| //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Rewrite call/invoke instructions so as to make potential relocations |
| // performed by the garbage collector explicit in the IR. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/DomTreeUpdater.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Statepoint.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <set> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #define DEBUG_TYPE "rewrite-statepoints-for-gc" |
| |
| using namespace llvm; |
| |
| // Print the liveset found at the insert location |
| static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, |
| cl::init(false)); |
| static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, |
| cl::init(false)); |
| |
| // Print out the base pointers for debugging |
| static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, |
| cl::init(false)); |
| |
| // Cost threshold measuring when it is profitable to rematerialize value instead |
| // of relocating it |
| static cl::opt<unsigned> |
| RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, |
| cl::init(6)); |
| |
| #ifdef EXPENSIVE_CHECKS |
| static bool ClobberNonLive = true; |
| #else |
| static bool ClobberNonLive = false; |
| #endif |
| |
| static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", |
| cl::location(ClobberNonLive), |
| cl::Hidden); |
| |
| static cl::opt<bool> |
| AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", |
| cl::Hidden, cl::init(true)); |
| |
| /// The IR fed into RewriteStatepointsForGC may have had attributes and |
| /// metadata implying dereferenceability that are no longer valid/correct after |
| /// RewriteStatepointsForGC has run. This is because semantically, after |
| /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire |
| /// heap. stripNonValidData (conservatively) restores |
| /// correctness by erasing all attributes in the module that externally imply |
| /// dereferenceability. Similar reasoning also applies to the noalias |
| /// attributes and metadata. gc.statepoint can touch the entire heap including |
| /// noalias objects. |
| /// Apart from attributes and metadata, we also remove instructions that imply |
| /// constant physical memory: llvm.invariant.start. |
| static void stripNonValidData(Module &M); |
| |
| static bool shouldRewriteStatepointsIn(Function &F); |
| |
| PreservedAnalyses RewriteStatepointsForGC::run(Module &M, |
| ModuleAnalysisManager &AM) { |
| bool Changed = false; |
| auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); |
| for (Function &F : M) { |
| // Nothing to do for declarations. |
| if (F.isDeclaration() || F.empty()) |
| continue; |
| |
| // Policy choice says not to rewrite - the most common reason is that we're |
| // compiling code without a GCStrategy. |
| if (!shouldRewriteStatepointsIn(F)) |
| continue; |
| |
| auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); |
| auto &TTI = FAM.getResult<TargetIRAnalysis>(F); |
| auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); |
| Changed |= runOnFunction(F, DT, TTI, TLI); |
| } |
| if (!Changed) |
| return PreservedAnalyses::all(); |
| |
| // stripNonValidData asserts that shouldRewriteStatepointsIn |
| // returns true for at least one function in the module. Since at least |
| // one function changed, we know that the precondition is satisfied. |
| stripNonValidData(M); |
| |
| PreservedAnalyses PA; |
| PA.preserve<TargetIRAnalysis>(); |
| PA.preserve<TargetLibraryAnalysis>(); |
| return PA; |
| } |
| |
| namespace { |
| |
| class RewriteStatepointsForGCLegacyPass : public ModulePass { |
| RewriteStatepointsForGC Impl; |
| |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| |
| RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() { |
| initializeRewriteStatepointsForGCLegacyPassPass( |
| *PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnModule(Module &M) override { |
| bool Changed = false; |
| for (Function &F : M) { |
| // Nothing to do for declarations. |
| if (F.isDeclaration() || F.empty()) |
| continue; |
| |
| // Policy choice says not to rewrite - the most common reason is that |
| // we're compiling code without a GCStrategy. |
| if (!shouldRewriteStatepointsIn(F)) |
| continue; |
| |
| TargetTransformInfo &TTI = |
| getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| const TargetLibraryInfo &TLI = |
| getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); |
| |
| Changed |= Impl.runOnFunction(F, DT, TTI, TLI); |
| } |
| |
| if (!Changed) |
| return false; |
| |
| // stripNonValidData asserts that shouldRewriteStatepointsIn |
| // returns true for at least one function in the module. Since at least |
| // one function changed, we know that the precondition is satisfied. |
| stripNonValidData(M); |
| return true; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| // We add and rewrite a bunch of instructions, but don't really do much |
| // else. We could in theory preserve a lot more analyses here. |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char RewriteStatepointsForGCLegacyPass::ID = 0; |
| |
| ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() { |
| return new RewriteStatepointsForGCLegacyPass(); |
| } |
| |
| INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass, |
| "rewrite-statepoints-for-gc", |
| "Make relocations explicit at statepoints", false, false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass, |
| "rewrite-statepoints-for-gc", |
| "Make relocations explicit at statepoints", false, false) |
| |
| namespace { |
| |
| struct GCPtrLivenessData { |
| /// Values defined in this block. |
| MapVector<BasicBlock *, SetVector<Value *>> KillSet; |
| |
| /// Values used in this block (and thus live); does not included values |
| /// killed within this block. |
| MapVector<BasicBlock *, SetVector<Value *>> LiveSet; |
| |
| /// Values live into this basic block (i.e. used by any |
| /// instruction in this basic block or ones reachable from here) |
| MapVector<BasicBlock *, SetVector<Value *>> LiveIn; |
| |
| /// Values live out of this basic block (i.e. live into |
| /// any successor block) |
| MapVector<BasicBlock *, SetVector<Value *>> LiveOut; |
| }; |
| |
| // The type of the internal cache used inside the findBasePointers family |
| // of functions. From the callers perspective, this is an opaque type and |
| // should not be inspected. |
| // |
| // In the actual implementation this caches two relations: |
| // - The base relation itself (i.e. this pointer is based on that one) |
| // - The base defining value relation (i.e. before base_phi insertion) |
| // Generally, after the execution of a full findBasePointer call, only the |
| // base relation will remain. Internally, we add a mixture of the two |
| // types, then update all the second type to the first type |
| using DefiningValueMapTy = MapVector<Value *, Value *>; |
| using StatepointLiveSetTy = SetVector<Value *>; |
| using RematerializedValueMapTy = |
| MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; |
| |
| struct PartiallyConstructedSafepointRecord { |
| /// The set of values known to be live across this safepoint |
| StatepointLiveSetTy LiveSet; |
| |
| /// Mapping from live pointers to a base-defining-value |
| MapVector<Value *, Value *> PointerToBase; |
| |
| /// The *new* gc.statepoint instruction itself. This produces the token |
| /// that normal path gc.relocates and the gc.result are tied to. |
| Instruction *StatepointToken; |
| |
| /// Instruction to which exceptional gc relocates are attached |
| /// Makes it easier to iterate through them during relocationViaAlloca. |
| Instruction *UnwindToken; |
| |
| /// Record live values we are rematerialized instead of relocating. |
| /// They are not included into 'LiveSet' field. |
| /// Maps rematerialized copy to it's original value. |
| RematerializedValueMapTy RematerializedValues; |
| }; |
| |
| } // end anonymous namespace |
| |
| static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { |
| Optional<OperandBundleUse> DeoptBundle = |
| Call->getOperandBundle(LLVMContext::OB_deopt); |
| |
| if (!DeoptBundle.hasValue()) { |
| assert(AllowStatepointWithNoDeoptInfo && |
| "Found non-leaf call without deopt info!"); |
| return None; |
| } |
| |
| return DeoptBundle.getValue().Inputs; |
| } |
| |
| /// Compute the live-in set for every basic block in the function |
| static void computeLiveInValues(DominatorTree &DT, Function &F, |
| GCPtrLivenessData &Data); |
| |
| /// Given results from the dataflow liveness computation, find the set of live |
| /// Values at a particular instruction. |
| static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, |
| StatepointLiveSetTy &out); |
| |
| // TODO: Once we can get to the GCStrategy, this becomes |
| // Optional<bool> isGCManagedPointer(const Type *Ty) const override { |
| |
| static bool isGCPointerType(Type *T) { |
| if (auto *PT = dyn_cast<PointerType>(T)) |
| // For the sake of this example GC, we arbitrarily pick addrspace(1) as our |
| // GC managed heap. We know that a pointer into this heap needs to be |
| // updated and that no other pointer does. |
| return PT->getAddressSpace() == 1; |
| return false; |
| } |
| |
| // Return true if this type is one which a) is a gc pointer or contains a GC |
| // pointer and b) is of a type this code expects to encounter as a live value. |
| // (The insertion code will assert that a type which matches (a) and not (b) |
| // is not encountered.) |
| static bool isHandledGCPointerType(Type *T) { |
| // We fully support gc pointers |
| if (isGCPointerType(T)) |
| return true; |
| // We partially support vectors of gc pointers. The code will assert if it |
| // can't handle something. |
| if (auto VT = dyn_cast<VectorType>(T)) |
| if (isGCPointerType(VT->getElementType())) |
| return true; |
| return false; |
| } |
| |
| #ifndef NDEBUG |
| /// Returns true if this type contains a gc pointer whether we know how to |
| /// handle that type or not. |
| static bool containsGCPtrType(Type *Ty) { |
| if (isGCPointerType(Ty)) |
| return true; |
| if (VectorType *VT = dyn_cast<VectorType>(Ty)) |
| return isGCPointerType(VT->getScalarType()); |
| if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) |
| return containsGCPtrType(AT->getElementType()); |
| if (StructType *ST = dyn_cast<StructType>(Ty)) |
| return llvm::any_of(ST->elements(), containsGCPtrType); |
| return false; |
| } |
| |
| // Returns true if this is a type which a) is a gc pointer or contains a GC |
| // pointer and b) is of a type which the code doesn't expect (i.e. first class |
| // aggregates). Used to trip assertions. |
| static bool isUnhandledGCPointerType(Type *Ty) { |
| return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); |
| } |
| #endif |
| |
| // Return the name of the value suffixed with the provided value, or if the |
| // value didn't have a name, the default value specified. |
| static std::string suffixed_name_or(Value *V, StringRef Suffix, |
| StringRef DefaultName) { |
| return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); |
| } |
| |
| // Conservatively identifies any definitions which might be live at the |
| // given instruction. The analysis is performed immediately before the |
| // given instruction. Values defined by that instruction are not considered |
| // live. Values used by that instruction are considered live. |
| static void analyzeParsePointLiveness( |
| DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, |
| PartiallyConstructedSafepointRecord &Result) { |
| StatepointLiveSetTy LiveSet; |
| findLiveSetAtInst(Call, OriginalLivenessData, LiveSet); |
| |
| if (PrintLiveSet) { |
| dbgs() << "Live Variables:\n"; |
| for (Value *V : LiveSet) |
| dbgs() << " " << V->getName() << " " << *V << "\n"; |
| } |
| if (PrintLiveSetSize) { |
| dbgs() << "Safepoint For: " << Call->getCalledValue()->getName() << "\n"; |
| dbgs() << "Number live values: " << LiveSet.size() << "\n"; |
| } |
| Result.LiveSet = LiveSet; |
| } |
| |
| static bool isKnownBaseResult(Value *V); |
| |
| namespace { |
| |
| /// A single base defining value - An immediate base defining value for an |
| /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. |
| /// For instructions which have multiple pointer [vector] inputs or that |
| /// transition between vector and scalar types, there is no immediate base |
| /// defining value. The 'base defining value' for 'Def' is the transitive |
| /// closure of this relation stopping at the first instruction which has no |
| /// immediate base defining value. The b.d.v. might itself be a base pointer, |
| /// but it can also be an arbitrary derived pointer. |
| struct BaseDefiningValueResult { |
| /// Contains the value which is the base defining value. |
| Value * const BDV; |
| |
| /// True if the base defining value is also known to be an actual base |
| /// pointer. |
| const bool IsKnownBase; |
| |
| BaseDefiningValueResult(Value *BDV, bool IsKnownBase) |
| : BDV(BDV), IsKnownBase(IsKnownBase) { |
| #ifndef NDEBUG |
| // Check consistency between new and old means of checking whether a BDV is |
| // a base. |
| bool MustBeBase = isKnownBaseResult(BDV); |
| assert(!MustBeBase || MustBeBase == IsKnownBase); |
| #endif |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| static BaseDefiningValueResult findBaseDefiningValue(Value *I); |
| |
| /// Return a base defining value for the 'Index' element of the given vector |
| /// instruction 'I'. If Index is null, returns a BDV for the entire vector |
| /// 'I'. As an optimization, this method will try to determine when the |
| /// element is known to already be a base pointer. If this can be established, |
| /// the second value in the returned pair will be true. Note that either a |
| /// vector or a pointer typed value can be returned. For the former, the |
