |
| auto AS = LI->getPointerAddressSpace(); |
| auto *PartPtrTy = PartTy->getPointerTo(AS); |
| LoadInst *PLoad = IRB.CreateAlignedLoad( |
| PartTy, |
| getAdjustedPtr(IRB, DL, BasePtr, |
| APInt(DL.getIndexSizeInBits(AS), PartOffset), |
| PartPtrTy, BasePtr->getName() + "."), |
| getAdjustedAlignment(LI, PartOffset, DL).value(), |
| /*IsVolatile*/ false, LI->getName()); |
| PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, |
| LLVMContext::MD_access_group}); |
| |
| // Append this load onto the list of split loads so we can find it later |
| // to rewrite the stores. |
| SplitLoads.push_back(PLoad); |
| |
| // Now build a new slice for the alloca. |
| NewSlices.push_back( |
| Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, |
| &PLoad->getOperandUse(PLoad->getPointerOperandIndex()), |
| /*IsSplittable*/ false)); |
| LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() |
| << ", " << NewSlices.back().endOffset() |
| << "): " << *PLoad << "\n"); |
| |
| // See if we've handled all the splits. |
| if (Idx >= Size) |
| break; |
| |
| // Setup the next partition. |
| PartOffset = Offsets.Splits[Idx]; |
| ++Idx; |
| PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset; |
| } |
| |
| // Now that we have the split loads, do the slow walk over all uses of the |
| // load and rewrite them as split stores, or save the split loads to use |
| // below if the store is going to be split there anyways. |
| bool DeferredStores = false; |
| for (User *LU : LI->users()) { |
| StoreInst *SI = cast<StoreInst>(LU); |
| if (!Stores.empty() && SplitOffsetsMap.count(SI)) { |
| DeferredStores = true; |
| LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI |
| << "\n"); |
| continue; |
| } |
| |
| Value *StoreBasePtr = SI->getPointerOperand(); |
| IRB.SetInsertPoint(SI); |
| |
| LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n"); |
| |
| for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) { |
| LoadInst *PLoad = SplitLoads[Idx]; |
| uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1]; |
| auto *PartPtrTy = |
| PLoad->getType()->getPointerTo(SI->getPointerAddressSpace()); |
| |
| auto AS = SI->getPointerAddressSpace(); |
| StoreInst *PStore = IRB.CreateAlignedStore( |
| PLoad, |
| getAdjustedPtr(IRB, DL, StoreBasePtr, |
| APInt(DL.getIndexSizeInBits(AS), PartOffset), |
| PartPtrTy, StoreBasePtr->getName() + "."), |
| getAdjustedAlignment(SI, PartOffset, DL).value(), |
| /*IsVolatile*/ false); |
| PStore->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, |
| LLVMContext::MD_access_group}); |
| LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n"); |
| } |
| |
| // We want to immediately iterate on any allocas impacted by splitting |
| // this store, and we have to track any promotable alloca (indicated by |
| // a direct store) as needing to be resplit because it is no longer |
| // promotable. |
| if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) { |
| ResplitPromotableAllocas.insert(OtherAI); |
| Worklist.insert(OtherAI); |
| } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( |
| StoreBasePtr->stripInBoundsOffsets())) { |
| Worklist.insert(OtherAI); |
| } |
| |
| // Mark the original store as dead. |
| DeadInsts.insert(SI); |
| } |
| |
| // Save the split loads if there are deferred stores among the users. |
| if (DeferredStores) |
| SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads))); |
| |
| // Mark the original load as dead and kill the original slice. |
| DeadInsts.insert(LI); |
| Offsets.S->kill(); |
| } |
| |
| // Second, we rewrite all of the split stores. At this point, we know that |
| // all loads from this alloca have been split already. For stores of such |
| // loads, we can simply look up the pre-existing split loads. For stores of |
| // other loads, we split those loads first and then write split stores of |
| // them. |
| for (StoreInst *SI : Stores) { |
| auto *LI = cast<LoadInst>(SI->getValueOperand()); |
| IntegerType *Ty = cast<IntegerType>(LI->getType()); |
| uint64_t StoreSize = Ty->getBitWidth() / 8; |
| assert(StoreSize > 0 && "Cannot have a zero-sized integer store!"); |
| |