| /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. |
| /// If the later, the return pointer is a BDV (or possibly a base) for the |
| /// particular element in 'I'. |
| static BaseDefiningValueResult |
| findBaseDefiningValueOfVector(Value *I) { |
| // Each case parallels findBaseDefiningValue below, see that code for |
| // detailed motivation. |
| |
| if (isa<Argument>(I)) |
| // An incoming argument to the function is a base pointer |
| return BaseDefiningValueResult(I, true); |
| |
| if (isa<Constant>(I)) |
| // Base of constant vector consists only of constant null pointers. |
| // For reasoning see similar case inside 'findBaseDefiningValue' function. |
| return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), |
| true); |
| |
| if (isa<LoadInst>(I)) |
| return BaseDefiningValueResult(I, true); |
| |
| if (isa<InsertElementInst>(I)) |
| // We don't know whether this vector contains entirely base pointers or |
| // not. To be conservatively correct, we treat it as a BDV and will |
| // duplicate code as needed to construct a parallel vector of bases. |
| return BaseDefiningValueResult(I, false); |
| |
| if (isa<ShuffleVectorInst>(I)) |
| // We don't know whether this vector contains entirely base pointers or |
| // not. To be conservatively correct, we treat it as a BDV and will |
| // duplicate code as needed to construct a parallel vector of bases. |
| // TODO: There a number of local optimizations which could be applied here |
| // for particular sufflevector patterns. |
| return BaseDefiningValueResult(I, false); |
| |
| // The behavior of getelementptr instructions is the same for vector and |
| // non-vector data types. |
| if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) |
| return findBaseDefiningValue(GEP->getPointerOperand()); |
| |
| // If the pointer comes through a bitcast of a vector of pointers to |
| // a vector of another type of pointer, then look through the bitcast |
| if (auto *BC = dyn_cast<BitCastInst>(I)) |
| return findBaseDefiningValue(BC->getOperand(0)); |
| |
| // We assume that functions in the source language only return base |
| // pointers. This should probably be generalized via attributes to support |
| // both source language and internal functions. |
| if (isa<CallInst>(I) || isa<InvokeInst>(I)) |
| return BaseDefiningValueResult(I, true); |
| |
| // A PHI or Select is a base defining value. The outer findBasePointer |
| // algorithm is responsible for constructing a base value for this BDV. |
| assert((isa<SelectInst>(I) || isa<PHINode>(I)) && |
| "unknown vector instruction - no base found for vector element"); |
| return BaseDefiningValueResult(I, false); |
| } |
| |
| /// Helper function for findBasePointer - Will return a value which either a) |
| /// defines the base pointer for the input, b) blocks the simple search |
| /// (i.e. a PHI or Select of two derived pointers), or c) involves a change |
| /// from pointer to vector type or back. |
| static BaseDefiningValueResult findBaseDefiningValue(Value *I) { |
| assert(I->getType()->isPtrOrPtrVectorTy() && |
| "Illegal to ask for the base pointer of a non-pointer type"); |
| |
| if (I->getType()->isVectorTy()) |
| return findBaseDefiningValueOfVector(I); |
| |
| if (isa<Argument>(I)) |
| // An incoming argument to the function is a base pointer |
| // We should have never reached here if this argument isn't an gc value |
| return BaseDefiningValueResult(I, true); |
| |
| if (isa<Constant>(I)) { |
| // We assume that objects with a constant base (e.g. a global) can't move |
| // and don't need to be reported to the collector because they are always |
| // live. Besides global references, all kinds of constants (e.g. undef, |
| // constant expressions, null pointers) can be introduced by the inliner or |
| // the optimizer, especially on dynamically dead paths. |
| // Here we treat all of them as having single null base. By doing this we |
| // trying to avoid problems reporting various conflicts in a form of |
| // "phi (const1, const2)" or "phi (const, regular gc ptr)". |
| // See constant.ll file for relevant test cases. |
| |
| return BaseDefiningValueResult( |
| ConstantPointerNull::get(cast<PointerType>(I->getType())), true); |
| } |
| |
| if (CastInst *CI = dyn_cast<CastInst>(I)) { |
| Value *Def = CI->stripPointerCasts(); |
| // If stripping pointer casts changes the address space there is an |
| // addrspacecast in between. |
| assert(cast<PointerType>(Def->getType())->getAddressSpace() == |
| cast<PointerType>(CI->getType())->getAddressSpace() && |
| "unsupported addrspacecast"); |
| // If we find a cast instruction here, it means we've found a cast which is |
| // not simply a pointer cast (i.e. an inttoptr). We don't know how to |
| // handle int->ptr conversion. |
| assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); |
| return findBaseDefiningValue(Def); |
| } |
| |
| if (isa<LoadInst>(I)) |
| // The value loaded is an gc base itself |
| return BaseDefiningValueResult(I, true); |
| |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) |
| // The base of this GEP is the base |
| return findBaseDefiningValue(GEP->getPointerOperand()); |
| |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| switch (II->getIntrinsicID()) { |
| default: |
| // fall through to general call handling |
| break; |
| case Intrinsic::experimental_gc_statepoint: |
| llvm_unreachable("statepoints don't produce pointers"); |
| case Intrinsic::experimental_gc_relocate: |
| // Rerunning safepoint insertion after safepoints are already |
| // inserted is not supported. It could probably be made to work, |
| // but why are you doing this? There's no good reason. |
| llvm_unreachable("repeat safepoint insertion is not supported"); |
| case Intrinsic::gcroot: |
| // Currently, this mechanism hasn't been extended to work with gcroot. |
| // There's no reason it couldn't be, but I haven't thought about the |
| // implications much. |
| llvm_unreachable( |
| "interaction with the gcroot mechanism is not supported"); |
| } |
| } |
| // We assume that functions in the source language only return base |
| // pointers. This should probably be generalized via attributes to support |
| // both source language and internal functions. |
| if (isa<CallInst>(I) || isa<InvokeInst>(I)) |
| return BaseDefiningValueResult(I, true); |
| |
| // TODO: I have absolutely no idea how to implement this part yet. It's not |
| // necessarily hard, I just haven't really looked at it yet. |
| assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); |
| |
| if (isa<AtomicCmpXchgInst>(I)) |
| // A CAS is effectively a atomic store and load combined under a |
| // predicate. From the perspective of base pointers, we just treat it |
| // like a load. |
| return BaseDefiningValueResult(I, true); |
| |
| assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " |
| "binary ops which don't apply to pointers"); |
| |
| // The aggregate ops. Aggregates can either be in the heap or on the |
| // stack, but in either case, this is simply a field load. As a result, |
| // this is a defining definition of the base just like a load is. |
| if (isa<ExtractValueInst>(I)) |
| return BaseDefiningValueResult(I, true); |
| |
| // We should never see an insert vector since that would require we be |
| // tracing back a struct value not a pointer value. |
| assert(!isa<InsertValueInst>(I) && |
| "Base pointer for a struct is meaningless"); |
| |
| // An extractelement produces a base result exactly when it's input does. |
| // We may need to insert a parallel instruction to extract the appropriate |
| // element out of the base vector corresponding to the input. Given this, |
| // it's analogous to the phi and select case even though it's not a merge. |
| if (isa<ExtractElementInst>(I)) |
| // Note: There a lot of obvious peephole cases here. This are deliberately |
| // handled after the main base pointer inference algorithm to make writing |
| // test cases to exercise that code easier. |
| return BaseDefiningValueResult(I, false); |
| |
| // The last two cases here don't return a base pointer. Instead, they |
| // return a value which dynamically selects from among several base |
| // derived pointers (each with it's own base potentially). It's the job of |
| // the caller to resolve these. |
| assert((isa<SelectInst>(I) || isa<PHINode>(I)) && |
| "missing instruction case in findBaseDefiningValing"); |
| return BaseDefiningValueResult(I, false); |
| } |
| |
| /// Returns the base defining value for this value. |
| static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { |
| Value *&Cached = Cache[I]; |
| if (!Cached) { |
| Cached = findBaseDefiningValue(I).BDV; |
| LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " |
| << Cached->getName() << "\n"); |
| } |
| assert(Cache[I] != nullptr); |
| return Cached; |
| } |
| |
| /// Return a base pointer for this value if known. Otherwise, return it's |
| /// base defining value. |
| static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { |
| Value *Def = findBaseDefiningValueCached(I, Cache); |
| auto Found = Cache.find(Def); |
| if (Found != Cache.end()) { |
| // Either a base-of relation, or a self reference. Caller must check. |
| return Found->second; |
| } |
| // Only a BDV available |
| return Def; |
| } |
| |
| /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, |
| /// is it known to be a base pointer? Or do we need to continue searching. |
| static bool isKnownBaseResult(Value *V) { |
| if (!isa<PHINode>(V) && !isa<SelectInst>(V) && |
| !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && |
| !isa<ShuffleVectorInst>(V)) { |
| // no recursion possible |
| return true; |
| } |
| if (isa<Instruction>(V) && |
| cast<Instruction>(V)->getMetadata("is_base_value")) { |
| // This is a previously inserted base phi or select. We know |
| // that this is a base value. |
| return true; |
| } |
| |
| // We need to keep searching |
| return false; |
| } |
| |
| namespace { |
| |
| /// Models the state of a single base defining value in the findBasePointer |
| /// algorithm for determining where a new instruction is needed to propagate |
| /// the base of this BDV. |
| class BDVState { |
| public: |
| enum Status { Unknown, Base, Conflict }; |
| |
| BDVState() : BaseValue(nullptr) {} |
| |
| explicit BDVState(Status Status, Value *BaseValue = nullptr) |
| : Status(Status), BaseValue(BaseValue) { |
| assert(Status != Base || BaseValue); |
| } |
| |
| explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {} |
| |
| Status getStatus() const { return Status; } |
| Value *getBaseValue() const { return BaseValue; } |
| |
| bool isBase() const { return getStatus() == Base; } |
| bool isUnknown() const { return getStatus() == Unknown; } |
| bool isConflict() const { return getStatus() == Conflict; } |
| |
| bool operator==(const BDVState &Other) const { |
| return BaseValue == Other.BaseValue && Status == Other.Status; |
| } |
| |
| bool operator!=(const BDVState &other) const { return !(*this == other); } |
| |
| LLVM_DUMP_METHOD |
| void dump() const { |
| print(dbgs()); |
| dbgs() << '\n'; |
| } |
| |
| void print(raw_ostream &OS) const { |
| switch (getStatus()) { |
| case Unknown: |
| OS << "U"; |
| break; |
| case Base: |
| OS << "B"; |
| break; |
| case Conflict: |
| OS << "C"; |
| break; |
| } |
| OS << " (" << getBaseValue() << " - " |
| << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): "; |
| } |
| |
| private: |
| Status Status = Unknown; |
| AssertingVH<Value> BaseValue; // Non-null only if Status == Base. |
| }; |
| |
| } // end anonymous namespace |
| |
| #ifndef NDEBUG |
| static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { |
| State.print(OS); |
| return OS; |
| } |
| #endif |
| |
| static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { |
| switch (LHS.getStatus()) { |
| case BDVState::Unknown: |
| return RHS; |
| |
| case BDVState::Base: |
| assert(LHS.getBaseValue() && "can't be null"); |
| if (RHS.isUnknown()) |
| return LHS; |
| |
| if (RHS.isBase()) { |
| if (LHS.getBaseValue() == RHS.getBaseValue()) { |
| assert(LHS == RHS && "equality broken!"); |
| return LHS; |
| } |
| return BDVState(BDVState::Conflict); |
| } |
| assert(RHS.isConflict() && "only three states!"); |
| return BDVState(BDVState::Conflict); |
| |
| case BDVState::Conflict: |
| return LHS; |
| } |
| llvm_unreachable("only three states!"); |
| } |
| |
| // Values of type BDVState form a lattice, and this function implements the meet |
| // operation. |
| static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) { |
| BDVState Result = meetBDVStateImpl(LHS, RHS); |
| assert(Result == meetBDVStateImpl(RHS, LHS) && |
| "Math is wrong: meet does not commute!"); |
| return Result; |
| } |
| |
| /// For a given value or instruction, figure out what base ptr its derived from. |
| /// For gc objects, this is simply itself. On success, returns a value which is |
| /// the base pointer. (This is reliable and can be used for relocation.) On |
| /// failure, returns nullptr. |
| static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { |
| Value *Def = findBaseOrBDV(I, Cache); |
| |
| if (isKnownBaseResult(Def)) |
| return Def; |
| |
| // Here's the rough algorithm: |
| // - For every SSA value, construct a mapping to either an actual base |
| // pointer or a PHI which obscures the base pointer. |
| // - Construct a mapping from PHI to unknown TOP state. Use an |
| // optimistic algorithm to propagate base pointer information. Lattice |
| // looks like: |
| // UNKNOWN |
| // b1 b2 b3 b4 |
| // CONFLICT |
| // When algorithm terminates, all PHIs will either have a single concrete |
| // base or be in a conflict state. |
| // - For every conflict, insert a dummy PHI node without arguments. Add |
| // these to the base[Instruction] = BasePtr mapping. For every |
| // non-conflict, add the actual base. |
| // - For every conflict, add arguments for the base[a] of each input |
| // arguments. |
| // |
| // Note: A simpler form of this would be to add the conflict form of all |
| // PHIs without running the optimistic algorithm. This would be |
| // analogous to pessimistic data flow and would likely lead to an |
| // overall worse solution. |
| |
| #ifndef NDEBUG |
| auto isExpectedBDVType = [](Value *BDV) { |
| return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || |
| isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || |
| isa<ShuffleVectorInst>(BDV); |
| }; |
| #endif |
| |
| // Once populated, will contain a mapping from each potentially non-base BDV |
| // to a lattice value (described above) which corresponds to that BDV. |
| // We use the order of insertion (DFS over the def/use graph) to provide a |
| // stable deterministic ordering for visiting DenseMaps (which are unordered) |
| // below. This is important for deterministic compilation. |
| MapVector<Value *, BDVState> States; |
| |
| // Recursively fill in all base defining values reachable from the initial |
| // one for which we don't already know a definite base value for |
| /* scope */ { |
| SmallVector<Value*, 16> Worklist; |
| Worklist.push_back(Def); |
| States.insert({Def, BDVState()}); |
| while (!Worklist.empty()) { |
| Value *Current = Worklist.pop_back_val(); |
| assert(!isKnownBaseResult(Current) && "why did it get added?"); |
| |
| auto visitIncomingValue = [&](Value *InVal) { |
| Value *Base = findBaseOrBDV(InVal, Cache); |
| if (isKnownBaseResult(Base)) |
| // Known bases won't need new instructions introduced and can be |
| // ignored safely |
| return; |
| assert(isExpectedBDVType(Base) && "the only non-base values " |
| "we see should be base defining values"); |
| if (States.insert(std::make_pair(Base, BDVState())).second) |
| Worklist.push_back(Base); |
| }; |
| if (PHINode *PN = dyn_cast<PHINode>(Current)) { |
| for (Value *InVal : PN->incoming_values()) |
| visitIncomingValue(InVal); |
| } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { |
| visitIncomingValue(SI->getTrueValue()); |
| visitIncomingValue(SI->getFalseValue()); |
| } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { |
| visitIncomingValue(EE->getVectorOperand()); |
| } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { |
| visitIncomingValue(IE->getOperand(0)); // vector operand |
| visitIncomingValue(IE->getOperand(1)); // scalar operand |
| } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) { |
| visitIncomingValue(SV->getOperand(0)); |
| visitIncomingValue(SV->getOperand(1)); |
| } |
| else { |
| llvm_unreachable("Unimplemented instruction case"); |
| } |
| } |
| } |
| |
| #ifndef NDEBUG |
| LLVM_DEBUG(dbgs() << "States after initialization:\n"); |
| for (auto Pair : States) { |
| LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); |
| } |
| #endif |
| |
| // Return a phi state for a base defining value. We'll generate a new |
| // base state for known bases and expect to find a cached state otherwise. |
| auto getStateForBDV = [&](Value *baseValue) { |
| if (isKnownBaseResult(baseValue)) |
| return BDVState(baseValue); |
| auto I = States.find(baseValue); |
| assert(I != States.end() && "lookup failed!"); |
| return I->second; |
| }; |
| |
| bool Progress = true; |
| while (Progress) { |
| #ifndef NDEBUG |
| const size_t OldSize = States.size(); |
| #endif |
| Progress = false; |
| // We're only changing values in this loop, thus safe to keep iterators. |
| // Since this is computing a fixed point, the order of visit does not |
| // effect the result. TODO: We could use a worklist here and make this run |
| // much faster. |
| for (auto Pair : States) { |
| Value *BDV = Pair.first; |
| assert(!isKnownBaseResult(BDV) && "why did it get added?"); |
| |
| // Given an input value for the current instruction, return a BDVState |
| // instance which represents the BDV of that value. |
| auto getStateForInput = [&](Value *V) mutable { |
| Value *BDV = findBaseOrBDV(V, Cache); |
| return getStateForBDV(BDV); |
| }; |
| |
| BDVState NewState; |
| if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { |
| NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); |
| NewState = |
| meetBDVState(NewState, getStateForInput(SI->getFalseValue())); |
| } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { |
| for (Value *Val : PN->incoming_values()) |
| NewState = meetBDVState(NewState, getStateForInput(Val)); |
| } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { |
| // The 'meet' for an extractelement is slightly trivial, but it's still |
| // useful in that it drives us to conflict if our input is. |
| NewState = |
| meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); |
| } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){ |
| // Given there's a inherent type mismatch between the operands, will |
| // *always* produce Conflict. |
| NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); |
| NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); |
| } else { |
| // The only instance this does not return a Conflict is when both the |
| // vector operands are the same vector. |
| auto *SV = cast<ShuffleVectorInst>(BDV); |
| NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0))); |
| NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1))); |
| } |
| |
| BDVState OldState = States[BDV]; |
| if (OldState != NewState) { |
| Progress = true; |
| States[BDV] = NewState; |
| } |
| } |
| |
| assert(OldSize == States.size() && |
| "fixed point shouldn't be adding any new nodes to state"); |
| } |
| |
| #ifndef NDEBUG |
| LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); |
| for (auto Pair : States) { |
| LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); |
| } |
| #endif |
| |
| // Insert Phis for all conflicts |
| // TODO: adjust naming patterns to avoid this order of iteration dependency |
| for (auto Pair : States) { |
| Instruction *I = cast<Instruction>(Pair.first); |
| BDVState State = Pair.second; |
| assert(!isKnownBaseResult(I) && "why did it get added?"); |
| assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); |
| |
| // extractelement instructions are a bit special in that we may need to |
| // insert an extract even when we know an exact base for the instruction. |
| // The problem is that we need to convert from a vector base to a scalar |
| // base for the particular indice we're interested in. |
| if (State.isBase() && isa<ExtractElementInst>(I) && |
| isa<VectorType>(State.getBaseValue()->getType())) { |
| auto *EE = cast<ExtractElementInst>(I); |
| // TODO: In many cases, the new instruction is just EE itself. We should |
| // exploit this, but can't do it here since it would break the invariant |
| // about the BDV not being known to be a base. |
| auto *BaseInst = ExtractElementInst::Create( |
| State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); |
| BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); |
| States[I] = BDVState(BDVState::Base, BaseInst); |
| } |
| |
| // Since we're joining a vector and scalar base, they can never be the |
| // same. As a result, we should always see insert element having reached |
| // the conflict state. |
| assert(!isa<InsertElementInst>(I) || State.isConflict()); |
| |
| if (!State.isConflict()) |
| continue; |
| |
| /// Create and insert a new instruction which will represent the base of |
| /// the given instruction 'I'. |
| auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { |
| if (isa<PHINode>(I)) { |
| BasicBlock *BB = I->getParent(); |
| int NumPreds = pred_size(BB); |
| assert(NumPreds > 0 && "how did we reach here"); |
| std::string Name = suffixed_name_or(I, ".base", "base_phi"); |
| return PHINode::Create(I->getType(), NumPreds, Name, I); |
| } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { |
| // The undef will be replaced later |
| UndefValue *Undef = UndefValue::get(SI->getType()); |
| std::string Name = suffixed_name_or(I, ".base", "base_select"); |
| return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); |
| } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { |
| UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); |
| std::string Name = suffixed_name_or(I, ".base", "base_ee"); |
| return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, |
| EE); |
| } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { |
| UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); |
| UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); |
| std::string Name = suffixed_name_or(I, ".base", "base_ie"); |
| return InsertElementInst::Create(VecUndef, ScalarUndef, |
| IE->getOperand(2), Name, IE); |
| } else { |
| auto *SV = cast<ShuffleVectorInst>(I); |
| UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType()); |
| std::string Name = suffixed_name_or(I, ".base", "base_sv"); |
| return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2), |
| Name, SV); |
| } |
| }; |
| Instruction *BaseInst = MakeBaseInstPlaceholder(I); |
| // Add metadata marking this as a base value |
| BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); |
| States[I] = BDVState(BDVState::Conflict, BaseInst); |
| } |
| |
| // Returns a instruction which produces the base pointer for a given |
| // instruction. The instruction is assumed to be an input to one of the BDVs |
| // seen in the inference algorithm above. As such, we must either already |
| // know it's base defining value is a base, or have inserted a new |
| // instruction to propagate the base of it's BDV and have entered that newly |
| // introduced instruction into the state table. In either case, we are |
| // assured to be able to determine an instruction which produces it's base |
| // pointer. |
| auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { |
| Value *BDV = findBaseOrBDV(Input, Cache); |
| Value *Base = nullptr; |
| if (isKnownBaseResult(BDV)) { |
| Base = BDV; |
| } else { |
| // Either conflict or base. |
| assert(States.count(BDV)); |
| Base = States[BDV].getBaseValue(); |
| } |
| assert(Base && "Can't be null"); |
| // The cast is needed since base traversal may strip away bitcasts |
| if (Base->getType() != Input->getType() && InsertPt) |
| Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); |
| return Base; |
| }; |
| |
| // Fixup all the inputs of the new PHIs. Visit order needs to be |
| // deterministic and predictable because we're naming newly created |
| // instructions. |
| for (auto Pair : States) { |
| Instruction *BDV = cast<Instruction>(Pair.first); |
| BDVState State = Pair.second; |
| |
| assert(!isKnownBaseResult(BDV) && "why did it get added?"); |
| assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); |
| if (!State.isConflict()) |
| continue; |
| |
| if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { |
| PHINode *PN = cast<PHINode>(BDV); |
| unsigned NumPHIValues = PN->getNumIncomingValues(); |
| for (unsigned i = 0; i < NumPHIValues; i++) { |
| Value *InVal = PN->getIncomingValue(i); |
| BasicBlock *InBB = PN->getIncomingBlock(i); |
| |
| // If we've already seen InBB, add the same incoming value |
| // we added for it earlier. The IR verifier requires phi |
| // nodes with multiple entries from the same basic block |
| // to have the same incoming value for each of those |
| // entries. If we don't do this check here and basephi |
| // has a different type than base, we'll end up adding two |
| // bitcasts (and hence two distinct values) as incoming |
| // values for the same basic block. |
| |
| int BlockIndex = BasePHI->getBasicBlockIndex(InBB); |
| if (BlockIndex != -1) { |
| Value *OldBase = BasePHI->getIncomingValue(BlockIndex); |
| BasePHI->addIncoming(OldBase, InBB); |
| |
| #ifndef NDEBUG |
| Value *Base = getBaseForInput(InVal, nullptr); |
| // In essence this assert states: the only way two values |
| // incoming from the same basic block may be different is by |
| // being different bitcasts of the same value. A cleanup |
| // that remains TODO is changing findBaseOrBDV to return an |
| // llvm::Value of the correct type (and still remain pure). |
| // This will remove the need to add bitcasts. |
| assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && |
| "Sanity -- findBaseOrBDV should be pure!"); |
| #endif |
| continue; |
| } |
| |
| // Find the instruction which produces the base for each input. We may |
| // need to insert a bitcast in the incoming block. |
| // TODO: Need to split critical edges if insertion is needed |
| Value *Base = getBaseForInput(InVal, InBB->getTerminator()); |
| BasePHI->addIncoming(Base, InBB); |
| } |
| assert(BasePHI->getNumIncomingValues() == NumPHIValues); |
| } else if (SelectInst *BaseSI = |
| dyn_cast<SelectInst>(State.getBaseValue())) { |
| SelectInst *SI = cast<SelectInst>(BDV); |
| |
| // Find the instruction which produces the base for each input. |
| // We may need to insert a bitcast. |
| BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); |
| BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); |
| } else if (auto *BaseEE = |
| dyn_cast<ExtractElementInst>(State.getBaseValue())) { |
| Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); |
| // Find the instruction which produces the base for each input. We may |
| // need to insert a bitcast. |
| BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); |
| } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ |
| auto *BdvIE = cast<InsertElementInst>(BDV); |
| auto UpdateOperand = [&](int OperandIdx) { |
| Value *InVal = BdvIE->getOperand(OperandIdx); |
| Value *Base = getBaseForInput(InVal, BaseIE); |
| BaseIE->setOperand(OperandIdx, Base); |
| }; |
| UpdateOperand(0); // vector operand |
| UpdateOperand(1); // scalar operand |
| } else { |
| auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); |