| auto &Offsets = SplitOffsetsMap[SI]; |
| assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && |
| "Slice size should always match load size exactly!"); |
| uint64_t BaseOffset = Offsets.S->beginOffset(); |
| assert(BaseOffset + StoreSize > BaseOffset && |
| "Cannot represent alloca access size using 64-bit integers!"); |
| |
| Value *LoadBasePtr = LI->getPointerOperand(); |
| Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand()); |
| |
| LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n"); |
| |
| // Check whether we have an already split load. |
| auto SplitLoadsMapI = SplitLoadsMap.find(LI); |
| std::vector<LoadInst *> *SplitLoads = nullptr; |
| if (SplitLoadsMapI != SplitLoadsMap.end()) { |
| SplitLoads = &SplitLoadsMapI->second; |
| assert(SplitLoads->size() == Offsets.Splits.size() + 1 && |
| "Too few split loads for the number of splits in the store!"); |
| } else { |
| LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n"); |
| } |
| |
| uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); |
| int Idx = 0, Size = Offsets.Splits.size(); |
| for (;;) { |
| auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); |
| auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace()); |
| auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace()); |
| |
| // Either lookup a split load or create one. |
| LoadInst *PLoad; |
| if (SplitLoads) { |
| PLoad = (*SplitLoads)[Idx]; |
| } else { |
| IRB.SetInsertPoint(LI); |
| auto AS = LI->getPointerAddressSpace(); |
| PLoad = IRB.CreateAlignedLoad( |
| PartTy, |
| getAdjustedPtr(IRB, DL, LoadBasePtr, |
| APInt(DL.getIndexSizeInBits(AS), PartOffset), |
| LoadPartPtrTy, LoadBasePtr->getName() + "."), |
| getAdjustedAlignment(LI, PartOffset, DL).value(), |
| /*IsVolatile*/ false, LI->getName()); |
| } |
| |
| // And store this partition. |
| IRB.SetInsertPoint(SI); |
| auto AS = SI->getPointerAddressSpace(); |
| StoreInst *PStore = IRB.CreateAlignedStore( |
| PLoad, |
| getAdjustedPtr(IRB, DL, StoreBasePtr, |
| APInt(DL.getIndexSizeInBits(AS), PartOffset), |
| StorePartPtrTy, StoreBasePtr->getName() + "."), |
| getAdjustedAlignment(SI, PartOffset, DL).value(), |
| /*IsVolatile*/ false); |
| |
| // Now build a new slice for the alloca. |
| NewSlices.push_back( |
| Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, |
| &PStore->getOperandUse(PStore->getPointerOperandIndex()), |
| /*IsSplittable*/ false)); |
| LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() |
| << ", " << NewSlices.back().endOffset() |
| << "): " << *PStore << "\n"); |
| if (!SplitLoads) { |
| LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n"); |
| } |
| |
| // See if we've finished all the splits. |
| if (Idx >= Size) |
| break; |
| |
| // Setup the next partition. |
| PartOffset = Offsets.Splits[Idx]; |
| ++Idx; |
| PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset; |
| } |
| |
| // We want to immediately iterate on any allocas impacted by splitting |
| // this load, which is only relevant if it isn't a load of this alloca and |
| // thus we didn't already split the loads above. We also have to keep track |
| // of any promotable allocas we split loads on as they can no longer be |
| // promoted. |
| if (!SplitLoads) { |
| if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) { |
| assert(OtherAI != &AI && "We can't re-split our own alloca!"); |
| ResplitPromotableAllocas.insert(OtherAI); |
| Worklist.insert(OtherAI); |
| } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( |
| LoadBasePtr->stripInBoundsOffsets())) { |
| assert(OtherAI != &AI && "We can't re-split our own alloca!"); |
| Worklist.insert(OtherAI); |
| } |
| } |
| |
| // Mark the original store as dead now that we've split it up and kill its |
| // slice. Note that we leave the original load in place unless this store |
| // was its only use. It may in turn be split up if it is an alloca load |
| // for some other alloca, but it may be a normal load. This may introduce |
| // redundant loads, but where those can be merged the rest of the optimizer |
| // should handle the merging, and this uncovers SSA splits which is more |