| auto *BdvSV = cast<ShuffleVectorInst>(BDV); |
| auto UpdateOperand = [&](int OperandIdx) { |
| Value *InVal = BdvSV->getOperand(OperandIdx); |
| Value *Base = getBaseForInput(InVal, BaseSV); |
| BaseSV->setOperand(OperandIdx, Base); |
| }; |
| UpdateOperand(0); // vector operand |
| UpdateOperand(1); // vector operand |
| } |
| } |
| |
| // Cache all of our results so we can cheaply reuse them |
| // NOTE: This is actually two caches: one of the base defining value |
| // relation and one of the base pointer relation! FIXME |
| for (auto Pair : States) { |
| auto *BDV = Pair.first; |
| Value *Base = Pair.second.getBaseValue(); |
| assert(BDV && Base); |
| assert(!isKnownBaseResult(BDV) && "why did it get added?"); |
| |
| LLVM_DEBUG( |
| dbgs() << "Updating base value cache" |
| << " for: " << BDV->getName() << " from: " |
| << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") |
| << " to: " << Base->getName() << "\n"); |
| |
| if (Cache.count(BDV)) { |
| assert(isKnownBaseResult(Base) && |
| "must be something we 'know' is a base pointer"); |
| // Once we transition from the BDV relation being store in the Cache to |
| // the base relation being stored, it must be stable |
| assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && |
| "base relation should be stable"); |
| } |
| Cache[BDV] = Base; |
| } |
| assert(Cache.count(Def)); |
| return Cache[Def]; |
| } |
| |
| // For a set of live pointers (base and/or derived), identify the base |
| // pointer of the object which they are derived from. This routine will |
| // mutate the IR graph as needed to make the 'base' pointer live at the |
| // definition site of 'derived'. This ensures that any use of 'derived' can |
| // also use 'base'. This may involve the insertion of a number of |
| // additional PHI nodes. |
| // |
| // preconditions: live is a set of pointer type Values |
| // |
| // side effects: may insert PHI nodes into the existing CFG, will preserve |
| // CFG, will not remove or mutate any existing nodes |
| // |
| // post condition: PointerToBase contains one (derived, base) pair for every |
| // pointer in live. Note that derived can be equal to base if the original |
| // pointer was a base pointer. |
| static void |
| findBasePointers(const StatepointLiveSetTy &live, |
| MapVector<Value *, Value *> &PointerToBase, |
| DominatorTree *DT, DefiningValueMapTy &DVCache) { |
| for (Value *ptr : live) { |
| Value *base = findBasePointer(ptr, DVCache); |
| assert(base && "failed to find base pointer"); |
| PointerToBase[ptr] = base; |
| assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || |
| DT->dominates(cast<Instruction>(base)->getParent(), |
| cast<Instruction>(ptr)->getParent())) && |
| "The base we found better dominate the derived pointer"); |
| } |
| } |
| |
| /// Find the required based pointers (and adjust the live set) for the given |
| /// parse point. |
| static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, |
| CallBase *Call, |
| PartiallyConstructedSafepointRecord &result) { |
| MapVector<Value *, Value *> PointerToBase; |
| findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); |
| |
| if (PrintBasePointers) { |
| errs() << "Base Pairs (w/o Relocation):\n"; |
| for (auto &Pair : PointerToBase) { |
| errs() << " derived "; |
| Pair.first->printAsOperand(errs(), false); |
| errs() << " base "; |
| Pair.second->printAsOperand(errs(), false); |
| errs() << "\n";; |
| } |
| } |
| |
| result.PointerToBase = PointerToBase; |
| } |
| |
| /// Given an updated version of the dataflow liveness results, update the |
| /// liveset and base pointer maps for the call site CS. |
| static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, |
| CallBase *Call, |
| PartiallyConstructedSafepointRecord &result); |
| |
| static void recomputeLiveInValues( |
| Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, |
| MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { |
| // TODO-PERF: reuse the original liveness, then simply run the dataflow |
| // again. The old values are still live and will help it stabilize quickly. |
| GCPtrLivenessData RevisedLivenessData; |
| computeLiveInValues(DT, F, RevisedLivenessData); |
| for (size_t i = 0; i < records.size(); i++) { |
| struct PartiallyConstructedSafepointRecord &info = records[i]; |
| recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); |
| } |
| } |
| |
| // When inserting gc.relocate and gc.result calls, we need to ensure there are |
| // no uses of the original value / return value between the gc.statepoint and |
| // the gc.relocate / gc.result call. One case which can arise is a phi node |
| // starting one of the successor blocks. We also need to be able to insert the |
| // gc.relocates only on the path which goes through the statepoint. We might |
| // need to split an edge to make this possible. |
| static BasicBlock * |
| normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, |
| DominatorTree &DT) { |
| BasicBlock *Ret = BB; |
| if (!BB->getUniquePredecessor()) |
| Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); |
| |
| // Now that 'Ret' has unique predecessor we can safely remove all phi nodes |
| // from it |
| FoldSingleEntryPHINodes(Ret); |
| assert(!isa<PHINode>(Ret->begin()) && |
| "All PHI nodes should have been removed!"); |
| |
| // At this point, we can safely insert a gc.relocate or gc.result as the first |
| // instruction in Ret if needed. |
| return Ret; |
| } |
| |
| // Create new attribute set containing only attributes which can be transferred |
| // from original call to the safepoint. |
| static AttributeList legalizeCallAttributes(AttributeList AL) { |
| if (AL.isEmpty()) |
| return AL; |
| |
| // Remove the readonly, readnone, and statepoint function attributes. |
| AttrBuilder FnAttrs = AL.getFnAttributes(); |
| FnAttrs.removeAttribute(Attribute::ReadNone); |
| FnAttrs.removeAttribute(Attribute::ReadOnly); |
| for (Attribute A : AL.getFnAttributes()) { |
| if (isStatepointDirectiveAttr(A)) |
| FnAttrs.remove(A); |
| } |
| |
| // Just skip parameter and return attributes for now |
| LLVMContext &Ctx = AL.getContext(); |
| return AttributeList::get(Ctx, AttributeList::FunctionIndex, |
| AttributeSet::get(Ctx, FnAttrs)); |
| } |
| |
| /// Helper function to place all gc relocates necessary for the given |
| /// statepoint. |
| /// Inputs: |
| /// liveVariables - list of variables to be relocated. |
| /// liveStart - index of the first live variable. |
| /// basePtrs - base pointers. |
| /// statepointToken - statepoint instruction to which relocates should be |
| /// bound. |
| /// Builder - Llvm IR builder to be used to construct new calls. |
| static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, |
| const int LiveStart, |
| ArrayRef<Value *> BasePtrs, |
| Instruction *StatepointToken, |
| IRBuilder<> Builder) { |
| if (LiveVariables.empty()) |
| return; |
| |
| auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { |
| auto ValIt = llvm::find(LiveVec, Val); |
| assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); |
| size_t Index = std::distance(LiveVec.begin(), ValIt); |
| assert(Index < LiveVec.size() && "Bug in std::find?"); |
| return Index; |
| }; |
| Module *M = StatepointToken->getModule(); |
| |
| // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose |
| // element type is i8 addrspace(1)*). We originally generated unique |
| // declarations for each pointer type, but this proved problematic because |
| // the intrinsic mangling code is incomplete and fragile. Since we're moving |
| // towards a single unified pointer type anyways, we can just cast everything |
| // to an i8* of the right address space. A bitcast is added later to convert |
| // gc_relocate to the actual value's type. |
| auto getGCRelocateDecl = [&] (Type *Ty) { |
| assert(isHandledGCPointerType(Ty)); |
| auto AS = Ty->getScalarType()->getPointerAddressSpace(); |
| Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); |
| if (auto *VT = dyn_cast<VectorType>(Ty)) |
| NewTy = VectorType::get(NewTy, VT->getNumElements()); |
| return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, |
| {NewTy}); |
| }; |
| |
| // Lazily populated map from input types to the canonicalized form mentioned |
| // in the comment above. This should probably be cached somewhere more |
| // broadly. |
| DenseMap<Type *, Function *> TypeToDeclMap; |
| |
| for (unsigned i = 0; i < LiveVariables.size(); i++) { |
| // Generate the gc.relocate call and save the result |
| Value *BaseIdx = |
| Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); |
| Value *LiveIdx = Builder.getInt32(LiveStart + i); |
| |
| Type *Ty = LiveVariables[i]->getType(); |
| if (!TypeToDeclMap.count(Ty)) |
| TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); |
| Function *GCRelocateDecl = TypeToDeclMap[Ty]; |
| |
| // only specify a debug name if we can give a useful one |
| CallInst *Reloc = Builder.CreateCall( |
| GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, |
| suffixed_name_or(LiveVariables[i], ".relocated", "")); |
| // Trick CodeGen into thinking there are lots of free registers at this |
| // fake call. |
| Reloc->setCallingConv(CallingConv::Cold); |
| } |
| } |
| |
| namespace { |
| |
| /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this |
| /// avoids having to worry about keeping around dangling pointers to Values. |
| class DeferredReplacement { |
| AssertingVH<Instruction> Old; |
| AssertingVH<Instruction> New; |
| bool IsDeoptimize = false; |
| |
| DeferredReplacement() = default; |
| |
| public: |
| static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { |
| assert(Old != New && Old && New && |
| "Cannot RAUW equal values or to / from null!"); |
| |
| DeferredReplacement D; |
| D.Old = Old; |
| D.New = New; |
| return D; |
| } |
| |
| static DeferredReplacement createDelete(Instruction *ToErase) { |
| DeferredReplacement D; |
| D.Old = ToErase; |
| return D; |
| } |
| |
| static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { |
| #ifndef NDEBUG |
| auto *F = cast<CallInst>(Old)->getCalledFunction(); |
| assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && |
| "Only way to construct a deoptimize deferred replacement"); |
| #endif |
| DeferredReplacement D; |
| D.Old = Old; |
| D.IsDeoptimize = true; |
| return D; |
| } |
| |
| /// Does the task represented by this instance. |
| void doReplacement() { |
| Instruction *OldI = Old; |
| Instruction *NewI = New; |
| |
| assert(OldI != NewI && "Disallowed at construction?!"); |
| assert((!IsDeoptimize || !New) && |
| "Deoptimize intrinsics are not replaced!"); |
| |
| Old = nullptr; |
| New = nullptr; |
| |
| if (NewI) |
| OldI->replaceAllUsesWith(NewI); |
| |
| if (IsDeoptimize) { |
| // Note: we've inserted instructions, so the call to llvm.deoptimize may |
| // not necessarily be followed by the matching return. |
| auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); |
| new UnreachableInst(RI->getContext(), RI); |
| RI->eraseFromParent(); |
| } |
| |
| OldI->eraseFromParent(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| static StringRef getDeoptLowering(CallBase *Call) { |
| const char *DeoptLowering = "deopt-lowering"; |
| if (Call->hasFnAttr(DeoptLowering)) { |
| // FIXME: Calls have a *really* confusing interface around attributes |
| // with values. |
| const AttributeList &CSAS = Call->getAttributes(); |
| if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering)) |
| return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering) |
| .getValueAsString(); |
| Function *F = Call->getCalledFunction(); |
| assert(F && F->hasFnAttribute(DeoptLowering)); |
| return F->getFnAttribute(DeoptLowering).getValueAsString(); |
| } |
| return "live-through"; |
| } |
| |
| static void |
| makeStatepointExplicitImpl(CallBase *Call, /* to replace */ |
| const SmallVectorImpl<Value *> &BasePtrs, |
| const SmallVectorImpl<Value *> &LiveVariables, |
| PartiallyConstructedSafepointRecord &Result, |
| std::vector<DeferredReplacement> &Replacements) { |
| assert(BasePtrs.size() == LiveVariables.size()); |
| |
| // Then go ahead and use the builder do actually do the inserts. We insert |
| // immediately before the previous instruction under the assumption that all |
| // arguments will be available here. We can't insert afterwards since we may |
| // be replacing a terminator. |
| IRBuilder<> Builder(Call); |
| |
| ArrayRef<Value *> GCArgs(LiveVariables); |
| uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; |
| uint32_t NumPatchBytes = 0; |
| uint32_t Flags = uint32_t(StatepointFlags::None); |
| |
| ArrayRef<Use> CallArgs(Call->arg_begin(), Call->arg_end()); |
| ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(Call); |
| ArrayRef<Use> TransitionArgs; |
| if (auto TransitionBundle = |
| Call->getOperandBundle(LLVMContext::OB_gc_transition)) { |
| Flags |= uint32_t(StatepointFlags::GCTransition); |
| TransitionArgs = TransitionBundle->Inputs; |
| } |
| |
| // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls |
| // with a return value, we lower then as never returning calls to |
| // __llvm_deoptimize that are followed by unreachable to get better codegen. |
| bool IsDeoptimize = false; |
| |
| StatepointDirectives SD = |
| parseStatepointDirectivesFromAttrs(Call->getAttributes()); |
| if (SD.NumPatchBytes) |
| NumPatchBytes = *SD.NumPatchBytes; |
| if (SD.StatepointID) |
| StatepointID = *SD.StatepointID; |
| |
| // Pass through the requested lowering if any. The default is live-through. |
| StringRef DeoptLowering = getDeoptLowering(Call); |
| if (DeoptLowering.equals("live-in")) |
| Flags |= uint32_t(StatepointFlags::DeoptLiveIn); |
| else { |
| assert(DeoptLowering.equals("live-through") && "Unsupported value!"); |
| } |
| |
| Value *CallTarget = Call->getCalledValue(); |
| if (Function *F = dyn_cast<Function>(CallTarget)) { |
| if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { |
| // Calls to llvm.experimental.deoptimize are lowered to calls to the |
| // __llvm_deoptimize symbol. We want to resolve this now, since the |
| // verifier does not allow taking the address of an intrinsic function. |
| |
| SmallVector<Type *, 8> DomainTy; |
| for (Value *Arg : CallArgs) |
| DomainTy.push_back(Arg->getType()); |
| auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, |
| /* isVarArg = */ false); |
| |
| // Note: CallTarget can be a bitcast instruction of a symbol if there are |
| // calls to @llvm.experimental.deoptimize with different argument types in |
| // the same module. This is fine -- we assume the frontend knew what it |
| // was doing when generating this kind of IR. |
| CallTarget = F->getParent() |
| ->getOrInsertFunction("__llvm_deoptimize", FTy) |
| .getCallee(); |
| |
| IsDeoptimize = true; |
| } |
| } |
| |
| // Create the statepoint given all the arguments |
| Instruction *Token = nullptr; |
| if (auto *CI = dyn_cast<CallInst>(Call)) { |
| CallInst *SPCall = Builder.CreateGCStatepointCall( |
| StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, |
| TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); |
| |
| SPCall->setTailCallKind(CI->getTailCallKind()); |
| SPCall->setCallingConv(CI->getCallingConv()); |
| |
| // Currently we will fail on parameter attributes and on certain |
| // function attributes. In case if we can handle this set of attributes - |
| // set up function attrs directly on statepoint and return attrs later for |
| // gc_result intrinsic. |
| SPCall->setAttributes(legalizeCallAttributes(CI->getAttributes())); |
| |
| Token = SPCall; |
| |
| // Put the following gc_result and gc_relocate calls immediately after the |
| // the old call (which we're about to delete) |
| assert(CI->getNextNode() && "Not a terminator, must have next!"); |
| Builder.SetInsertPoint(CI->getNextNode()); |
| Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); |
| } else { |
| auto *II = cast<InvokeInst>(Call); |
| |
| // Insert the new invoke into the old block. We'll remove the old one in a |
| // moment at which point this will become the new terminator for the |
| // original block. |
| InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( |
| StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), |
| II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, |
| "statepoint_token"); |
| |
| SPInvoke->setCallingConv(II->getCallingConv()); |
| |
| // Currently we will fail on parameter attributes and on certain |
| // function attributes. In case if we can handle this set of attributes - |
| // set up function attrs directly on statepoint and return attrs later for |
| // gc_result intrinsic. |
| SPInvoke->setAttributes(legalizeCallAttributes(II->getAttributes())); |
| |
| Token = SPInvoke; |
| |
| // Generate gc relocates in exceptional path |
| BasicBlock *UnwindBlock = II->getUnwindDest(); |
| assert(!isa<PHINode>(UnwindBlock->begin()) && |
| UnwindBlock->getUniquePredecessor() && |
| "can't safely insert in this block!"); |
| |
| Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); |
| Builder.SetCurrentDebugLocation(II->getDebugLoc()); |
| |
| // Attach exceptional gc relocates to the landingpad. |
| Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); |
| Result.UnwindToken = ExceptionalToken; |
| |
| const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); |
| CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, |
| Builder); |
| |
| // Generate gc relocates and returns for normal block |
| BasicBlock *NormalDest = II->getNormalDest(); |
| assert(!isa<PHINode>(NormalDest->begin()) && |
| NormalDest->getUniquePredecessor() && |
| "can't safely insert in this block!"); |
| |
| Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); |
| |
| // gc relocates will be generated later as if it were regular call |
| // statepoint |
| } |
| assert(Token && "Should be set in one of the above branches!"); |
| |
| if (IsDeoptimize) { |
| // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we |
| // transform the tail-call like structure to a call to a void function |
| // followed by unreachable to get better codegen. |
| Replacements.push_back( |
| DeferredReplacement::createDeoptimizeReplacement(Call)); |
| } else { |
| Token->setName("statepoint_token"); |
| if (!Call->getType()->isVoidTy() && !Call->use_empty()) { |
| StringRef Name = Call->hasName() ? Call->getName() : ""; |
| CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); |
| GCResult->setAttributes( |
| AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, |
| Call->getAttributes().getRetAttributes())); |
| |
| // We cannot RAUW or delete CS.getInstruction() because it could be in the |
| // live set of some other safepoint, in which case that safepoint's |
| // PartiallyConstructedSafepointRecord will hold a raw pointer to this |
| // llvm::Instruction. Instead, we defer the replacement and deletion to |
| // after the live sets have been made explicit in the IR, and we no longer |
| // have raw pointers to worry about. |
| Replacements.emplace_back( |
| DeferredReplacement::createRAUW(Call, GCResult)); |
| } else { |
| Replacements.emplace_back(DeferredReplacement::createDelete(Call)); |
| } |
| } |
| |
| Result.StatepointToken = Token; |
| |
| // Second, create a gc.relocate for every live variable |
| const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); |
| CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); |
| } |
| |
| // Replace an existing gc.statepoint with a new one and a set of gc.relocates |
| // which make the relocations happening at this safepoint explicit. |
| // |
| // WARNING: Does not do any fixup to adjust users of the original live |
| // values. That's the callers responsibility. |
| static void |
| makeStatepointExplicit(DominatorTree &DT, CallBase *Call, |
| PartiallyConstructedSafepointRecord &Result, |
| std::vector<DeferredReplacement> &Replacements) { |
| const auto &LiveSet = Result.LiveSet; |
| const auto &PointerToBase = Result.PointerToBase; |
| |
| // Convert to vector for efficient cross referencing. |
| SmallVector<Value *, 64> BaseVec, LiveVec; |
| LiveVec.reserve(LiveSet.size()); |
| BaseVec.reserve(LiveSet.size()); |
| for (Value *L : LiveSet) { |
| LiveVec.push_back(L); |
| assert(PointerToBase.count(L)); |
| Value *Base = PointerToBase.find(L)->second; |
| BaseVec.push_back(Base); |
| } |
| assert(LiveVec.size() == BaseVec.size()); |
| |
| // Do the actual rewriting and delete the old statepoint |
| makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements); |
| } |
| |
| // Helper function for the relocationViaAlloca. |
| // |
| // It receives iterator to the statepoint gc relocates and emits a store to the |
| // assigned location (via allocaMap) for the each one of them. It adds the |
| // visited values into the visitedLiveValues set, which we will later use them |
| // for sanity checking. |
| static void |
| insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, |
| DenseMap<Value *, AllocaInst *> &AllocaMap, |
| DenseSet<Value *> &VisitedLiveValues) { |
| for (User *U : GCRelocs) { |
| GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); |
| if (!Relocate) |
| continue; |
| |
| Value *OriginalValue = Relocate->getDerivedPtr(); |
| assert(AllocaMap.count(OriginalValue)); |
| Value *Alloca = AllocaMap[OriginalValue]; |
| |
| // Emit store into the related alloca |
| // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to |
| // the correct type according to alloca. |
| assert(Relocate->getNextNode() && |
| "Should always have one since it's not a terminator"); |
| IRBuilder<> Builder(Relocate->getNextNode()); |
| Value *CastedRelocatedValue = |
| Builder.CreateBitCast(Relocate, |
| cast<AllocaInst>(Alloca)->getAllocatedType(), |
| suffixed_name_or(Relocate, ".casted", "")); |
| |
| StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); |
| Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); |
| |
| #ifndef NDEBUG |
| VisitedLiveValues.insert(OriginalValue); |
| #endif |
| } |
| } |
| |
| // Helper function for the "relocationViaAlloca". Similar to the |
| // "insertRelocationStores" but works for rematerialized values. |
| static void insertRematerializationStores( |
| const RematerializedValueMapTy &RematerializedValues, |
| DenseMap<Value *, AllocaInst *> &AllocaMap, |
| DenseSet<Value *> &VisitedLiveValues) { |
| for (auto RematerializedValuePair: RematerializedValues) { |
| Instruction *RematerializedValue = RematerializedValuePair.first; |
| Value *OriginalValue = RematerializedValuePair.second; |
| |
| assert(AllocaMap.count(OriginalValue) && |
| "Can not find alloca for rematerialized value"); |
| Value *Alloca = AllocaMap[OriginalValue]; |
| |
| StoreInst *Store = new StoreInst(RematerializedValue, Alloca); |
| Store->insertAfter(RematerializedValue); |
| |
| #ifndef NDEBUG |
| VisitedLiveValues.insert(OriginalValue); |
| #endif |
| } |
| } |
| |
| /// Do all the relocation update via allocas and mem2reg |
| static void relocationViaAlloca( |
| Function &F, DominatorTree &DT, ArrayRef<Value *> Live, |
| ArrayRef<PartiallyConstructedSafepointRecord> Records) { |
| #ifndef NDEBUG |
| // record initial number of (static) allocas; we'll check we have the same |
| // number when we get done. |
| int InitialAllocaNum = 0; |
| for (Instruction &I : F.getEntryBlock()) |
| if (isa<AllocaInst>(I)) |
| InitialAllocaNum++; |
| #endif |
| |
| // TODO-PERF: change data structures, reserve |
| DenseMap<Value *, AllocaInst *> AllocaMap; |
| SmallVector<AllocaInst *, 200> PromotableAllocas; |
| // Used later to chack that we have enough allocas to store all values |
| std::size_t NumRematerializedValues = 0; |
| PromotableAllocas.reserve(Live.size()); |
| |
| // Emit alloca for "LiveValue" and record it in "allocaMap" and |
| // "PromotableAllocas" |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| auto emitAllocaFor = [&](Value *LiveValue) { |
| AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), |
| DL.getAllocaAddrSpace(), "", |
| F.getEntryBlock().getFirstNonPHI()); |
| AllocaMap[LiveValue] = Alloca; |
| PromotableAllocas.push_back(Alloca); |
| }; |
| |
| // Emit alloca for each live gc pointer |
| for (Value *V : Live) |
| emitAllocaFor(V); |
| |
| // Emit allocas for rematerialized values |
| for (const auto &Info : Records) |
| for (auto RematerializedValuePair : Info.RematerializedValues) { |
| Value *OriginalValue = RematerializedValuePair.second; |
| if (AllocaMap.count(OriginalValue) != 0) |
| continue; |
| |
| emitAllocaFor(OriginalValue); |
| ++NumRematerializedValues; |
| } |
| |
| // The next two loops are part of the same conceptual operation. We need to |
| // insert a store to the alloca after the original def and at each |
| // redefinition. We need to insert a load before each use. These are split |
| // into distinct loops for performance reasons. |
| |
| // Update gc pointer after each statepoint: either store a relocated value or |
| // null (if no relocated value was found for this gc pointer and it is not a |
| // gc_result). This must happen before we update the statepoint with load of |
| // alloca otherwise we lose the link between statepoint and old def. |
| for (const auto &Info : Records) { |
| Value *Statepoint = Info.StatepointToken; |
| |
| // This will be used for consistency check |
| DenseSet<Value *> VisitedLiveValues; |
| |
| // Insert stores for normal statepoint gc relocates |
| insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); |
| |
| // In case if it was invoke statepoint |
| // we will insert stores for exceptional path gc relocates. |
| if (isa<InvokeInst>(Statepoint)) { |
| insertRelocationStores(Info.UnwindToken->users(), AllocaMap, |
| VisitedLiveValues); |
| } |
| |
| // Do similar thing with rematerialized values |
| insertRematerializationStores(Info.RematerializedValues, AllocaMap, |
| VisitedLiveValues); |
| |
| if (ClobberNonLive) { |
| // As a debugging aid, pretend that an unrelocated pointer becomes null at |
| // the gc.statepoint. This will turn some subtle GC problems into |
| // slightly easier to debug SEGVs. Note that on large IR files with |
| // lots of gc.statepoints this is extremely costly both memory and time |
| // wise. |
| SmallVector<AllocaInst *, 64> ToClobber; |
| for (auto Pair : AllocaMap) { |
| Value *Def = Pair.first; |
| AllocaInst *Alloca = Pair.second; |
| |
| // This value was relocated |
| if (VisitedLiveValues.count(Def)) { |
| continue; |
| } |
| ToClobber.push_back(Alloca); |
| } |
| |
| auto InsertClobbersAt = [&](Instruction *IP) { |
| for (auto *AI : ToClobber) { |
| auto PT = cast<PointerType>(AI->getAllocatedType()); |
| Constant *CPN = ConstantPointerNull::get(PT); |
| StoreInst *Store = new StoreInst(CPN, AI); |
| Store->insertBefore(IP); |
| } |
| }; |
| |
| // Insert the clobbering stores. These may get intermixed with the |
| // gc.results and gc.relocates, but that's fine. |
| if (auto II = dyn_cast<InvokeInst>(Statepoint)) { |
| InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); |
| InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); |
| } else { |
| InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); |
| } |
| } |
| } |
| |
| // Update use with load allocas and add store for gc_relocated. |
| for (auto Pair : AllocaMap) { |
| Value *Def = Pair.first; |
| AllocaInst *Alloca = Pair.second; |
| |
| // We pre-record the uses of allocas so that we dont have to worry about |
| // later update that changes the user information.. |
| |
| SmallVector<Instruction *, 20> Uses; |
| // PERF: trade a linear scan for repeated reallocation |
| Uses.reserve(Def->getNumUses()); |
| for (User *U : Def->users()) { |
| if (!isa<ConstantExpr>(U)) { |
| // If the def has a ConstantExpr use, then the def is either a |