| // important. In practice, the original loads will almost always be fully |
| // split and removed eventually, and the splits will be merged by any |
| // trivial CSE, including instcombine. |
| if (LI->hasOneUse()) { |
| assert(*LI->user_begin() == SI && "Single use isn't this store!"); |
| DeadInsts.insert(LI); |
| } |
| DeadInsts.insert(SI); |
| Offsets.S->kill(); |
| } |
| |
| // Remove the killed slices that have ben pre-split. |
| AS.erase(llvm::remove_if(AS, [](const Slice &S) { return S.isDead(); }), |
| AS.end()); |
| |
| // Insert our new slices. This will sort and merge them into the sorted |
| // sequence. |
| AS.insert(NewSlices); |
| |
| LLVM_DEBUG(dbgs() << " Pre-split slices:\n"); |
| #ifndef NDEBUG |
| for (auto I = AS.begin(), E = AS.end(); I != E; ++I) |
| LLVM_DEBUG(AS.print(dbgs(), I, " ")); |
| #endif |
| |
| // Finally, don't try to promote any allocas that new require re-splitting. |
| // They have already been added to the worklist above. |
| PromotableAllocas.erase( |
| llvm::remove_if( |
| PromotableAllocas, |
| [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }), |
| PromotableAllocas.end()); |
| |
| return true; |
| } |
| |
| /// Rewrite an alloca partition's users. |
| /// |
| /// This routine drives both of the rewriting goals of the SROA pass. It tries |
| /// to rewrite uses of an alloca partition to be conducive for SSA value |
| /// promotion. If the partition needs a new, more refined alloca, this will |
| /// build that new alloca, preserving as much type information as possible, and |
| /// rewrite the uses of the old alloca to point at the new one and have the |
| /// appropriate new offsets. It also evaluates how successful the rewrite was |
| /// at enabling promotion and if it was successful queues the alloca to be |
| /// promoted. |
| AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS, |
| Partition &P) { |
| // Try to compute a friendly type for this partition of the alloca. This |
| // won't always succeed, in which case we fall back to a legal integer type |
| // or an i8 array of an appropriate size. |
| Type *SliceTy = nullptr; |
| const DataLayout &DL = AI.getModule()->getDataLayout(); |
| if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset())) |
| if (DL.getTypeAllocSize(CommonUseTy) >= P.size()) |
| SliceTy = CommonUseTy; |
| if (!SliceTy) |
| if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(), |
| P.beginOffset(), P.size())) |
| SliceTy = TypePartitionTy; |
| if ((!SliceTy || (SliceTy->isArrayTy() && |
| SliceTy->getArrayElementType()->isIntegerTy())) && |
| DL.isLegalInteger(P.size() * 8)) |
| SliceTy = Type::getIntNTy(*C, P.size() * 8); |
| if (!SliceTy) |
| SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size()); |
| assert(DL.getTypeAllocSize(SliceTy) >= P.size()); |
| |
| bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL); |
| |
| VectorType *VecTy = |
| IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL); |
| if (VecTy) |
| SliceTy = VecTy; |
| |
| // Check for the case where we're going to rewrite to a new alloca of the |
| // exact same type as the original, and with the same access offsets. In that |
| // case, re-use the existing alloca, but still run through the rewriter to |
| // perform phi and select speculation. |
| // P.beginOffset() can be non-zero even with the same type in a case with |
| // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll). |
| AllocaInst *NewAI; |
| if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) { |
| NewAI = &AI; |
| // FIXME: We should be able to bail at this point with "nothing changed". |
| // FIXME: We might want to defer PHI speculation until after here. |
| // FIXME: return nullptr; |
| } else { |
| // If alignment is unspecified we fallback on the one required by the ABI |
| // for this type. We also make sure the alignment is compatible with |
| // P.beginOffset(). |
| const Align Alignment = commonAlignment( |
| DL.getValueOrABITypeAlignment(MaybeAlign(AI.getAlignment()), |
| AI.getAllocatedType()), |
| P.beginOffset()); |
| // If we will get at least this much alignment from the type alone, leave |