| // ConstantExpr use itself or null. In either case |
| // (recursively in the first, directly in the second), the oop |
| // it is ultimately dependent on is null and this particular |
| // use does not need to be fixed up. |
| Uses.push_back(cast<Instruction>(U)); |
| } |
| } |
| |
| llvm::sort(Uses); |
| auto Last = std::unique(Uses.begin(), Uses.end()); |
| Uses.erase(Last, Uses.end()); |
| |
| for (Instruction *Use : Uses) { |
| if (isa<PHINode>(Use)) { |
| PHINode *Phi = cast<PHINode>(Use); |
| for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { |
| if (Def == Phi->getIncomingValue(i)) { |
| LoadInst *Load = |
| new LoadInst(Alloca->getAllocatedType(), Alloca, "", |
| Phi->getIncomingBlock(i)->getTerminator()); |
| Phi->setIncomingValue(i, Load); |
| } |
| } |
| } else { |
| LoadInst *Load = |
| new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); |
| Use->replaceUsesOfWith(Def, Load); |
| } |
| } |
| |
| // Emit store for the initial gc value. Store must be inserted after load, |
| // otherwise store will be in alloca's use list and an extra load will be |
| // inserted before it. |
| StoreInst *Store = new StoreInst(Def, Alloca); |
| if (Instruction *Inst = dyn_cast<Instruction>(Def)) { |
| if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { |
| // InvokeInst is a terminator so the store need to be inserted into its |
| // normal destination block. |
| BasicBlock *NormalDest = Invoke->getNormalDest(); |
| Store->insertBefore(NormalDest->getFirstNonPHI()); |
| } else { |
| assert(!Inst->isTerminator() && |
| "The only terminator that can produce a value is " |
| "InvokeInst which is handled above."); |
| Store->insertAfter(Inst); |
| } |
| } else { |
| assert(isa<Argument>(Def)); |
| Store->insertAfter(cast<Instruction>(Alloca)); |
| } |
| } |
| |
| assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && |
| "we must have the same allocas with lives"); |
| if (!PromotableAllocas.empty()) { |
| // Apply mem2reg to promote alloca to SSA |
| PromoteMemToReg(PromotableAllocas, DT); |
| } |
| |
| #ifndef NDEBUG |
| for (auto &I : F.getEntryBlock()) |
| if (isa<AllocaInst>(I)) |
| InitialAllocaNum--; |
| assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); |
| #endif |
| } |
| |
| /// Implement a unique function which doesn't require we sort the input |
| /// vector. Doing so has the effect of changing the output of a couple of |
| /// tests in ways which make them less useful in testing fused safepoints. |
| template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { |
| SmallSet<T, 8> Seen; |
| Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }), |
| Vec.end()); |
| } |
| |
| /// Insert holders so that each Value is obviously live through the entire |
| /// lifetime of the call. |
| static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, |
| SmallVectorImpl<CallInst *> &Holders) { |
| if (Values.empty()) |
| // No values to hold live, might as well not insert the empty holder |
| return; |
| |
| Module *M = Call->getModule(); |
| // Use a dummy vararg function to actually hold the values live |
| FunctionCallee Func = M->getOrInsertFunction( |
| "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); |
| if (isa<CallInst>(Call)) { |
| // For call safepoints insert dummy calls right after safepoint |
| Holders.push_back( |
| CallInst::Create(Func, Values, "", &*++Call->getIterator())); |
| return; |
| } |
| // For invoke safepooints insert dummy calls both in normal and |
| // exceptional destination blocks |
| auto *II = cast<InvokeInst>(Call); |
| Holders.push_back(CallInst::Create( |
| Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); |
| Holders.push_back(CallInst::Create( |
| Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); |
| } |
| |
| static void findLiveReferences( |
| Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, |
| MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { |
| GCPtrLivenessData OriginalLivenessData; |
| computeLiveInValues(DT, F, OriginalLivenessData); |
| for (size_t i = 0; i < records.size(); i++) { |
| struct PartiallyConstructedSafepointRecord &info = records[i]; |
| analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); |
| } |
| } |
| |
| // Helper function for the "rematerializeLiveValues". It walks use chain |
| // starting from the "CurrentValue" until it reaches the root of the chain, i.e. |
| // the base or a value it cannot process. Only "simple" values are processed |
| // (currently it is GEP's and casts). The returned root is examined by the |
| // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array |
| // with all visited values. |
| static Value* findRematerializableChainToBasePointer( |
| SmallVectorImpl<Instruction*> &ChainToBase, |
| Value *CurrentValue) { |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { |
| ChainToBase.push_back(GEP); |
| return findRematerializableChainToBasePointer(ChainToBase, |
| GEP->getPointerOperand()); |
| } |
| |
| if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { |
| if (!CI->isNoopCast(CI->getModule()->getDataLayout())) |
| return CI; |
| |
| ChainToBase.push_back(CI); |
| return findRematerializableChainToBasePointer(ChainToBase, |
| CI->getOperand(0)); |
| } |
| |
| // We have reached the root of the chain, which is either equal to the base or |
| // is the first unsupported value along the use chain. |
| return CurrentValue; |
| } |
| |
| // Helper function for the "rematerializeLiveValues". Compute cost of the use |
| // chain we are going to rematerialize. |
| static unsigned |
| chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, |
| TargetTransformInfo &TTI) { |
| unsigned Cost = 0; |
| |
| for (Instruction *Instr : Chain) { |
| if (CastInst *CI = dyn_cast<CastInst>(Instr)) { |
| assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && |
| "non noop cast is found during rematerialization"); |
| |
| Type *SrcTy = CI->getOperand(0)->getType(); |
| Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI); |
| |
| } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { |
| // Cost of the address calculation |
| Type *ValTy = GEP->getSourceElementType(); |
| Cost += TTI.getAddressComputationCost(ValTy); |
| |
| // And cost of the GEP itself |
| // TODO: Use TTI->getGEPCost here (it exists, but appears to be not |
| // allowed for the external usage) |
| if (!GEP->hasAllConstantIndices()) |
| Cost += 2; |
| |
| } else { |
| llvm_unreachable("unsupported instruction type during rematerialization"); |
| } |
| } |
| |
| return Cost; |
| } |
| |
| static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { |
| unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); |
| if (PhiNum != AlternateRootPhi.getNumIncomingValues() || |
| OrigRootPhi.getParent() != AlternateRootPhi.getParent()) |
| return false; |
| // Map of incoming values and their corresponding basic blocks of |
| // OrigRootPhi. |
| SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; |
| for (unsigned i = 0; i < PhiNum; i++) |
| CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = |
| OrigRootPhi.getIncomingBlock(i); |
| |
| // Both current and base PHIs should have same incoming values and |
| // the same basic blocks corresponding to the incoming values. |
| for (unsigned i = 0; i < PhiNum; i++) { |
| auto CIVI = |
| CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); |
| if (CIVI == CurrentIncomingValues.end()) |
| return false; |
| BasicBlock *CurrentIncomingBB = CIVI->second; |
| if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) |
| return false; |
| } |
| return true; |
| } |
| |
| // From the statepoint live set pick values that are cheaper to recompute then |
| // to relocate. Remove this values from the live set, rematerialize them after |
| // statepoint and record them in "Info" structure. Note that similar to |
| // relocated values we don't do any user adjustments here. |
| static void rematerializeLiveValues(CallBase *Call, |
| PartiallyConstructedSafepointRecord &Info, |
| TargetTransformInfo &TTI) { |
| const unsigned int ChainLengthThreshold = 10; |
| |
| // Record values we are going to delete from this statepoint live set. |
| // We can not di this in following loop due to iterator invalidation. |
| SmallVector<Value *, 32> LiveValuesToBeDeleted; |
| |
| for (Value *LiveValue: Info.LiveSet) { |
| // For each live pointer find its defining chain |
| SmallVector<Instruction *, 3> ChainToBase; |
| assert(Info.PointerToBase.count(LiveValue)); |
| Value *RootOfChain = |
| findRematerializableChainToBasePointer(ChainToBase, |
| LiveValue); |
| |
| // Nothing to do, or chain is too long |
| if ( ChainToBase.size() == 0 || |
| ChainToBase.size() > ChainLengthThreshold) |
| continue; |
| |
| // Handle the scenario where the RootOfChain is not equal to the |
| // Base Value, but they are essentially the same phi values. |
| if (RootOfChain != Info.PointerToBase[LiveValue]) { |
| PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); |
| PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); |
| if (!OrigRootPhi || !AlternateRootPhi) |
| continue; |
| // PHI nodes that have the same incoming values, and belonging to the same |
| // basic blocks are essentially the same SSA value. When the original phi |
| // has incoming values with different base pointers, the original phi is |
| // marked as conflict, and an additional `AlternateRootPhi` with the same |
| // incoming values get generated by the findBasePointer function. We need |
| // to identify the newly generated AlternateRootPhi (.base version of phi) |
| // and RootOfChain (the original phi node itself) are the same, so that we |
| // can rematerialize the gep and casts. This is a workaround for the |
| // deficiency in the findBasePointer algorithm. |
| if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) |
| continue; |
| // Now that the phi nodes are proved to be the same, assert that |
| // findBasePointer's newly generated AlternateRootPhi is present in the |
| // liveset of the call. |
| assert(Info.LiveSet.count(AlternateRootPhi)); |
| } |
| // Compute cost of this chain |
| unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); |
| // TODO: We can also account for cases when we will be able to remove some |
| // of the rematerialized values by later optimization passes. I.e if |
| // we rematerialized several intersecting chains. Or if original values |
| // don't have any uses besides this statepoint. |
| |
| // For invokes we need to rematerialize each chain twice - for normal and |
| // for unwind basic blocks. Model this by multiplying cost by two. |
| if (isa<InvokeInst>(Call)) { |
| Cost *= 2; |
| } |
| // If it's too expensive - skip it |
| if (Cost >= RematerializationThreshold) |
| continue; |
| |
| // Remove value from the live set |
| LiveValuesToBeDeleted.push_back(LiveValue); |
| |
| // Clone instructions and record them inside "Info" structure |
| |
| // Walk backwards to visit top-most instructions first |
| std::reverse(ChainToBase.begin(), ChainToBase.end()); |
| |
| // Utility function which clones all instructions from "ChainToBase" |
| // and inserts them before "InsertBefore". Returns rematerialized value |
| // which should be used after statepoint. |
| auto rematerializeChain = [&ChainToBase]( |
| Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { |
| Instruction *LastClonedValue = nullptr; |
| Instruction *LastValue = nullptr; |
| for (Instruction *Instr: ChainToBase) { |
| // Only GEP's and casts are supported as we need to be careful to not |
| // introduce any new uses of pointers not in the liveset. |
| // Note that it's fine to introduce new uses of pointers which were |
| // otherwise not used after this statepoint. |
| assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); |
| |
| Instruction *ClonedValue = Instr->clone(); |
| ClonedValue->insertBefore(InsertBefore); |
| ClonedValue->setName(Instr->getName() + ".remat"); |
| |
| // If it is not first instruction in the chain then it uses previously |
| // cloned value. We should update it to use cloned value. |
| if (LastClonedValue) { |
| assert(LastValue); |
| ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); |
| #ifndef NDEBUG |
| for (auto OpValue : ClonedValue->operand_values()) { |
| // Assert that cloned instruction does not use any instructions from |
| // this chain other than LastClonedValue |
| assert(!is_contained(ChainToBase, OpValue) && |
| "incorrect use in rematerialization chain"); |
| // Assert that the cloned instruction does not use the RootOfChain |
| // or the AlternateLiveBase. |
| assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); |
| } |
| #endif |
| } else { |
| // For the first instruction, replace the use of unrelocated base i.e. |
| // RootOfChain/OrigRootPhi, with the corresponding PHI present in the |
| // live set. They have been proved to be the same PHI nodes. Note |
| // that the *only* use of the RootOfChain in the ChainToBase list is |
| // the first Value in the list. |
| if (RootOfChain != AlternateLiveBase) |
| ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); |
| } |
| |
| LastClonedValue = ClonedValue; |
| LastValue = Instr; |
| } |
| assert(LastClonedValue); |
| return LastClonedValue; |
| }; |
| |
| // Different cases for calls and invokes. For invokes we need to clone |
| // instructions both on normal and unwind path. |
| if (isa<CallInst>(Call)) { |
| Instruction *InsertBefore = Call->getNextNode(); |
| assert(InsertBefore); |
| Instruction *RematerializedValue = rematerializeChain( |
| InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); |
| Info.RematerializedValues[RematerializedValue] = LiveValue; |
| } else { |
| auto *Invoke = cast<InvokeInst>(Call); |
| |
| Instruction *NormalInsertBefore = |
| &*Invoke->getNormalDest()->getFirstInsertionPt(); |
| Instruction *UnwindInsertBefore = |
| &*Invoke->getUnwindDest()->getFirstInsertionPt(); |
| |
| Instruction *NormalRematerializedValue = rematerializeChain( |
| NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); |
| Instruction *UnwindRematerializedValue = rematerializeChain( |
| UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); |
| |
| Info.RematerializedValues[NormalRematerializedValue] = LiveValue; |
| Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; |
| } |
| } |
| |
| // Remove rematerializaed values from the live set |
| for (auto LiveValue: LiveValuesToBeDeleted) { |
| Info.LiveSet.remove(LiveValue); |
| } |
| } |
| |
| static bool insertParsePoints(Function &F, DominatorTree &DT, |
| TargetTransformInfo &TTI, |
| SmallVectorImpl<CallBase *> &ToUpdate) { |
| #ifndef NDEBUG |
| // sanity check the input |
| std::set<CallBase *> Uniqued; |
| Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); |
| assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); |
| |
| for (CallBase *Call : ToUpdate) |
| assert(Call->getFunction() == &F); |
| #endif |
| |
| // When inserting gc.relocates for invokes, we need to be able to insert at |
| // the top of the successor blocks. See the comment on |
| // normalForInvokeSafepoint on exactly what is needed. Note that this step |
| // may restructure the CFG. |
| for (CallBase *Call : ToUpdate) { |
| auto *II = dyn_cast<InvokeInst>(Call); |
| if (!II) |
| continue; |
| normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); |
| normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); |
| } |
| |
| // A list of dummy calls added to the IR to keep various values obviously |
| // live in the IR. We'll remove all of these when done. |
| SmallVector<CallInst *, 64> Holders; |
| |
| // Insert a dummy call with all of the deopt operands we'll need for the |
| // actual safepoint insertion as arguments. This ensures reference operands |
| // in the deopt argument list are considered live through the safepoint (and |
| // thus makes sure they get relocated.) |
| for (CallBase *Call : ToUpdate) { |
| SmallVector<Value *, 64> DeoptValues; |
| |
| for (Value *Arg : GetDeoptBundleOperands(Call)) { |
| assert(!isUnhandledGCPointerType(Arg->getType()) && |
| "support for FCA unimplemented"); |
| if (isHandledGCPointerType(Arg->getType())) |
| DeoptValues.push_back(Arg); |
| } |
| |
| insertUseHolderAfter(Call, DeoptValues, Holders); |
| } |
| |
| SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); |
| |
| // A) Identify all gc pointers which are statically live at the given call |
| // site. |
| findLiveReferences(F, DT, ToUpdate, Records); |
| |
| // B) Find the base pointers for each live pointer |
| /* scope for caching */ { |
| // Cache the 'defining value' relation used in the computation and |
| // insertion of base phis and selects. This ensures that we don't insert |
| // large numbers of duplicate base_phis. |
| DefiningValueMapTy DVCache; |
| |
| for (size_t i = 0; i < Records.size(); i++) { |
| PartiallyConstructedSafepointRecord &info = Records[i]; |
| findBasePointers(DT, DVCache, ToUpdate[i], info); |
| } |
| } // end of cache scope |
| |
| // The base phi insertion logic (for any safepoint) may have inserted new |
| // instructions which are now live at some safepoint. The simplest such |
| // example is: |
| // loop: |
| // phi a <-- will be a new base_phi here |
| // safepoint 1 <-- that needs to be live here |
| // gep a + 1 |
| // safepoint 2 |
| // br loop |
| // We insert some dummy calls after each safepoint to definitely hold live |
| // the base pointers which were identified for that safepoint. We'll then |
| // ask liveness for _every_ base inserted to see what is now live. Then we |
| // remove the dummy calls. |
| Holders.reserve(Holders.size() + Records.size()); |
| for (size_t i = 0; i < Records.size(); i++) { |
| PartiallyConstructedSafepointRecord &Info = Records[i]; |
| |
| SmallVector<Value *, 128> Bases; |
| for (auto Pair : Info.PointerToBase) |
| Bases.push_back(Pair.second); |
| |
| insertUseHolderAfter(ToUpdate[i], Bases, Holders); |
| } |
| |
| // By selecting base pointers, we've effectively inserted new uses. Thus, we |
| // need to rerun liveness. We may *also* have inserted new defs, but that's |
| // not the key issue. |
| recomputeLiveInValues(F, DT, ToUpdate, Records); |
| |
| if (PrintBasePointers) { |
| for (auto &Info : Records) { |
| errs() << "Base Pairs: (w/Relocation)\n"; |
| for (auto Pair : Info.PointerToBase) { |
| errs() << " derived "; |
| Pair.first->printAsOperand(errs(), false); |
| errs() << " base "; |
| Pair.second->printAsOperand(errs(), false); |
| errs() << "\n"; |
| } |
| } |
| } |
| |
| // It is possible that non-constant live variables have a constant base. For |
| // example, a GEP with a variable offset from a global. In this case we can |
| // remove it from the liveset. We already don't add constants to the liveset |
| // because we assume they won't move at runtime and the GC doesn't need to be |
| // informed about them. The same reasoning applies if the base is constant. |
| // Note that the relocation placement code relies on this filtering for |
| // correctness as it expects the base to be in the liveset, which isn't true |
| // if the base is constant. |
| for (auto &Info : Records) |
| for (auto &BasePair : Info.PointerToBase) |
| if (isa<Constant>(BasePair.second)) |
| Info.LiveSet.remove(BasePair.first); |
| |
| for (CallInst *CI : Holders) |
| CI->eraseFromParent(); |
| |
| Holders.clear(); |
| |
| // In order to reduce live set of statepoint we might choose to rematerialize |
| // some values instead of relocating them. This is purely an optimization and |
| // does not influence correctness. |
| for (size_t i = 0; i < Records.size(); i++) |
| rematerializeLiveValues(ToUpdate[i], Records[i], TTI); |
| |
| // We need this to safely RAUW and delete call or invoke return values that |
| // may themselves be live over a statepoint. For details, please see usage in |
| // makeStatepointExplicitImpl. |
| std::vector<DeferredReplacement> Replacements; |
| |
| // Now run through and replace the existing statepoints with new ones with |
| // the live variables listed. We do not yet update uses of the values being |
| // relocated. We have references to live variables that need to |
| // survive to the last iteration of this loop. (By construction, the |
| // previous statepoint can not be a live variable, thus we can and remove |
| // the old statepoint calls as we go.) |
| for (size_t i = 0; i < Records.size(); i++) |
| makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); |
| |
| ToUpdate.clear(); // prevent accident use of invalid calls. |
| |
| for (auto &PR : Replacements) |
| PR.doReplacement(); |
| |
| Replacements.clear(); |
| |
| for (auto &Info : Records) { |
| // These live sets may contain state Value pointers, since we replaced calls |
| // with operand bundles with calls wrapped in gc.statepoint, and some of |
| // those calls may have been def'ing live gc pointers. Clear these out to |
| // avoid accidentally using them. |
| // |
| // TODO: We should create a separate data structure that does not contain |
| // these live sets, and migrate to using that data structure from this point |
| // onward. |
| Info.LiveSet.clear(); |
| Info.PointerToBase.clear(); |
| } |
| |
| // Do all the fixups of the original live variables to their relocated selves |
| SmallVector<Value *, 128> Live; |
| for (size_t i = 0; i < Records.size(); i++) { |
| PartiallyConstructedSafepointRecord &Info = Records[i]; |
| |
| // We can't simply save the live set from the original insertion. One of |
| // the live values might be the result of a call which needs a safepoint. |
| // That Value* no longer exists and we need to use the new gc_result. |
| // Thankfully, the live set is embedded in the statepoint (and updated), so |
| // we just grab that. |
| Statepoint Statepoint(Info.StatepointToken); |
| Live.insert(Live.end(), Statepoint.gc_args_begin(), |
| Statepoint.gc_args_end()); |
| #ifndef NDEBUG |
| // Do some basic sanity checks on our liveness results before performing |
| // relocation. Relocation can and will turn mistakes in liveness results |
| // into non-sensical code which is must harder to debug. |
| // TODO: It would be nice to test consistency as well |
| assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && |
| "statepoint must be reachable or liveness is meaningless"); |
| for (Value *V : Statepoint.gc_args()) { |
| if (!isa<Instruction>(V)) |
| // Non-instruction values trivial dominate all possible uses |
| continue; |
| auto *LiveInst = cast<Instruction>(V); |
| assert(DT.isReachableFromEntry(LiveInst->getParent()) && |
| "unreachable values should never be live"); |
| assert(DT.dominates(LiveInst, Info.StatepointToken) && |
| "basic SSA liveness expectation violated by liveness analysis"); |
| } |
| #endif |
| } |
| unique_unsorted(Live); |
| |
| #ifndef NDEBUG |
| // sanity check |
| for (auto *Ptr : Live) |
| assert(isHandledGCPointerType(Ptr->getType()) && |
| "must be a gc pointer type"); |
| #endif |
| |
| relocationViaAlloca(F, DT, Live, Records); |
| return !Records.empty(); |
| } |
| |
| // Handles both return values and arguments for Functions and calls. |
| template <typename AttrHolder> |
| static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, |
| unsigned Index) { |
| AttrBuilder R; |
| if (AH.getDereferenceableBytes(Index)) |
| R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, |
| AH.getDereferenceableBytes(Index))); |
| if (AH.getDereferenceableOrNullBytes(Index)) |
| R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, |
| AH.getDereferenceableOrNullBytes(Index))); |
| if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias)) |
| R.addAttribute(Attribute::NoAlias); |
| |
| if (!R.empty()) |
| AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R)); |
| } |
| |
| static void stripNonValidAttributesFromPrototype(Function &F) { |
| LLVMContext &Ctx = F.getContext(); |
| |
| for (Argument &A : F.args()) |
| if (isa<PointerType>(A.getType())) |
| RemoveNonValidAttrAtIndex(Ctx, F, |
| A.getArgNo() + AttributeList::FirstArgIndex); |
| |
| if (isa<PointerType>(F.getReturnType())) |
| RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); |
| } |
| |
| /// Certain metadata on instructions are invalid after running RS4GC. |
| /// Optimizations that run after RS4GC can incorrectly use this metadata to |
| /// optimize functions. We drop such metadata on the instruction. |
| static void stripInvalidMetadataFromInstruction(Instruction &I) { |
| if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) |
| return; |
| // These are the attributes that are still valid on loads and stores after |
| // RS4GC. |
| // The metadata implying dereferenceability and noalias are (conservatively) |
| // dropped. This is because semantically, after RewriteStatepointsForGC runs, |
| // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can |
| // touch the entire heap including noalias objects. Note: The reasoning is |
| // same as stripping the dereferenceability and noalias attributes that are |
| // analogous to the metadata counterparts. |
| // We also drop the invariant.load metadata on the load because that metadata |
| // implies the address operand to the load points to memory that is never |
| // changed once it became dereferenceable. This is no longer true after RS4GC. |
| // Similar reasoning applies to invariant.group metadata, which applies to |
| // loads within a group. |
| unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, |
| LLVMContext::MD_range, |
| LLVMContext::MD_alias_scope, |
| LLVMContext::MD_nontemporal, |
| LLVMContext::MD_nonnull, |
| LLVMContext::MD_align, |
| LLVMContext::MD_type}; |
| |
| // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. |
| I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); |
| } |
| |
| static void stripNonValidDataFromBody(Function &F) { |
| if (F.empty()) |
| return; |
| |
| LLVMContext &Ctx = F.getContext(); |
| MDBuilder Builder(Ctx); |
| |
| // Set of invariantstart instructions that we need to remove. |
| // Use this to avoid invalidating the instruction iterator. |
| SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; |
| |
| for (Instruction &I : instructions(F)) { |
| // invariant.start on memory location implies that the referenced memory |
| // location is constant and unchanging. This is no longer true after |
| // RewriteStatepointsForGC runs because there can be calls to gc.statepoint |
| // which frees the entire heap and the presence of invariant.start allows |
| // the optimizer to sink the load of a memory location past a statepoint, |
| // which is incorrect. |
| if (auto *II = dyn_cast<IntrinsicInst>(&I)) |
| if (II->getIntrinsicID() == Intrinsic::invariant_start) { |
| InvariantStartInstructions.push_back(II); |
| continue; |
| } |
| |
| if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { |
| MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); |
| I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); |
| } |
| |
| stripInvalidMetadataFromInstruction(I); |
| |
| if (auto *Call = dyn_cast<CallBase>(&I)) { |
| for (int i = 0, e = Call->arg_size(); i != e; i++) |
| if (isa<PointerType>(Call->getArgOperand(i)->getType())) |
| RemoveNonValidAttrAtIndex(Ctx, *Call, |
| i + AttributeList::FirstArgIndex); |
| if (isa<PointerType>(Call->getType())) |
| RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex); |
| } |
| } |
| |
| // Delete the invariant.start instructions and RAUW undef. |
| for (auto *II : InvariantStartInstructions) { |
| II->replaceAllUsesWith(UndefValue::get(II->getType())); |
| II->eraseFromParent(); |
| } |
| } |
| |
| /// Returns true if this function should be rewritten by this pass. The main |