| // the alloca's alignment unconstrained. |
| const bool IsUnconstrained = Alignment <= DL.getABITypeAlignment(SliceTy); |
| NewAI = new AllocaInst( |
| SliceTy, AI.getType()->getAddressSpace(), nullptr, |
| IsUnconstrained ? MaybeAlign() : Alignment, |
| AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI); |
| // Copy the old AI debug location over to the new one. |
| NewAI->setDebugLoc(AI.getDebugLoc()); |
| ++NumNewAllocas; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Rewriting alloca partition " |
| << "[" << P.beginOffset() << "," << P.endOffset() |
| << ") to: " << *NewAI << "\n"); |
| |
| // Track the high watermark on the worklist as it is only relevant for |
| // promoted allocas. We will reset it to this point if the alloca is not in |
| // fact scheduled for promotion. |
| unsigned PPWOldSize = PostPromotionWorklist.size(); |
| unsigned NumUses = 0; |
| SmallSetVector<PHINode *, 8> PHIUsers; |
| SmallSetVector<SelectInst *, 8> SelectUsers; |
| |
| AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(), |
| P.endOffset(), IsIntegerPromotable, VecTy, |
| PHIUsers, SelectUsers); |
| bool Promotable = true; |
| for (Slice *S : P.splitSliceTails()) { |
| Promotable &= Rewriter.visit(S); |
| ++NumUses; |
| } |
| for (Slice &S : P) { |
| Promotable &= Rewriter.visit(&S); |
| ++NumUses; |
| } |
| |
| NumAllocaPartitionUses += NumUses; |
| MaxUsesPerAllocaPartition.updateMax(NumUses); |
| |
| // Now that we've processed all the slices in the new partition, check if any |
| // PHIs or Selects would block promotion. |
| for (PHINode *PHI : PHIUsers) |
| if (!isSafePHIToSpeculate(*PHI)) { |
| Promotable = false; |
| PHIUsers.clear(); |
| SelectUsers.clear(); |
| break; |
| } |
| |
| for (SelectInst *Sel : SelectUsers) |
| if (!isSafeSelectToSpeculate(*Sel)) { |
| Promotable = false; |
| PHIUsers.clear(); |
| SelectUsers.clear(); |
| break; |
| } |
| |
| if (Promotable) { |
| if (PHIUsers.empty() && SelectUsers.empty()) { |
| // Promote the alloca. |
| PromotableAllocas.push_back(NewAI); |
| } else { |
| // If we have either PHIs or Selects to speculate, add them to those |
| // worklists and re-queue the new alloca so that we promote in on the |
| // next iteration. |
| for (PHINode *PHIUser : PHIUsers) |
| SpeculatablePHIs.insert(PHIUser); |
| for (SelectInst *SelectUser : SelectUsers) |
| SpeculatableSelects.insert(SelectUser); |
| Worklist.insert(NewAI); |
| } |
| } else { |
| // Drop any post-promotion work items if promotion didn't happen. |
| while (PostPromotionWorklist.size() > PPWOldSize) |
| PostPromotionWorklist.pop_back(); |
| |
| // We couldn't promote and we didn't create a new partition, nothing |
| // happened. |
| if (NewAI == &AI) |
| return nullptr; |
| |
| // If we can't promote the alloca, iterate on it to check for new |
| // refinements exposed by splitting the current alloca. Don't iterate on an |
| // alloca which didn't actually change and didn't get promoted. |
| Worklist.insert(NewAI); |
| } |
| |
| return NewAI; |
| } |
| |
| /// Walks the slices of an alloca and form partitions based on them, |
| /// rewriting each of their uses. |
| bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) { |
| if (AS.begin() == AS.end()) |
| return false; |
| |
| unsigned NumPartitions = 0; |
| bool Changed = false; |
| const DataLayout &DL = AI.getModule()->getDataLayout(); |
| |
| // First try to pre-split loads and stores. |
| Changed |= presplitLoadsAndStores(AI, AS); |
| |
| // Now that we have identified any pre-splitting opportunities, |
| // mark loads and stores unsplittable except for the following case. |
| // We leave a slice splittable if all other slices are disjoint or fully |
| // included in the slice, such as whole-alloca loads and stores. |
| // If we fail to split these during pre-splitting, we want to force them |
| // to be rewritten into a partition. |
| bool IsSorted = true; |
| |
| uint64_t AllocaSize = DL.getTypeAllocSize(AI.getAllocatedType()); |
| const uint64_t MaxBitVectorSize = 1024; |
| if (AllocaSize <= MaxBitVectorSize) { |
| // If a byte boundary is included in any load or store, a slice starting or |