| /// point of this function is as an extension point for custom logic. |
| static bool shouldRewriteStatepointsIn(Function &F) { |
| // TODO: This should check the GCStrategy |
| if (F.hasGC()) { |
| const auto &FunctionGCName = F.getGC(); |
| const StringRef StatepointExampleName("statepoint-example"); |
| const StringRef CoreCLRName("coreclr"); |
| return (StatepointExampleName == FunctionGCName) || |
| (CoreCLRName == FunctionGCName); |
| } else |
| return false; |
| } |
| |
| static void stripNonValidData(Module &M) { |
| #ifndef NDEBUG |
| assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); |
| #endif |
| |
| for (Function &F : M) |
| stripNonValidAttributesFromPrototype(F); |
| |
| for (Function &F : M) |
| stripNonValidDataFromBody(F); |
| } |
| |
| bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, |
| TargetTransformInfo &TTI, |
| const TargetLibraryInfo &TLI) { |
| assert(!F.isDeclaration() && !F.empty() && |
| "need function body to rewrite statepoints in"); |
| assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); |
| |
| auto NeedsRewrite = [&TLI](Instruction &I) { |
| if (const auto *Call = dyn_cast<CallBase>(&I)) |
| return !callsGCLeafFunction(Call, TLI) && !isStatepoint(Call); |
| return false; |
| }; |
| |
| // Delete any unreachable statepoints so that we don't have unrewritten |
| // statepoints surviving this pass. This makes testing easier and the |
| // resulting IR less confusing to human readers. |
| DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
| bool MadeChange = removeUnreachableBlocks(F, &DTU); |
| // Flush the Dominator Tree. |
| DTU.getDomTree(); |
| |
| // Gather all the statepoints which need rewritten. Be careful to only |
| // consider those in reachable code since we need to ask dominance queries |
| // when rewriting. We'll delete the unreachable ones in a moment. |
| SmallVector<CallBase *, 64> ParsePointNeeded; |
| for (Instruction &I : instructions(F)) { |
| // TODO: only the ones with the flag set! |
| if (NeedsRewrite(I)) { |
| // NOTE removeUnreachableBlocks() is stronger than |
| // DominatorTree::isReachableFromEntry(). In other words |
| // removeUnreachableBlocks can remove some blocks for which |
| // isReachableFromEntry() returns true. |
| assert(DT.isReachableFromEntry(I.getParent()) && |
| "no unreachable blocks expected"); |
| ParsePointNeeded.push_back(cast<CallBase>(&I)); |
| } |
| } |
| |
| // Return early if no work to do. |
| if (ParsePointNeeded.empty()) |
| return MadeChange; |
| |
| // As a prepass, go ahead and aggressively destroy single entry phi nodes. |
| // These are created by LCSSA. They have the effect of increasing the size |
| // of liveness sets for no good reason. It may be harder to do this post |
| // insertion since relocations and base phis can confuse things. |
| for (BasicBlock &BB : F) |
| if (BB.getUniquePredecessor()) { |
| MadeChange = true; |
| FoldSingleEntryPHINodes(&BB); |
| } |
| |
| // Before we start introducing relocations, we want to tweak the IR a bit to |
| // avoid unfortunate code generation effects. The main example is that we |
| // want to try to make sure the comparison feeding a branch is after any |
| // safepoints. Otherwise, we end up with a comparison of pre-relocation |
| // values feeding a branch after relocation. This is semantically correct, |
| // but results in extra register pressure since both the pre-relocation and |
| // post-relocation copies must be available in registers. For code without |
| // relocations this is handled elsewhere, but teaching the scheduler to |
| // reverse the transform we're about to do would be slightly complex. |
| // Note: This may extend the live range of the inputs to the icmp and thus |
| // increase the liveset of any statepoint we move over. This is profitable |
| // as long as all statepoints are in rare blocks. If we had in-register |
| // lowering for live values this would be a much safer transform. |
| auto getConditionInst = [](Instruction *TI) -> Instruction * { |
| if (auto *BI = dyn_cast<BranchInst>(TI)) |
| if (BI->isConditional()) |
| return dyn_cast<Instruction>(BI->getCondition()); |
| // TODO: Extend this to handle switches |
| return nullptr; |
| }; |
| for (BasicBlock &BB : F) { |
| Instruction *TI = BB.getTerminator(); |
| if (auto *Cond = getConditionInst(TI)) |
| // TODO: Handle more than just ICmps here. We should be able to move |
| // most instructions without side effects or memory access. |
| if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { |
| MadeChange = true; |
| Cond->moveBefore(TI); |
| } |
| } |
| |
| // Nasty workaround - The base computation code in the main algorithm doesn't |
| // consider the fact that a GEP can be used to convert a scalar to a vector. |
| // The right fix for this is to integrate GEPs into the base rewriting |
| // algorithm properly, this is just a short term workaround to prevent |
| // crashes by canonicalizing such GEPs into fully vector GEPs. |
| for (Instruction &I : instructions(F)) { |
| if (!isa<GetElementPtrInst>(I)) |
| continue; |
| |
| unsigned VF = 0; |
| for (unsigned i = 0; i < I.getNumOperands(); i++) |
| if (I.getOperand(i)->getType()->isVectorTy()) { |
| assert(VF == 0 || |
| VF == I.getOperand(i)->getType()->getVectorNumElements()); |
| VF = I.getOperand(i)->getType()->getVectorNumElements(); |
| } |
| |
| // It's the vector to scalar traversal through the pointer operand which |
| // confuses base pointer rewriting, so limit ourselves to that case. |
| if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { |
| IRBuilder<> B(&I); |
| auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); |
| I.setOperand(0, Splat); |
| MadeChange = true; |
| } |
| } |
| |
| MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); |
| return MadeChange; |
| } |
| |
| // liveness computation via standard dataflow |
| // ------------------------------------------------------------------- |
| |
| // TODO: Consider using bitvectors for liveness, the set of potentially |
| // interesting values should be small and easy to pre-compute. |
| |
| /// Compute the live-in set for the location rbegin starting from |
| /// the live-out set of the basic block |
| static void computeLiveInValues(BasicBlock::reverse_iterator Begin, |
| BasicBlock::reverse_iterator End, |
| SetVector<Value *> &LiveTmp) { |
| for (auto &I : make_range(Begin, End)) { |
| // KILL/Def - Remove this definition from LiveIn |
| LiveTmp.remove(&I); |
| |
| // Don't consider *uses* in PHI nodes, we handle their contribution to |
| // predecessor blocks when we seed the LiveOut sets |
| if (isa<PHINode>(I)) |
| continue; |
| |
| // USE - Add to the LiveIn set for this instruction |
| for (Value *V : I.operands()) { |
| assert(!isUnhandledGCPointerType(V->getType()) && |
| "support for FCA unimplemented"); |
| if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { |
| // The choice to exclude all things constant here is slightly subtle. |
| // There are two independent reasons: |
| // - We assume that things which are constant (from LLVM's definition) |
| // do not move at runtime. For example, the address of a global |
| // variable is fixed, even though it's contents may not be. |
| // - Second, we can't disallow arbitrary inttoptr constants even |
| // if the language frontend does. Optimization passes are free to |
| // locally exploit facts without respect to global reachability. This |
| // can create sections of code which are dynamically unreachable and |
| // contain just about anything. (see constants.ll in tests) |
| LiveTmp.insert(V); |
| } |
| } |
| } |
| } |
| |
| static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { |
| for (BasicBlock *Succ : successors(BB)) { |
| for (auto &I : *Succ) { |
| PHINode *PN = dyn_cast<PHINode>(&I); |
| if (!PN) |
| break; |
| |
| Value *V = PN->getIncomingValueForBlock(BB); |
| assert(!isUnhandledGCPointerType(V->getType()) && |
| "support for FCA unimplemented"); |
| if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) |
| LiveTmp.insert(V); |
| } |
| } |
| } |
| |
| static SetVector<Value *> computeKillSet(BasicBlock *BB) { |
| SetVector<Value *> KillSet; |
| for (Instruction &I : *BB) |
| if (isHandledGCPointerType(I.getType())) |
| KillSet.insert(&I); |
| return KillSet; |
| } |
| |
| #ifndef NDEBUG |
| /// Check that the items in 'Live' dominate 'TI'. This is used as a basic |
| /// sanity check for the liveness computation. |
| static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, |
| Instruction *TI, bool TermOkay = false) { |
| for (Value *V : Live) { |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| // The terminator can be a member of the LiveOut set. LLVM's definition |
| // of instruction dominance states that V does not dominate itself. As |
| // such, we need to special case this to allow it. |
| if (TermOkay && TI == I) |
| continue; |
| assert(DT.dominates(I, TI) && |
| "basic SSA liveness expectation violated by liveness analysis"); |
| } |
| } |
| } |
| |
| /// Check that all the liveness sets used during the computation of liveness |
| /// obey basic SSA properties. This is useful for finding cases where we miss |
| /// a def. |
| static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, |
| BasicBlock &BB) { |
| checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); |
| checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); |
| checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); |
| } |
| #endif |
| |
| static void computeLiveInValues(DominatorTree &DT, Function &F, |
| GCPtrLivenessData &Data) { |
| SmallSetVector<BasicBlock *, 32> Worklist; |
| |
| // Seed the liveness for each individual block |
| for (BasicBlock &BB : F) { |
| Data.KillSet[&BB] = computeKillSet(&BB); |
| Data.LiveSet[&BB].clear(); |
| computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); |
| |
| #ifndef NDEBUG |
| for (Value *Kill : Data.KillSet[&BB]) |
| assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); |
| #endif |
| |
| Data.LiveOut[&BB] = SetVector<Value *>(); |
| computeLiveOutSeed(&BB, Data.LiveOut[&BB]); |
| Data.LiveIn[&BB] = Data.LiveSet[&BB]; |
| Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); |
| Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); |
| if (!Data.LiveIn[&BB].empty()) |
| Worklist.insert(pred_begin(&BB), pred_end(&BB)); |
| } |
| |
| // Propagate that liveness until stable |
| while (!Worklist.empty()) { |
| BasicBlock *BB = Worklist.pop_back_val(); |
| |
| // Compute our new liveout set, then exit early if it hasn't changed despite |
| // the contribution of our successor. |
| SetVector<Value *> LiveOut = Data.LiveOut[BB]; |
| const auto OldLiveOutSize = LiveOut.size(); |
| for (BasicBlock *Succ : successors(BB)) { |
| assert(Data.LiveIn.count(Succ)); |
| LiveOut.set_union(Data.LiveIn[Succ]); |
| } |
| // assert OutLiveOut is a subset of LiveOut |
| if (OldLiveOutSize == LiveOut.size()) { |
| // If the sets are the same size, then we didn't actually add anything |
| // when unioning our successors LiveIn. Thus, the LiveIn of this block |
| // hasn't changed. |
| continue; |
| } |
| Data.LiveOut[BB] = LiveOut; |
| |
| // Apply the effects of this basic block |
| SetVector<Value *> LiveTmp = LiveOut; |
| LiveTmp.set_union(Data.LiveSet[BB]); |
| LiveTmp.set_subtract(Data.KillSet[BB]); |
| |
| assert(Data.LiveIn.count(BB)); |
| const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; |
| // assert: OldLiveIn is a subset of LiveTmp |
| if (OldLiveIn.size() != LiveTmp.size()) { |
| Data.LiveIn[BB] = LiveTmp; |
| Worklist.insert(pred_begin(BB), pred_end(BB)); |
| } |
| } // while (!Worklist.empty()) |
| |
| #ifndef NDEBUG |
| // Sanity check our output against SSA properties. This helps catch any |
| // missing kills during the above iteration. |
| for (BasicBlock &BB : F) |
| checkBasicSSA(DT, Data, BB); |
| #endif |
| } |
| |
| static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, |
| StatepointLiveSetTy &Out) { |
| BasicBlock *BB = Inst->getParent(); |
| |
| // Note: The copy is intentional and required |
| assert(Data.LiveOut.count(BB)); |
| SetVector<Value *> LiveOut = Data.LiveOut[BB]; |
| |
| // We want to handle the statepoint itself oddly. It's |
| // call result is not live (normal), nor are it's arguments |
| // (unless they're used again later). This adjustment is |
| // specifically what we need to relocate |
| computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), |
| LiveOut); |
| LiveOut.remove(Inst); |
| Out.insert(LiveOut.begin(), LiveOut.end()); |
| } |
| |
| static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, |
| CallBase *Call, |
| PartiallyConstructedSafepointRecord &Info) { |
| StatepointLiveSetTy Updated; |
| findLiveSetAtInst(Call, RevisedLivenessData, Updated); |
| |
| // We may have base pointers which are now live that weren't before. We need |
| // to update the PointerToBase structure to reflect this. |
| for (auto V : Updated) |
| if (Info.PointerToBase.insert({V, V}).second) { |
| assert(isKnownBaseResult(V) && |
| "Can't find base for unexpected live value!"); |
| continue; |
| } |
| |
| #ifndef NDEBUG |
| for (auto V : Updated) |
| assert(Info.PointerToBase.count(V) && |
| "Must be able to find base for live value!"); |
| #endif |
| |
| // Remove any stale base mappings - this can happen since our liveness is |
| // more precise then the one inherent in the base pointer analysis. |
| DenseSet<Value *> ToErase; |
| for (auto KVPair : Info.PointerToBase) |
| if (!Updated.count(KVPair.first)) |
| ToErase.insert(KVPair.first); |
| |
| for (auto *V : ToErase) |
| Info.PointerToBase.erase(V); |
| |
| #ifndef NDEBUG |
| for (auto KVPair : Info.PointerToBase) |
| assert(Updated.count(KVPair.first) && "record for non-live value"); |
| #endif |
| |
| Info.LiveSet = Updated; |
| } |