| // ending at the boundary is not splittable. |
| SmallBitVector SplittableOffset(AllocaSize + 1, true); |
| for (Slice &S : AS) |
| for (unsigned O = S.beginOffset() + 1; |
| O < S.endOffset() && O < AllocaSize; O++) |
| SplittableOffset.reset(O); |
| |
| for (Slice &S : AS) { |
| if (!S.isSplittable()) |
| continue; |
| |
| if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) && |
| (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()])) |
| continue; |
| |
| if (isa<LoadInst>(S.getUse()->getUser()) || |
| isa<StoreInst>(S.getUse()->getUser())) { |
| S.makeUnsplittable(); |
| IsSorted = false; |
| } |
| } |
| } |
| else { |
| // We only allow whole-alloca splittable loads and stores |
| // for a large alloca to avoid creating too large BitVector. |
| for (Slice &S : AS) { |
| if (!S.isSplittable()) |
| continue; |
| |
| if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize) |
| continue; |
| |
| if (isa<LoadInst>(S.getUse()->getUser()) || |
| isa<StoreInst>(S.getUse()->getUser())) { |
| S.makeUnsplittable(); |
| IsSorted = false; |
| } |
| } |
| } |
| |
| if (!IsSorted) |
| llvm::sort(AS); |
| |
| /// Describes the allocas introduced by rewritePartition in order to migrate |
| /// the debug info. |
| struct Fragment { |
| AllocaInst *Alloca; |
| uint64_t Offset; |
| uint64_t Size; |
| Fragment(AllocaInst *AI, uint64_t O, uint64_t S) |
| : Alloca(AI), Offset(O), Size(S) {} |
| }; |
| SmallVector<Fragment, 4> Fragments; |
| |
| // Rewrite each partition. |
| for (auto &P : AS.partitions()) { |
| if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) { |
| Changed = true; |
| if (NewAI != &AI) { |
| uint64_t SizeOfByte = 8; |
| uint64_t AllocaSize = DL.getTypeSizeInBits(NewAI->getAllocatedType()); |
| // Don't include any padding. |
| uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte); |
| Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size)); |
| } |
| } |
| ++NumPartitions; |
| } |
| |
| NumAllocaPartitions += NumPartitions; |
| MaxPartitionsPerAlloca.updateMax(NumPartitions); |
| |
| // Migrate debug information from the old alloca to the new alloca(s) |
| // and the individual partitions. |
| TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI); |
| if (!DbgDeclares.empty()) { |
| auto *Var = DbgDeclares.front()->getVariable(); |
| auto *Expr = DbgDeclares.front()->getExpression(); |
| auto VarSize = Var->getSizeInBits(); |
| DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false); |
| uint64_t AllocaSize = DL.getTypeSizeInBits(AI.getAllocatedType()); |
| for (auto Fragment : Fragments) { |
| // Create a fragment expression describing the new partition or reuse AI's |
| // expression if there is only one partition. |
| auto *FragmentExpr = Expr; |
| if (Fragment.Size < AllocaSize || Expr->isFragment()) { |
| // If this alloca is already a scalar replacement of a larger aggregate, |
| // Fragment.Offset describes the offset inside the scalar. |
| auto ExprFragment = Expr->getFragmentInfo(); |
| uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0; |
| uint64_t Start = Offset + Fragment.Offset; |
| uint64_t Size = Fragment.Size; |
| if (ExprFragment) { |
| uint64_t AbsEnd = |
| ExprFragment->OffsetInBits + ExprFragment->SizeInBits; |
| if (Start >= AbsEnd) |
| // No need to describe a SROAed padding. |
| continue; |
| Size = std::min(Size, AbsEnd - Start); |
| } |
| // The new, smaller fragment is stenciled out from the old fragment. |
| if (auto OrigFragment = FragmentExpr->getFragmentInfo()) { |
| assert(Start >= OrigFragment->OffsetInBits && |
| "new fragment is outside of original fragment"); |
| Start -= OrigFragment->OffsetInBits; |
| } |
| |
| // The alloca may be larger than the variable. |
| if (VarSize) { |
| if (Size > *VarSize) |
| Size = *VarSize; |
| if (Size == 0 || Start + Size > *VarSize) |
| continue; |
| } |
| |
| // Avoid creating a fragment expression that covers the entire variable. |
| if (!VarSize || *VarSize != Size) { |
| if (auto E = |
| DIExpression::createFragmentExpression(Expr, Start, Size)) |
| FragmentExpr = *E; |
| else |
| continue; |
| } |
| } |
| |
| // Remove any existing intrinsics describing the same alloca. |
| for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) |
| OldDII->eraseFromParent(); |
| |
| DIB.insertDeclare(Fragment.Alloca, Var, FragmentExpr, |
| DbgDeclares.front()->getDebugLoc(), &AI); |
| } |
| } |
| return Changed; |
| } |
| |
| /// Clobber a use with undef, deleting the used value if it becomes dead. |
| void SROA::clobberUse(Use &U) { |
| Value *OldV = U; |
| // Replace the use with an undef value. |
| U = UndefValue::get(OldV->getType()); |
| |
| // Check for this making an instruction dead. We have to garbage collect |
| // all the dead instructions to ensure the uses of any alloca end up being |
| // minimal. |
| if (Instruction *OldI = dyn_cast<Instruction>(OldV)) |
| if (isInstructionTriviallyDead(OldI)) { |
| DeadInsts.insert(OldI); |
| } |
| } |
| |
| /// Analyze an alloca for SROA. |
| /// |
| /// This analyzes the alloca to ensure we can reason about it, builds |
| /// the slices of the alloca, and then hands it off to be split and |
| /// rewritten as needed. |
| bool SROA::runOnAlloca(AllocaInst &AI) { |
| LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); |
| ++NumAllocasAnalyzed; |
| |
| // Special case dead allocas, as they're trivial. |
| if (AI.use_empty()) { |
| AI.eraseFromParent(); |
| return true; |
| } |
| const DataLayout &DL = AI.getModule()->getDataLayout(); |
| |
| // Skip alloca forms that this analysis can't handle. |
| if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() || |
| DL.getTypeAllocSize(AI.getAllocatedType()) == 0) |
| return false; |
| |
| bool Changed = false; |
| |
| // First, split any FCA loads and stores touching this alloca to promote |
| // better splitting and promotion opportunities. |
| AggLoadStoreRewriter AggRewriter(DL); |
| Changed |= AggRewriter.rewrite(AI); |
| |
| // Build the slices using a recursive instruction-visiting builder. |
| AllocaSlices AS(DL, AI); |
| LLVM_DEBUG(AS.print(dbgs())); |
| if (AS.isEscaped()) |
| return Changed; |
| |
| // Delete all the dead users of this alloca before splitting and rewriting it. |
| for (Instruction *DeadUser : AS.getDeadUsers()) { |
| // Free up everything used by this instruction. |
| for (Use &DeadOp : DeadUser->operands()) |
| clobberUse(DeadOp); |
| |
| // Now replace the uses of this instruction. |
| DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType())); |
| |
| // And mark it for deletion. |
| DeadInsts.insert(DeadUser); |
| Changed = true; |
| } |
| for (Use *DeadOp : AS.getDeadOperands()) { |
| clobberUse(*DeadOp); |
| Changed = true; |
| } |
| |
| // No slices to split. Leave the dead alloca for a later pass to clean up. |
| if (AS.begin() == AS.end()) |
| return Changed; |
| |
| Changed |= splitAlloca(AI, AS); |
| |
| LLVM_DEBUG(dbgs() << " Speculating PHIs\n"); |
| while (!SpeculatablePHIs.empty()) |
| speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val()); |
| |
| LLVM_DEBUG(dbgs() << " Speculating Selects\n"); |
| while (!SpeculatableSelects.empty()) |
| speculateSelectInstLoads(*SpeculatableSelects.pop_back_val()); |
| |
| return Changed; |
| } |
| |
| /// Delete the dead instructions accumulated in this run. |
| /// |
| /// Recursively deletes the dead instructions we've accumulated. This is done |
| /// at the very end to maximize locality of the recursive delete and to |
| /// minimize the problems of invalidated instruction pointers as such pointers |
| /// are used heavily in the intermediate stages of the algorithm. |
| /// |
| /// We also record the alloca instructions deleted here so that they aren't |
| /// subsequently handed to mem2reg to promote. |
| bool SROA::deleteDeadInstructions( |
| SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) { |
| bool Changed = false; |
| while (!DeadInsts.empty()) { |
| Instruction *I = DeadInsts.pop_back_val(); |
| LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); |
| |
| // If the instruction is an alloca, find the possible dbg.declare connected |
| // to it, and remove it too. We must do this before calling RAUW or we will |
| // not be able to find it. |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { |
| DeletedAllocas.insert(AI); |
| for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI)) |
| OldDII->eraseFromParent(); |
| } |
| |
| I->replaceAllUsesWith(UndefValue::get(I->getType())); |
| |
| for (Use &Operand : I->operands()) |
| if (Instruction *U = dyn_cast<Instruction>(Operand)) { |
| // Zero out the operand and see if it becomes trivially dead. |
| Operand = nullptr; |
| if (isInstructionTriviallyDead(U)) |
| DeadInsts.insert(U); |
| } |
| |
| ++NumDeleted; |
| I->eraseFromParent(); |
| Changed = true; |
| } |
| return Changed; |
| } |
| |
| /// Promote the allocas, using the best available technique. |
| /// |
| /// This attempts to promote whatever allocas have been identified as viable in |
| /// the PromotableAllocas list. If that list is empty, there is nothing to do. |
| /// This function returns whether any promotion occurred. |
| bool SROA::promoteAllocas(Function &F) { |
| if (PromotableAllocas.empty()) |
| return false; |
| |
| NumPromoted += PromotableAllocas.size(); |
| |
| LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); |
| PromoteMemToReg(PromotableAllocas, *DT, AC); |
| PromotableAllocas.clear(); |
| return true; |
| } |
| |
| PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT, |
| AssumptionCache &RunAC) { |
| LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); |
| C = &F.getContext(); |
| DT = &RunDT; |
| AC = &RunAC; |
| |
| BasicBlock &EntryBB = F.getEntryBlock(); |
| for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end()); |
| I != E; ++I) { |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) |
| Worklist.insert(AI); |
| } |
| |
| bool Changed = false; |
| // A set of deleted alloca instruction pointers which should be removed from |
| // the list of promotable allocas. |
| SmallPtrSet<AllocaInst *, 4> DeletedAllocas; |
| |
| do { |
| while (!Worklist.empty()) { |
| Changed |= runOnAlloca(*Worklist.pop_back_val()); |
| Changed |= deleteDeadInstructions(DeletedAllocas); |
| |
| // Remove the deleted allocas from various lists so that we don't try to |
| // continue processing them. |
| if (!DeletedAllocas.empty()) { |
| auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); }; |
| Worklist.remove_if(IsInSet); |
| PostPromotionWorklist.remove_if(IsInSet); |
| PromotableAllocas.erase(llvm::remove_if(PromotableAllocas, IsInSet), |
| PromotableAllocas.end()); |
| DeletedAllocas.clear(); |
| } |
| } |
| |
| Changed |= promoteAllocas(F); |
| |
| Worklist = PostPromotionWorklist; |
| PostPromotionWorklist.clear(); |
| } while (!Worklist.empty()); |
| |
| if (!Changed) |
| return PreservedAnalyses::all(); |
| |
| PreservedAnalyses PA; |
| PA.preserveSet<CFGAnalyses>(); |
| PA.preserve<GlobalsAA>(); |
| return PA; |
| } |
| |
| PreservedAnalyses SROA::run(Function &F, FunctionAnalysisManager &AM) { |
| return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F), |
| AM.getResult<AssumptionAnalysis>(F)); |
| } |
| |
| /// A legacy pass for the legacy pass manager that wraps the \c SROA pass. |
| /// |
| /// This is in the llvm namespace purely to allow it to be a friend of the \c |
| /// SROA pass. |
| class llvm::sroa::SROALegacyPass : public FunctionPass { |
| /// The SROA implementation. |
| SROA Impl; |
| |
| public: |
| static char ID; |
| |
| SROALegacyPass() : FunctionPass(ID) { |
| initializeSROALegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override { |
| if (skipFunction(F)) |
| return false; |
| |
| auto PA = Impl.runImpl( |
| F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), |
| getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); |
| return !PA.areAllPreserved(); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| AU.setPreservesCFG(); |
| } |
| |
| StringRef getPassName() const override { return "SROA"; } |
| }; |
| |
| char SROALegacyPass::ID = 0; |
| |
| FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); } |
| |
| INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa", |
| "Scalar Replacement Of Aggregates", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates", |
| false, false) |